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Abstract 

Background Real‑world observational data are an important source of evidence on the treatment effectiveness 
for patients hospitalized with coronavirus disease 2019 (COVID‑19). However, observational studies evaluating treat‑
ment effectiveness based on longitudinal data are often prone to methodological biases such as immortal time bias, 
confounding bias, and competing risks.

Methods For exemplary target trial emulation, we used a cohort of patients hospitalized with COVID‑19 (n = 501) 
in a single centre. We described the methodology for evaluating the effectiveness of a single‑dose treatment, 
emulated a trial using real‑world data, and drafted a hypothetical study protocol describing the main components. 
To avoid immortal time and time‑fixed confounding biases, we applied the clone‑censor‑weight technique. We set 
a 5‑day grace period as a period of time when treatment could be initiated. We used the inverse probability of cen‑
soring weights to account for the selection bias introduced by artificial censoring. To estimate the treatment effects, 
we took the multi‑state model approach. We considered a multi‑state model with five states. The primary endpoint 
was defined as clinical severity status, assessed by a 5‑point ordinal scale on day 30. Differences between the treat‑
ment group and standard of care treatment group were calculated using a proportional odds model and shown 
as odds ratios. Additionally, the weighted cause‑specific hazards and transition probabilities for each treatment arm 
were presented.

Results Our study demonstrates that trial emulation with a multi‑state model analysis is a suitable approach 
to address observational data limitations, evaluate treatment effects on clinically heterogeneous in‑hospital death 
and discharge alive endpoints, and consider the intermediate state of admission to ICU. The multi‑state model analy‑
sis allows us to summarize results using stacked probability plots that make it easier to interpret results.

Conclusions Extending the emulated target trial approach to multi‑state model analysis complements treatment 
effectiveness analysis by gaining information on competing events. Combining two methodologies offers an option 
to address immortal time bias, confounding bias, and competing risk events. This methodological approach can 
provide additional insight for decision‑making, particularly when data from randomized controlled trials (RCTs) are 
unavailable.
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Introduction
During the coronavirus disease 2019 (COVID-19) pan-
demic, observational patient data have increasingly been 
used to evaluate treatment effectiveness, in addition to 
randomized controlled trials (RCTs) [1]. However, evalu-
ating treatment effectiveness using real-world data can 
be challenging due to observational data limitations [2, 
3]. Immortal time bias occurs when there is misalign-
ment of start of follow-up and exposure, leading to a 
spurious increase in survival time for exposed patients 
[4]. Confounding bias relates to unequal distributions 
of patient’s characteristics between exposure groups, 
leading to an over- or underestimation of effects [5]. 
Furthermore, a competing risk bias occurs when com-
peting events are treated as censoring events, and naïve 
Kaplan–Meier analysis is applied, leading to an overesti-
mation of the cumulative incidence of the primary event 
[6, 7]. A methodological review that evaluated observa-
tional COVID-19 studies published in four high-ranking 
medical journals demonstrated that immortal time and 
confounding biases remain prevalent in pharmaco-epi-
demiological studies assessing treatment effectiveness 
when they rely on retrospective observational data [1, 2]. 
Ignoring the pitfalls of observational study design and the 
application of standard methods for survival analysis can 
lead to biased results and flawed conclusions [7].

The target trial emulation framework is attracting more 
attention, and has become a preferred method for evalu-
ating treatment effectiveness using real-world observa-
tional data [8, 9]. During the COVID-19 pandemic, this 
valuable framework demonstrated its utility by providing 
early evidence on repurposed therapies for hospitalized 
patients [10, 11]. Target trial emulation can be essential 
to complement clinical trial findings or when RCT data 
are unavailable [11–14]. Importantly, this approach ena-
bles to emulate a hypothetical trial and address common 
observational design limitations [9]. Applying the emu-
lated trial framework encourages researchers to care-
fully consider their data and setting, highlighting their 
strengths and limitations.

Previously, we described the extension of the target 
trial emulation framework to competing risk analysis, 
which enabled us to estimate the treatment effects on 
in-hospital death probabilities for COVID-19 patients, 
taking hospital discharge into account as a compet-
ing risk event [15]. In this article, we aim to extend the 
target trial emulation framework to a setting of multi-
state model analysis, and demonstrate the benefits of 
this development on exemplary data from hospitalized 
patients with COVID-19. Multi-state modelling meth-
odology enables detailed description of disease path-
ways in complex settings, and makes the assessment of 
treatment effects on heterogeneous endpoints [16, 17]. 

The multi-state model approach allows to account for 
competing events and complement the analysis of RCTs 
[18, 19]. Our study was motivated by the methodology 
used in the randomized study by Spinner et  al. [20], 
which aimed to evaluate the effect of treatment versus 
standard care on the clinical status, measured on an 
ordinal scale, of patients with moderate COVID-19.

This paper is organized as follows: in the Method sec-
tion, we first define a research question and describe 
the components of the emulated trial protocol; second, 
we describe the trial’s emulation via the clone-censor-
weight technique; third, we provide a brief introduc-
tion to multi-state models and present the statistical 
quantities of interest. The Results section illustrates 
the cumulative intensities and stacked probability plots 
for transition probabilities, and presents odds ratios 
estimated using the proportional odds model. In the 
Discussion section, we discuss the method, alternative 
approaches, and limitations.

Material and methods
Applying the emulated trial framework implies following 
a well-defined series of steps, we first defined the research 
question and hypothetical randomized trial we would 
have liked to conduct. Second, we drafted a study proto-
col with key components: eligibility and exclusion crite-
ria, treatment strategies and assignment, a grace period, 
adjustment variables, time zero and end of follow-up, 
outcomes, and causal contrast. Third, to emulate a trial, 
we applied the cloning-censoring-weighting technique to 
our observational data [9]. Finally, we took a multi-state 
model approach to study disease pathways for hospital-
ized patients and evaluated treatment effects on different 
endpoints. To focus on the methodological proposal and 
avoid clinical interpretation issues, we excluded the phar-
maceutical class of the evaluated treatment.

Target trial emulation
Objective and question of clinical research
Our clinical objective was defined as follows: to deter-
mine the effectiveness of the early administered treatment 
“X” compared with standard care on the clinical severity 
status in hospitalized patients with moderate-to-severe 
COVID-19. Our clinical question of interest was: to eval-
uate the effectiveness of the “X” treatment compared to the 
standard of care treatment (“non-X-treatment”) on clini-
cal severity status assessed by a 5-point ordinal scale on 
day 30. The key components of a hypothetical protocol 
are found in Supplementary Table 1. A detailed descrip-
tion of the emulation of the target trial and each compo-
nent of the protocol is available in the article by Hernan 
et al. [21].
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Protocol specification: eligibility and exclusion criteria
For this exemplary analysis, we considered hospitalized 
patients with moderate-to-severe COVID-19, defined as 
a ratio of the partial pressure of oxygen to the fraction of 
inspired oxygen  (PaO2/FiO2) less than 300 mmHg, meas-
ured at admission [22]. We emulated the target trial using 
single-centre patient-level data on individuals hospital-
ized with COVID-19 at the Bellvitge University Hospi-
tal in Spain from March 2020 to February 2021. To meet 
the eligibility criteria, the patients had to be (i) 18 years 
of age or older and (ii) with laboratory-confirmed severe 
acute respiratory syndrome coronavirus type 2 (SARS-
CoV-2) infection detected by polymerase chain reaction 
(RT-PCR), and (iii) with moderate-to-severe disease as 
previously defined. We excluded (i) patients with hos-
pital-acquired COVID-19, (ii) readmitted patients, and 
(iii) patients who received “X” treatment before hospital 
admission. Additionally, we excluded from our analysis 
patients (n = 4) who had an outcome on the day of hospi-
tal admission.

Treatment strategies and assignment, grace period
We evaluated the effectiveness of single-dose treat-
ment “X” together with the standard of care treatment 
(“X-treated”) versus the standard of care treatment alone 
(“non-X-treated”) according to clinical strategies. The 
investigated treatment is usually administered as a single 
dose. We defined the treatment initiation period or grace 
period as the five days following hospital admission, dur-
ing which individuals remain eligible to both treatment 
arms. Exposure was defined according to the initiation of 
treatment within the grace period. Patients given treat-
ment after the grace period were classified in the non-
X-treated arm. The length of the grace period should be 
carefully defined and aligned with clinical practice [9, 23]. 
In this educational example, this was defined for demon-
stration purposes.

Based on a priori clinical knowledge, we pre-specified 
covariates in the protocol and included in our analysis the 
baseline variables of sex, age, the Charlson Comorbid-
ity Index, and inflammation markers such as C-reactive 
protein (mg/L), lactate dehydrogenase (U/L), D-dimer 
(ng/mL) and lymphocytes (× 106/L). To account for the 
non-linear effect of D-dimer and reduce its skewness, we 
used log-transformation. The effects of other continu-
ous biomarkers were modelled linearly. We categorized 
Charlson’s Comorbidity Index score as either < 2 or ≥ 2. 
We also included the calendar time of hospital admis-
sion, which could be potentially associated with treat-
ment choices and changes in clinical guidelines over the 
course of the follow-up period. We categorized the cal-
endar time according to the COVID-19 pandemic waves: 
the first wave from March through July 2020, the second 

wave from August through December 2020, and the third 
wave from January to the last available date in the dataset 
in February 2021.

Follow‑up period
The start of follow-up, also called as time zero or base-
line, was defined as the time of hospital admission. We 
pre-specified the study’s maximum follow-up time to 
45 days. Patients were followed from hospital admission 
until either in-hospital death, discharge home, discharge 
to another healthcare facility (HCF), whichever occurred 
first, or administrative censoring at 45 days (9.2%, 46 out 
of 501 patients). 

Outcomes
The primary outcome was clinical severity status assessed 
on 5-point ordinal scale ranging from “discharge home” 
(category 1) to “in-hospital death” (category 5). We pre-
specified the outcomes and ordered endpoints in five cat-
egories: 1: discharge home, 2: normal ward, 3: discharge 
to another HCF, 4: intensive care unit (ICU), and 5: in-
hospital death. All the outcomes of interest were pre-
specified and included in the protocol. We assessed the 
treatment effectiveness on the clinical severity status on 
day 30.

Causal contrast
In our hypothetical trial, we defined that treatment “X” 
could be administered within the first five days after hos-
pital admission, in conjunction with or without other 
non-X treatments. Patients who deviated from the pre-
specified protocol were censored. In our study, we esti-
mated the effect similar to the per-protocol analysis. 
Differences between the treatment groups were deter-
mined using a proportional odds model and expressed as 
odds ratios.

Practical implementation of trial with cloning, censoring, 
and weighting
Following the design of the target trial emulation taking 
the cloning-censoring-weighting approach, we created a 
hypothetical scenario in which a copy of each patient was 
assigned to both arms at hospital admission. We created 
two exact copies, one for the X-treated arm and one for 
the non-X-treated arm. Following this, the clones were 
censored during the grace period when they deviated 
from the protocol of the arm they were in. For example, 
patients who received treatment during the grace period 
were censored in the non-X-treated arm, at the time they 
received “X” treatment. For each patient, treatment sta-
tus was defined during the 5-day grace period, and only 
one cloned copy of a patient was followed after this 
time window. Similarly, patients who never received the 
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treatment during the grace period were censored in the 
treated arm at the end of the grace period. A schematic 
example of emulating a target trial via cloning and cen-
soring for patients with COVID-19 is presented in Sup-
plementary Fig. 1.

Estimation of the inverse probability of censoring weights
To address the selection bias introduced by artificial cen-
soring (i.e., censoring due to cloning), we applied the 
inverse probability of (artificial) censoring weights. These 
weights correct for the censoring imposed by the study 
design and create a pseudo-sample in which that censor-
ing no longer depends on the covariates. Formally, the 
individual unstabilized weights can be shown in Eq.  (1), 
and the components of the weights estimated using (2) 
and (3) [24, 25]. The weights are defined as the product of 
estimated inverse probabilities of remaining uncensored 
until the end of grace period conditional on the baseline 
(time-fixed) covariates:

where TC
i  is time to artificial censoring with a censor-

ing indicator (Ci = 1 if censored and Ci = 0 otherwise) 
for each patient i at ordered censoring times (1 ≤ k ≤ 5) 
after the start of follow-up, where Zi are the baseline 
covariates. The maximum censoring time in our study 
was five days. The weights were computed for each arm 
separately.

To calculate the inverse probability of artificial cen-
soring weight estimators, we followed the procedure 
available to correct for dependent censoring [25, 26]. 
Alternatively, the model used in the denominator of the 
weights can be estimated via logistic regression model 
[26]. Descriptions and examples of applying a logistic 
regression model within the target trial emulation frame-
work, specifically focusing on the clone-censor-weight 
approach, can be found in the relevant studies [27, 28]. 
In our study, we applied semi-parametric methods [25, 
29]. We first, fit censoring model to evaluate the impact 
of the covariates. We estimated the hazards of censoring 
for each arm separately conditional on the demographic 
and prognostic factors. We fitted a Cox regression model 
with the censoring indicator as a dependent variable and 
the time-fixed covariates as independent variables as 
indicated in (2):

where �0C is the baseline hazard, βC is the vector of 
model parameters, Z represents the vector of baseline 
covariates. In the model, we included age, sex, the Charl-
son’s Comorbidity Index, C-reactive protein, lactate 

(1)Wi(tk) =

k

l=1

1

P TC
i > tl T

C
i > tl−1,Zi)

(2)�C(t|Z) = �0C(t)exp(βCZ)

dehydrogenase, D-dimer, lymphocyte count, and calen-
dar time.

Second, to estimate the probabilities of remaining 
uncensored for each patient i on each day during the 
grace period, we estimated the conditional uncensored 
probability using the Breslow estimator (3) [29]:

that allowed us to estimate probabilities of remaining 
uncensored denoted as ŜC(t|Zi) which depend on covari-
ates Zi . Finally, we used these probabilities to calculate 
unstabilized weights as depicted in (1) and (4):

In the final step of our analysis, we included the weights 
in the outcome model, which we will describe in the fol-
lowing section.

The weights were always equal to 1 at the start of fol-
low-up. For the X-treated arm, we obtained weights 
that can only change at the end of the grace period, the 
time at which censoring occurs. For the control arm, 
we obtained time-varying weights that changed within 
the grace period. This is due to the fact that patients in 
the non-X-treated arm were censored at any time dur-
ing the grace period. After the grace period, the weights 
remained constant in both arms. As a result, copies of 
patients who were uncensored were up-weighted to rep-
resent the censored subjects. The mean weights were 
1.8 for the X-treated arm and 1.3 for the non-X-treated 
arm, respectively. The weights for the non-X-treated 
arm were less spread. In addition, stabilization of the 
weights could be considered, and truncation of weights 
is recommended in cases of extreme weight values [24, 
30]. To ensure that the weight model is correctly speci-
fied, various functional forms for the effect of continuous 
variables and interactions could be considered [9, 31]. We 
conducted a balance check to ensure that the weighting 
removed imbalances and that baseline covariates were 
well balanced between the arms [9]. We assessed balance 
using the standardized mean differences for each covari-
ate in the un- and weighted sample [19]. Standardized 
mean differences less than 0.1 or 10% suggested good bal-
ance between the X-treated and the non-X-treated arm 
for each considered covariate [31].

Multi‑state model
Model description
We used a multi-state model to describe individual 
pathways across different states of hospitalized patients 
with COVID-19 during their follow-up time [16]. We 
evaluated the treatment effect using this model, com-
paring patients in the X-treated arm to patients in the 

(3)ŜC(t|Zi) = exp
{
−�̂0C

(
tj
)
exp

(
β̂CZi

)}

(4)Ŵi(t) = 1/ŜC(t|Zi)
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non-X treated arm. We considered the multi-state model 
structure with five states (boxes): normal ward (state 1), 
admission to the ICU (state 2), in-hospital death (state 3), 
discharge home (state 4), and discharge to another HCFs 
(state 5) (Fig.  1). In our model, the starting state for all 
patients was state 1 “admitted to hospital in a normal 
ward”, which we considered the start of follow-up. ICU 
admission was modelled as an intermediate event. In 
our model, patients can move to three absorbing states, 
meaning states from which they cannot exit: in-hospital 
death, discharge home, or discharge to another HCFs. 
Possible transitions (arrows) between states were mod-
elled and depicted in Fig. 1. For simplicity, we considered 
a transition model with only forward progression, that is, 
patients in the ICU could not go back to a normal ward.

Mathematical background and notations
For the multi-state analysis, we considered a non-par-
ametric approach and quantities. We defined the tran-
sition hazards, in literature also denoted as transition 
intensities, as the main quantities of interest in the multi-
state model framework. The transition hazards quantify 
the instantaneous risk of the event, that is, a transition 
from state l to state m at time t. We can write transition 
hazards αlm(t) as it is shown in (5):

where l → m is a transition from state l to state m; Xt 
is the state occupied at time t . We assumed the Markov 
property, which states the probability of transition to 
another state depends only on the present state and not 
on past events.

Subsequently, the cumulative transition hazards for the 
transition l → m until time t can be defined as in (6):

(5)αlm(t) = lim�t→0
Plm(Xt+�t = m|Xt = l)

�t

(6)Alm(t) =

∫ t

0

αlm(u)du

All the possible transitions hazards can be collected 
into a matrix of transition probabilities P(s, t)  from state 
l → m within the time interval (s, t] (7):

The transition probabilities can be estimated by the 
corresponding matrix product-integral (8):

where I is the identity matrix and A(t) is the matrix of 
cumulative intensities [17, 32, 33]. A detailed theoretical 
background and explanation of multi-state models is also 
found in the Handbook of Survival Analysis [34] and a 
practical book by Beyersmann et al. [33].

Data structure for multi‑state analysis
For the multi-state analysis, we used the dataset and 
structured in a long format with one row per day for each 
patient. This format enabled us to account for time-var-
ying weights. To account for the days in the rows where 
the event was not observed (“status = 0”), we assumed 
that the patient’s status was state “to = 0”. When a tran-
sition was observed, the event status changed to “1”. An 
example of the dataset is presented in Supplementary 
Table 2.

Statistical analysis and estimation
We proposed to estimate transition intensities and prob-
abilities using non-parametric estimators. We defined 
transition intensities as in (5), and to obtain the weighted 
cumulative hazards we used a weighted version of the 
Nelson-Aalen estimator [34]. We used the individual 
weights calculated for each day k as previously shown in 
(4) to the Nelson-Aalen estimator (11) where Nlm(t) 
in (9) is the aggregated counting process and Yl(t) in (10) 
is the aggregated at-risk process:

(7)Plm(s, t) = P(Xt = m|Xs = l)

(8)P(s, t) =
∏

u∈(s,t]

(I + dA(u))

Fig. 1 Multi‑state model for COVID‑19 progression. Notes: Five possible states with seven transitions and the number of patients for each transition 
were defined. The ICU status was modelled as an intermediate state represented in a multi‑state model
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where Nlmi(t), l, m ∈ S , l �= m, t ≤ Ci  counting the 
number of direct transitions observed for subject  i 
in [0, t] (Ci is independent right censoring)

where  Yli(t) = I(Xi(t−) = l)  is the indicator 
of Xi(·) being in state l at time t−. NW

lm (t) is the weighted 
number of  transitions l → m up to time t,YW

l (t) is the 
weighted number of patients at risk in state l prior to 
time t [34].

The weighted cumulative transition hazards were esti-
mated by the weighted version the Nelson-Aalen estima-
tor (11) [34]:

where l  = m.
Next, we used the weighted Aalen-Johansen estima-

tor to calculate the weighted transition probabilities 
[34]. The finite matrix product obtained by including the 
weighted Nelson-Aalen estimator for cumulative hazards 
ÂW
lm(t) as a plug-in into the product-integral formula (8) 

and estimated as (12):

 
To conduct the multi-state model analysis in R (ver-

sion 3.6.3), we used the mstate package. We estimated 
cumulative intensities via the coxph() function with the 
transition stratification strata() of the survival package. 
To obtain weighted cumulative hazards, the estimated 
weights were specified in the argument of the coxph() 
function. The list with elements of the unweighted haz-
ards was replaced with the estimated baseline cumulative 
hazards obtained using the basehaz() function. Finally, 
the state occupation probabilities were calculated using 
the probtrans() function with the imputed weighted 
cumulative hazard object [32, 35]. The detailed theory 
and the R code applied in our analysis can be assessed in 
the research article by Hazard et al. [32].

Besides estimating cumulative probabilities for each 
outcome, we applied a weighted proportional odds model 
using ordinal logistic regression. We calculated a single 
ratio at 20, 30, and 45 days after the start of the follow-up 
[36]. Our outcome categories were ordered as follows: 1: 
discharge home, 2: normal ward, 3: discharge to another 

(9)NW
lm (t) =

∑

i

Nlmi(t) ∗ Ŵi(t)

(10)YW
l (t) =

∑

i

Yli(t) ∗ Ŵi(t)

(11)ÂW
lm(t) =

∫ t

0

�NW
lm (u)

YW
l (u)

(12)P̂(s, t) =
∏

u∈(s,t]

(I +�Â(u))

HCF, 4: ICU, and 5: in-hospital death. For the 45-day fol-
low-up, we used the same categories except the normal 
ward category. By ordering outcome categories from best 
to worst, an odds ratio greater than 1 indicates a differ-
ence in clinical status distribution towards severity for 
the X-treated arm compared to the non-X-treated arm 
[20]. Confidence intervals  (CIs) (95%) were calculated 
using non-parametric bootstrapping with 1000 repli-
cates. We also conducted sensitivity analysis by imputing 
missing values for the covariates, assuming that data were 
missing at random. The description of the cohort and 
the number of transitions in the multi-state model with 
imputed data are provided in Supplementary Table 3 and 
Supplementary Fig. 2.

Results
Data overview
In total, 501 (83.6%) individuals with complete records 
met our eligibility criteria and were qualified for emu-
lation. A total of 124 (24.8%) patients were treated with 
treatment “X” within five days of hospital admission. 
Only 20 (4%) patients were treated after the grace period 
and assigned to the non-X-treated arm. Demographic 
and prognostic characteristics prior to cloning are found 
in Supplementary Table 4. All 501 patients were cloned, 
with each clone entering the X-treatment and non-X-
treatment arm. Supplementary Fig. 3 illustrates the abso-
lute standardized differences before and after applying 
the weights. None of the standardized mean differences 
in the weighted sample exceed the cut-off of 0.1 (Sup-
plementary Fig.  3). We demonstrated that the patient’s 
demographic and prognostic characteristics were well 
balanced after applying the weights (Supplementary 
Fig. 3).

Cumulative hazards and predicted probabilities
We obtained cumulative hazards and predicted probabil-
ities from our emulated trial. The estimated and visual-
ized weighted cause-specific cumulative hazards starting 
from the normal hospital ward for the X-treated and non-
X-treated arm, are shown in Fig. 2. None of these cumu-
lative hazards revealed evidence of significant differences 
between the two arms in the investigated outcomes.

The transition rates of the outcomes we investigated 
were similar between the two treatment arms (Fig. 3). At 
day 30, the predicted probability of in-hospital death out-
come were 34.0% for the X-treated arm and 31.6% for the 
non-X-treated arm. The probabilities of ICU stay were 
8.1% for the X-treated and 12.4% for the non X-treated. 
The probabilities of discharge home were 28.5% for the 
X-treated and 32.9% for the non-X-treated. The probabil-
ities of being discharge to another HCF were 23.5% for 
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the X-treated and 19.6% for the non-X-treated. At the last 
day of the follow up, the transition rates for in-hospital 
death were 35.1% in the X-treated and 34.4% in the non-
X-treated. The probabilities of ICU stay were 6.7% for 
the X-treated and 7.8% for the non X-treated arm. The 
probabilities of being discharged home were 31.9% in the 
X-treated and 34.8% in the non-X-treated. The probabili-
ties of being discharged to another HCF were 26.2% in 
the X-treated and 22.2% in the non-X-treated.

The proportional odds ratio at 30 days was 1.11 (95% 
CI: 0.82–1.51). Additionally, we calculated the propor-
tional odds ratio at 20 and 45  days, which indicated a 
negative X treatment effect with a weighted odds ratio, 
1.09 (95% CI: 0.78–1.52) and 1.08 (95% CI: 0.79–1.50), 
respectively. The results of the completed case analysis 
(n = 599) with imputed missing values for the covariates 
are provided in the Supplementary Figs.  4–6. This data 
analysis yielded results consistent with the primary anal-
ysis (Supplementary Figs.  5–6); the proportional odds 

at 20, 30, and 45  days were 1.02 (95% CI: 0.77–1.39), 
1.07 (95% CI: 0.80–1.45), and 1.04 (95% CI: 0.78–1.40) 
respectively.

Discussion
This methodological study provides a demonstration 
of the target trial emulation framework, with an exten-
sion to multi-state analysis. In this study, we carried out 
a target trial emulation taking the clone-censor-weight 
approach that avoids immortal time bias and confound-
ing bias. Specifically, we focussed on addressing com-
peting risks and extended standard survival analysis to 
the multi-state model. This combined approach allowed 
us to demonstrate the common biases and revealed a 
solution to facilitate the evaluation of treatment effec-
tiveness by considering clinically meaningful time-to-
event outcomes. We applied the methodology in the 
context of assessing of the effectiveness of a single-dose, 
time-dependent treatment using routinely collected 

Fig. 2 Weighted estimated cause‑specific cumulative hazards from the normal hospital ward using the Nelson‑Aalen estimator. a‑d Illustrates 
transitions from normal ward. a From normal ward to ICU. b From normal ward to in‑hospital death. c From normal ward to discharge home. d From 
normal ward to discharge to another HCF
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observational hospital data of patients with COVID-19. 
As this is a methodological demonstration of the appli-
cation of the target trial emulation in settings in which 
competing events occur and are of interest, we did not 
interpret our emulated study’s results from the perspec-
tive of clinical importance.

To mitigate immortal time in our emulated study, we 
defined the eligibility criteria, the time zero of follow-up, 
and the grace period for treatment initiation and applied 
the clone-censor techniques. Time-fixed confounding 
bias was addressed by cloning; as such, each patient’s 
copy had the same values of the baseline covariates. The 
inverse probability weighting was then used to correct 
for censoring imposed by the study design. Alternative 
to the clone-censor-weight approach with a grace period, 
the sequential target trial within the framework of tar-
get trial emulation can be used [8, 37]. The main differ-
ence between these two methods is that the sequential 
trial approach incorporates a sequence of nested trials 
where each new trial starts for patients not yet under the 
treatment of interest, at successive times. Instead of the 
cloning-censoring-weighting method requiring that all 
patients enter both arms with future censoring at devia-
tion from the protocol. Both methods allow to account 
for immortal time bias [37].

Competing risks are an important issue that can occur 
in the analysis of survival data of both RCTs and observa-
tional studies [19]. In the presence of competing events, 
several approaches are available for estimating the treat-
ment effect, depending on the causal question of interest. 
These approaches can include the estimation of effects 
on the composite outcome, total effects, or direct effects 
[9, 38, 39]. In the case of estimation of total effect, the 
treatment effect on the primary outcome is determined 
by taking into account the treatment effects on the com-
peting events. This implies that the treatment effect on 
the primary outcome includes all the paths “mediated” 
through the competing events [38, 39]. Although the 
total effect need to be interpreted with caution, we argue 
that this approach might be more important when assess-
ing treatment effectiveness for hospitalized patients with 
COVID-19. This is because it allows obtain additional 
information on clinically important opposite endpoints 
and might be essential for various decision-makers and 
for the clinical management of COVID-19 [16, 32, 40, 
41]. Another option is the estimation of the direct effect, 
which is more suitable when a causal question on treat-
ment mechanisms is exclusively investigated [39]. The 
direct effect quantifies that the effect of treatment that 
is not “mediated” by the competing events and implies 
a hypothetical situation where competing events are 

Fig. 3 Weighted results for transition rates starting from hospital admission. Notes: a Non‑X‑treated arm. b X‑treated arm. State 1: Normal ward. 
State 2: Admission to ICU. State 3: In‑hospital death; State 4: Discharge home. State 5: Discharge to another HCF
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eliminated by considering them as censored events [39]. 
A detailed description of the choice of statistical methods 
in a setting with competing events and estimating total 
or direct effect is found in the research article by Young 
et al. [38].

In our study, we used the multi-state model and exam-
ined the treatment effects on clinical severity status by 
accounting for all pathways, that is, the intermediate 
and competing events. This allowed us to achieve a com-
prehensive and informative assessment, similarly to the 
motivating study by Spinner et  al. [20]. Previously, von 
Cube et  al. emphasized that in RCTs entailing compre-
hensive treatment evaluation, it is important to assess 
treatment effects on all clinically meaningful endpoints 
[16]. In our study, we followed patients with moderate to 
severe COVID-19 from the hospital’s normal ward which 
is a more controlled environment. We considered ICU 
admission as an intermediate state, but our trial could 
also be emulated from a new time zero for severe patients 
requiring intensive care. In addition, this would require 
baseline data on prognostic covariates to permit future 
comparison between the two arms [14]. We also sepa-
rated two discharge-alive reasons: discharge home and 
discharge to another HCF. Patients discharged to another 
HCF could potentially carry a higher risk of death than 
patients discharged home. Furthermore, it’s also possible 
to distinguish between discharge from normal ward to 
another HCF and discharge from ICU to another HCF.

There are several general principles that should be fol-
lowed to emulate the target trial successfully, and we 
want to emphasize some of them here. First, emulat-
ing a target trial requires the use of extensive data from 
multicentre registries to provide reliable results and 
ensure generalizability [21]. Second and foremost, the 
causal clinical question of interest must be well-defined 
and the study protocol, together with its components, 
must be specified. The emulated target trial’s proto-
col must include all key elements described by Hernan 
et  al. [21]. A grace period should be discussed with cli-
nicians and determined by clinical relevance [23]. For 
COVID-19 patients, this period should be short enough 
to avoid heterogeneity between treatment arms. Also, it 
is essential to include all clinically important factors and 
strongly prognostic covariates [19]. For this purpose, 
directed acyclic graphs can be used to identify causal 
relationships among variables and reduce confounding 
bias [40]. In the presence of competing risks, as outlined 
by Rojas-Saunero et  al., the question of clinical interest 
leading to estimation of the total or direct effect should 
be first defined first before choosing the statistical analy-
sis method [39]. Finally, to assess the validity of findings, 
data from emulated trials can be compared with those 
obtained from RCTs or other meta-analyses. Future 

potential methodological and clinical extensions of our 
framework include assessing dynamic treatment strate-
gies by including time-dependent prognostic covariates, 
and applying  G-methods; identifying the three assump-
tions of positivity, consistency, and exchangeability that 
are required to estimate causal treatment effects [30], and 
considering additional states in a multi-state model, such 
as respiratory support.

Limitations
Our study has important limitations associated with 
the demonstrative and methodological concept of our 
emulated trial. First, we emulated the target trial using 
a small sample from a single-centre. Second, we chose 
a 5-day grace period for illustrative purposes, whereas 
in clinical studies the length of a grace period should 
be defined according to clinical relevance [9, 23]. Third, 
for demonstrative purposes, we included only baseline 
covariates, but post-baseline time-varying covariates of 
clinical severity could be considered. However, the effects 
of time-dependent covariates should be interpreted with 
caution and require appropriate method use [41]. Addi-
tionally, in our study, vaccination status could be included 
as a covariate because the vaccination-induced immu-
nological status is associated with a significant decrease 
in patients with severe illness and mortality in COVID-
19 [42]. Fourth, standard of care has evolved during the 
pandemic entailing various treatments and combination 
therapies for patients with COVID-19. Based on all these 
shortcomings, our emulated hypothetical trial and proto-
col can differ considerably from a pragmatic trial.

In our study, we also acknowledge certain limitations 
related to statistical analysis. First, in multi-state analy-
sis, we rely on the Markov assumption, defined as the 
probability of moving to the next state depends only 
on the actual state. Second, we excluded patients with 
missing data in the prognostic covariates but consid-
ered imputation in the additional analysis. It is advised 
to consider limitations related to missing data in a tar-
get trial and possible approaches, especially when data 
is incomplete on the variables determining eligibility cri-
teria [43]. Finally, we summarised the treatment effect 
applying the odds ratio from the proportional odds 
model involving ordering the outcomes, which enabled a 
simple interpretation about the treatment effect on clini-
cal severity [20, 44]. However, this summary parameter 
requires proportional odds assumption, and entails the 
principal limitation of interpretation [36]. Therefore, 
alternative target parameters, which allow for a bet-
ter understanding and interpretation of results such as 
rates, ratios, and restricted length of stay in each state, 
could be presented [45].
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Conclusions
In summary, this target trial emulation approach with 
extended multi-state model analysis enables treatment 
effectiveness to be evaluated on clinically important 
endpoints making the best use of real-world observa-
tional data. This combined methodological approach 
address many of the common limitations of observational 
data, providing an evaluation of treatment effectiveness, 
and enhancing our understanding of the clinical course 
of patients with COVID-19. Combining two state-of-
the-art methodologies helps avoid immortal time bias, 
confounding bias, and competing events and to obtain 
unbiased evidence from observational data. Our frame-
work could be extended to evaluate the effectiveness of 
time-varying treatments and to consider additional clini-
cal states in the multi-state model.

Abbreviations
CI  Confidence interval
COVID-19  Coronavirus disease 2019
ICU  Intensive care unit
HCF  Healthcare facility
RCTs  Randomized controlled trials
PaO2/FiO2  Partial pressure of oxygen in arterial blood  (PaO2) to the fraction of 

inspiratory oxygen concentration  (FiO2)

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874‑ 023‑ 02001‑8.

Additional file 1: Table 1. A summary of protocol components for the 
target trial emulation. Table 2. Example of the structure of the data set 
used for multi‑state analysis in the non‑X‑treated arm. Table 3. Baseline 
characteristics for eligible patients according to X‑treatment receive within 
5‑days before cloning and censoring, complete dataset with missing value 
imputation, n=599. Table 4. Baseline characteristics for eligible patients 
according to categorization of 5‑day grace period before cloning. Fig. 1. 
Example of target trial emulation with cloning and censoring for COVID‑
19 patients. Fig. 2. Multi‑state model for COVID‑19 progression, complete 
dataset with missing value imputation, n=599. Fig. 3. Covariate balance 
using standardised mean differences at five day grace period before and 
after applying inverse probability of artificial censoring weighting. Fig. 4. 
Covariate balance using standardised mean differences at five day grace 
period before and after applying inverse probability of artificial censoring 
weighting, complete dataset with missing value imputation, n=599. 
Fig. 5. Weighted estimated cause‑specific cumulative hazards from the 
normal hospital ward using the Nelson‑Aalen estimator, complete dataset 
with missing value imputation, n=599. Fig. 6. Weighted results for transi‑
tion rates starting from hospital admission, complete dataset with missing 
value imputation, n=599.

Acknowledgements
We thank the study personnel who collected medical data from patients with 
COVID‑19 patients admitted to the Bellvitge University Hospital. We acknowl‑
edge Prof. Martin Schumacher for reviewing and commenting on the previous 
version of the manuscript. We also thank two referees for reviewing the paper 
and providing crucial comments.

Authors’ contributions
M.W. conceptualized the project. O.M., D.K., and M.W. wrote the manuscript. 
O.M., D.K., and M.W. provided the code for the analyses. H.R.M., M.M., and 
M.R.R. contributed to acquisition of the data. C.M., H.R.M., and M.M. did critical 

revisions and improvements of the manuscript. M.R.R. provided critical revi‑
sions from a clinical perspective. All authors read and commented on previous 
version of the manuscript. All authors read and approved the final version of 
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This study 
has been funded by the German Research Foundation (original: Deutsche 
Forschungsgemeinschaft, DFG) with project grant WO 1746/5‑1; the Beatriu 
de Pinós post‑doctoral programme from the Office of the Secretary of 
Universities and Research from the Ministry of Business and Knowledge of the 
Government of Catalonia program (#2020 BP 00261) (HM).

Availability of data and materials
The code for trial emulation was adapted according to the Maringe et al. tutorial [9]. 
The extended code of this study are available from the corresponding author. Data 
for this exemplary study are considered sensitive and are not publicly available. The 
point of contact for queries about the data and for data review is O. Martinuka.

Declarations

Ethics approval and consent to participate
The study was conducted according to the guidelines of the Declaration of Hel‑
sinki, and approved by the Ethics Committee of Bellvitge University Hospital (PR 
128/20). Informed consent was obtained from all subjects involved in the study.

Consent to publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical 
Centre, University of Freiburg, Freiburg, Germany. 2 Biomedical Engineering 
Research Centre (CREB), Automatic Control Department (ESAII), Universitat 
Politècnica de Catalunya‑Barcelona Tech (UPC), Barcelona, Spain. 3 Inequalities 
in Cancer Outcomes Network (ICON), Department of Non‑Communicable Dis‑
ease Epidemiology, London School of Hygiene & Tropical Medicine, London, 
UK. 4 Department of Epidemiology and Biostatistics, School of Health, Isfahan 
University of Medical Sciences, Isfahan, Iran. 5 Department of Internal Medicine, 
Bellvitge University Hospital, Bellvitge Biomedical Research Institute‑IDIBELL, 
University of Barcelona, Barcelona, Spain. 

Received: 30 December 2022   Accepted: 25 July 2023

References
 1. Martinuka O, von Cube M, Wolkewitz M. Methodological evaluation of 

bias in observational coronavirus disease 2019 studies on drug effective‑
ness. Clin Microbiol Infect. 2021;27:949–57. https:// doi. org/ 10. 1016/j. cmi. 
2021. 03. 003.

 2. van Nguyen T, Engleton M, Davison M, Ravaud P, Porcher R, Boutron I. 
Risk of bias in observational studies using routinely collected data of 
comparative effectiveness research: a meta‑research study. BMC Med. 
2021;19:279. https:// doi. org/ 10. 1186/ s12916‑ 021‑ 02151‑w.

 3. Wolkewitz M, Lambert J, von Cube M, Bugiera L, Grodd M, Hazard D, 
et al. Statistical analysis of clinical covid‑19 data: a concise overview of 
lessons learned, common errors and how to avoid them. Clin Epidemiol. 
2020;12:925–8. https:// doi. org/ 10. 2147/ CLEP. S2567 35.

 4. Suissa S. Immortal time bias in pharmaco‑epidemiology. Am J Epidemiol. 
2008;167:492–9. https:// doi. org/ 10. 1093/ aje/ kwm324.

 5. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Phila‑
delphia: Lippincott Williams & Wilkins; 2008. p. 57–8.

 6. Coemans M, Verbeke G, Döhler B, Süsal C, Naesens M. Bias by censoring 
for competing events in survival analysis. BMJ. 2022;378:e071349. https:// 
doi. org/ 10. 1136/ bmj‑ 2022‑ 071349.

https://doi.org/10.1186/s12874-023-02001-8
https://doi.org/10.1186/s12874-023-02001-8
https://doi.org/10.1016/j.cmi.2021.03.003
https://doi.org/10.1016/j.cmi.2021.03.003
https://doi.org/10.1186/s12916-021-02151-w
https://doi.org/10.2147/CLEP.S256735
https://doi.org/10.1093/aje/kwm324
https://doi.org/10.1136/bmj-2022-071349
https://doi.org/10.1136/bmj-2022-071349


Page 11 of 12Martinuka et al. BMC Medical Research Methodology          (2023) 23:197  

 7. Wolkewitz M, Schumacher M. Survival biases lead to flawed conclusions 
in observational treatment studies of influenza patients. J Clin Epidemiol. 
2017;84:121–9. https:// doi. org/ 10. 1016/j. jclin epi. 2017. 01. 008.

 8. Dickerman BA, García‑Albéniz X, Logan RW, Denaxas S, Hernán MA. Avoid‑
able flaws in observational analyses: an application to statins and cancer. 
Nat Med. 2019;25:1601–6. https:// doi. org/ 10. 1038/ s41591‑ 019‑ 0597‑x.

 9. Maringe C, Benitez Majano S, Exarchakou A, Smith M, Rachet B, Belot 
A, et al. Reflection on modern methods: trial emulation in the pres‑
ence of immortal‑time bias. Assessing the benefit of major surgery for 
elderly lung cancer patients using observational data. Int J Epidemiol. 
2020;49:1719–29. https:// doi. org/ 10. 1093/ ije/ dyaa0 57.

 10. Mahévas M, Tran V‑T, Roumier M, Chabrol A, Paule R, Guillaud C, et al. Clin‑
ical efficacy of hydroxychloroquine in patients with covid‑19 pneumonia 
who require oxygen: observational comparative study using routine care 
data. BMJ. 2020;369:m1844. https:// doi. org/ 10. 1136/ bmj. m1844.

 11. Gupta S, Wang W, Hayek SS, Chan L, Mathews KS, Melamed ML, et al. 
Association between early treatment with tocilizumab and mortal‑
ity among critically ill patients with COVID‑19. JAMA Intern Med. 
2021;181:41–51. https:// doi. org/ 10. 1001/ jamai ntern med. 2020. 6252.

 12. Hoffman KL, Schenck EJ, Satlin MJ, Whalen W, Di Pan, Williams N, et al. 
Comparison of a Target Trial Emulation Framework vs Cox Regression 
to Estimate the Association of Corticosteroids with COVID‑19 mortality. 
JAMA Netw Open. 2022;5:e2234425. https:// doi. org/ 10. 1001/ jaman etwor 
kopen. 2022. 34425.

 13. Tsuzuki S, Hayakawa K, Uemura Y, Shinozaki T, Matsunaga N, Terada M, et al. 
Effectiveness of remdesivir in hospitalized nonsevere patients with COVID‑
19 in Japan: A large observational study using the COVID‑19 Registry Japan. 
Int J Infect Dis. 2022;118:119–25. https:// doi. org/ 10. 1016/j. ijid. 2022. 02. 039.

 14. Urner M, Barnett AG, Bassi GL, Brodie D, Dalton HJ, Ferguson ND, et al. 
Venovenous extracorporeal membrane oxygenation in patients with 
acute covid‑19 associated respiratory failure: comparative effectiveness 
study. BMJ. 2022;377:e068723. https:// doi. org/ 10. 1136/ bmj‑ 2021‑ 068723.

 15. Martinuka O, von Cube M, Hazard D, Marateb HR, Mansourian M, Sami 
R, et al. Target trial emulation using hospital‑based observational data: 
demonstration and application in COVID‑19. Life (Basel). 2023. https:// doi. 
org/ 10. 3390/ life1 30307 77.

 16. von Cube M, Grodd M, Wolkewitz M, Hazard D, Wengenmayer T, Canet E, 
Lambert J. Harmonizing heterogeneous endpoints in coronavirus disease 
2019 trials without loss of information. Crit Care Med. 2021;49:e11–9. 
https:// doi. org/ 10. 1097/ CCM. 00000 00000 004741.

 17. Ursino M, Dupuis C, Buetti N, de Montmollin E, Bouadma L, Golgran‑
Toledano D, et al. Multistate modeling of covid‑19 patients using a large 
multicentric prospective cohort of critically Ill patients. J Clin Med. 2021. 
https:// doi. org/ 10. 3390/ jcm10 030544.

 18. Bakunina K, Putter H, Versluis J, Koster EAS, van der Holt B, Manz MG, et al. 
The added value of multi‑state modelling in a randomized controlled 
trial: the HOVON 102 study re‑analyzed. Cancer Med. 2022;11:630–40. 
https:// doi. org/ 10. 1002/ cam4. 4392.

 19. Austin PC, Fine JP. Accounting for competing risks in randomized con‑
trolled trials: a review and recommendations for improvement. Stat Med. 
2017;36:1203–9. https:// doi. org/ 10. 1002/ sim. 7215.

 20. Spinner CD, Gottlieb RL, Criner GJ, Arribas López JR, Cattelan AM, Soriano 
Viladomiu A, et al. Effect of remdesivir vs standard care on clinical status 
at 11 days in patients with moderate covid‑19: a randomized clinical trial. 
JAMA. 2020;324:1048–57. https:// doi. org/ 10. 1001/ jama. 2020. 16349.

 21. Hernán MA, Robins JM. Using big data to emulate a target trial when 
a randomized trial is not available. Am J Epidemiol. 2016;183:758–64. 
https:// doi. org/ 10. 1093/ aje/ kwv254.

 22. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan 
E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 
2012;307:2526–33. https:// doi. org/ 10. 1001/ jama. 2012. 5669.

 23. Moura LM, Westover MB, Kwasnik D, Cole AJ, Hsu J. Causal inference as an 
emerging statistical approach in neurology: an example for epilepsy in the 
elderly. Clin Epidemiol. 2017;9:9–18. https:// doi. org/ 10. 2147/ CLEP. S1210 23.

 24. Grafféo N, Latouche A, Le Tourneau C, Chevret S. ipcwswitch: An R pack‑
age for inverse probability of censoring weighting with an application to 
switches in clinical trials. Comput Biol Med. 2019;111:103339. https:// doi. 
org/ 10. 1016/j. compb iomed. 2019. 103339.

 25. Willems S, Schat A, van Noorden MS, Fiocco M. Correcting for depend‑
ent censoring in routine outcome monitoring data by applying the 

inverse probability censoring weighted estimator. Stat Methods Med 
Res. 2018;27:323–35. https:// doi. org/ 10. 1177/ 09622 80216 628900.

 26. Robins JM, Finkelstein DM. Correcting for noncompliance and dependent 
censoring in an AIDS Clinical Trial with inverse probability of censoring 
weighted (IPCW) log‑rank tests. Biometrics. 2000;56:779–88. https:// doi. 
org/ 10. 1111/j. 0006‑ 341x. 2000. 00779.x.

 27. Xie Y, Bowe B, Al‑Aly Z. Molnupiravir and risk of hospital admission or 
death in adults with covid‑19: emulation of a randomized target trial 
using electronic health records. BMJ. 2023;380:e072705. https:// doi. org/ 
10. 1136/ bmj‑ 2022‑ 072705.

 28. Petito LC, García‑Albéniz X, Logan RW, Howlader N, Mariotto AB, Daha‑
breh IJ, et al. Estimates of overall survival in patients with cancer receiving 
different treatment regimens: emulating hypothetical target trials in 
the Surveillance, Epidemiology, and End Results (SEER)‑Medicare linked 
database. JAMA Netw Open. 2020;3:e200452. https:// doi. org/ 10. 1001/ 
jaman etwor kopen. 2020. 0452.

 29. Xu R, O’Quigley J. Proportional hazards estimate of the conditional sur‑
vival function. J R Stat Soc Ser B Stat Methodol. 2000;62:667–80. https:// 
doi. org/ 10. 1111/ 1467‑ 9868. 00256.

 30. Cole SR, Hernán MA. Constructing inverse probability weights for mar‑
ginal structural models. Am J Epidemiol. 2008;168:656–64. https:// doi. 
org/ 10. 1093/ aje/ kwn164.

 31. Austin PC, Stuart EA. Moving towards best practice when using inverse 
probability of treatment weighting (IPTW) using the propensity score 
to estimate causal treatment effects in observational studies. Stat Med. 
2015;34:3661–79. https:// doi. org/ 10. 1002/ sim. 6607.

 32. Hazard D, Kaier K, von Cube M, Grodd M, Bugiera L, Lambert J, 
et al. Joint analysis of duration of ventilation, length of intensive 
care, and mortality of COVID‑19 patients: a multistate approach. 
BMC Med Res Methodol. 2020;20:206. https:// doi. org/ 10. 1186/ 
s12874‑ 020‑ 01082‑z.

 33. Beyersmann J, Allignol A, Schumacher M. Competing risks and multistate 
models with R. New York: Springer Science & Business Media; 2011.

 34. Klein JP, van Houwelingen HC, Ibrahim JG, Scheike TH. Handbook of 
survival analysis. 1st ed. Chapman and Hall/CRC; 2013. p. 420–39.

 35. Gran JM, Lie SA, Øyeflaten I, Borgan Ø, Aalen OO. Causal inference in 
multi‑state models‑sickness absence and work for 1145 participants after 
work rehabilitation. BMC Public Health. 2015;15:1082. https:// doi. org/ 10. 
1186/ s12889‑ 015‑ 2408‑8.

 36. French B, Shotwell MS. Regression models for ordinal outcomes. JAMA. 
2022;328:772–3. https:// doi. org/ 10. 1001/ jama. 2022. 12104.

 37. Wang J, Peduzzi P, Wininger M, Ma S. Statistical methods for accommo‑
dating immortal time: a selective review and comparison. 2022. Preprint 
at https:// doi. org/ 10. 48550/ arXiv. 2202. 02369.

 38. Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA. A causal frame‑
work for classical statistical estimands in failure‑time settings with compet‑
ing events. Stat Med. 2020;39:1199–236. https:// doi. org/ 10. 1002/ sim. 8471.

 39. Rojas‑Saunero LP, Young JG, Didelez V, Ikram MA, Swanson SA. Consider‑
ing questions before methods in dementia research with competing 
events and causal goals. Am J Epidemiol. 2023;192:1415–23. https:// doi. 
org/ 10. 1093/ aje/ kwad0 90.

 40. VanderWeele TJ, Hernán MA, Robins JM. Causal directed acyclic graphs 
and the direction of unmeasured confounding bias. Epidemiology. 
2008;19:720–8. https:// doi. org/ 10. 1097/ EDE. 0b013 e3181 810e29.

 41. Keiding N, Andersen PK. Survival and event history analysis. London: 
Wiley; 2006.

 42. Najjar‑Debbiny R, Gronich N, Weber G, Khoury J, Amar M, Stein N, et al. 
Effectiveness of paxlovid in reducing severe covid‑19 and mortality in high 
risk patients. Clin Infect Dis. 2022. https:// doi. org/ 10. 1093/ cid/ ciac4 43.

 43. Tompsett D, Zylbersztejn A, Hardelid P, de Stavola B. Target trial emulation 
and bias through missing eligibility data: an application to a study of 
palivizumab for the prevention of hospitalization due to infant respiratory 
illness. Am J Epidemiol. 2023;192:600–11. https:// doi. org/ 10. 1093/ aje/ 
kwac2 02.

 44. Selman CJ, Lee KJ, Whitehead CL, Manley BJ, Mahar RK. Statistical analyses 
of ordinal outcomes in randomised controlled trials: protocol for a scoping 
review. Trials. 2023;24:286. https:// doi. org/ 10. 1186/ s13063‑ 023‑ 07262‑8.

 45. Skourlis N, Crowther MJ, Andersson TM‑L, Lu D, Lambe M, Lambert PC. 
Exploring different research questions via complex multi‑state models 
when using registry‑based repeated prescriptions of antidepressants 
in women with breast cancer and a matched population comparison 

https://doi.org/10.1016/j.jclinepi.2017.01.008
https://doi.org/10.1038/s41591-019-0597-x
https://doi.org/10.1093/ije/dyaa057
https://doi.org/10.1136/bmj.m1844
https://doi.org/10.1001/jamainternmed.2020.6252
https://doi.org/10.1001/jamanetworkopen.2022.34425
https://doi.org/10.1001/jamanetworkopen.2022.34425
https://doi.org/10.1016/j.ijid.2022.02.039
https://doi.org/10.1136/bmj-2021-068723
https://doi.org/10.3390/life13030777
https://doi.org/10.3390/life13030777
https://doi.org/10.1097/CCM.0000000000004741
https://doi.org/10.3390/jcm10030544
https://doi.org/10.1002/cam4.4392
https://doi.org/10.1002/sim.7215
https://doi.org/10.1001/jama.2020.16349
https://doi.org/10.1093/aje/kwv254
https://doi.org/10.1001/jama.2012.5669
https://doi.org/10.2147/CLEP.S121023
https://doi.org/10.1016/j.compbiomed.2019.103339
https://doi.org/10.1016/j.compbiomed.2019.103339
https://doi.org/10.1177/0962280216628900
https://doi.org/10.1111/j.0006-341x.2000.00779.x
https://doi.org/10.1111/j.0006-341x.2000.00779.x
https://doi.org/10.1136/bmj-2022-072705
https://doi.org/10.1136/bmj-2022-072705
https://doi.org/10.1001/jamanetworkopen.2020.0452
https://doi.org/10.1001/jamanetworkopen.2020.0452
https://doi.org/10.1111/1467-9868.00256
https://doi.org/10.1111/1467-9868.00256
https://doi.org/10.1093/aje/kwn164
https://doi.org/10.1093/aje/kwn164
https://doi.org/10.1002/sim.6607
https://doi.org/10.1186/s12874-020-01082-z
https://doi.org/10.1186/s12874-020-01082-z
https://doi.org/10.1186/s12889-015-2408-8
https://doi.org/10.1186/s12889-015-2408-8
https://doi.org/10.1001/jama.2022.12104
https://doi.org/10.48550/arXiv.2202.02369
https://doi.org/10.1002/sim.8471
https://doi.org/10.1093/aje/kwad090
https://doi.org/10.1093/aje/kwad090
https://doi.org/10.1097/EDE.0b013e3181810e29
https://doi.org/10.1093/cid/ciac443
https://doi.org/10.1093/aje/kwac202
https://doi.org/10.1093/aje/kwac202
https://doi.org/10.1186/s13063-023-07262-8


Page 12 of 12Martinuka et al. BMC Medical Research Methodology          (2023) 23:197 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

group. BMC Med Res Methodol. 2023;23:1–17. https:// doi. org/ 10. 1186/ 
s12874‑ 023‑ 01905‑9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1186/s12874-023-01905-9
https://doi.org/10.1186/s12874-023-01905-9

	Target trial emulation with multi-state model analysis to assess treatment effectiveness using clinical COVID-19 data
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Material and methods
	Target trial emulation
	Objective and question of clinical research
	Protocol specification: eligibility and exclusion criteria
	Treatment strategies and assignment, grace period
	Follow-up period
	Outcomes
	Causal contrast

	Practical implementation of trial with cloning, censoring, and weighting
	Estimation of the inverse probability of censoring weights

	Multi-state model
	Model description
	Mathematical background and notations
	Data structure for multi-state analysis
	Statistical analysis and estimation


	Results
	Data overview
	Cumulative hazards and predicted probabilities

	Discussion
	Limitations
	Conclusions
	Anchor 29
	Acknowledgements
	References


