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Abstract 

Background Novel precision medicine therapeutics target increasingly granular, genomically-defined populations. 
Rare sub-groups make it challenging to study within a clinical trial or single real-world data (RWD) source; therefore, 
pooling from disparate sources of RWD may be required for feasibility. Heterogeneity assessment for pooled data 
is particularly complex when contrasting a pooled real-world comparator cohort (rwCC) with a single-arm clinical trial 
(SAT), because the individual comparisons are not independent as all compare a rwCC to the same SAT. Our objec-
tive was to develop a methodological framework for pooling RWD focused on the rwCC use case, and simulate novel 
approaches of heterogeneity assessment, especially for small datasets.

Methods We present a framework with the following steps: pre-specification, assessment of dataset eligibility, 
and outcome analyses (including assessment of outcome heterogeneity). We then simulated heterogeneity assess-
ments for a binary response outcome in a SAT compared to two rwCCs, using standard methods for meta-analysis, 
and an Adjusted Cochran’s Q test, and directly comparing the individual participant data (IPD) from the rwCCs.

Results We found identical power to detect a true difference for the adjusted Cochran’s Q test and the IPD method, 
with both approaches superior to a standard Cochran’s Q test. When assessing the impact of heterogeneity in the null 
scenario of no difference between the SAT and rwCCs, a lack of statistical power led to Type 1 error inflation. Similarly, 
in the alternative scenario of a true difference between SAT and rwCCs, we found substantial Type 2 error, with under-
powered heterogeneity testing leading to underestimation of the treatment effect.

Conclusions We developed a methodological framework for pooling RWD sources in the context of designing 
a rwCC for a SAT. When testing for heterogeneity during this process, the adjusted Cochran’s Q test matches the statis-
tical power of IPD heterogeneity testing. Limitations of quantitative heterogeneity testing in protecting against Type 1 
or Type 2 error indicate these tests are best used descriptively, and after careful selection of datasets based on clinical/
data considerations. We hope these findings will facilitate the rigorous pooling of RWD to unlock insights to benefit 
oncology patients.
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Background
In the era of precision medicine, generating insights for 
rare genomically-defined subpopulations often requires 
pooling of data from multiple sources [1]. Within 
oncology, an increasingly common use case is the pool-
ing of real-world data (RWD) from different sources to 
serve as a real-world comparator cohort (rwCC) for a 
single-arm clinical trial (SAT) in rare subpopulations 
for research and to support regulatory decision-making 
[2–4].

General considerations for combining data from 
multiple clinical research studies have been described, 
with pooling individual participant data (IPD) [5, 6] 
as the preferred method; study-level meta-analysis 
approaches are also frequently used [7–9]. Testing for 
heterogeneity in outcomes between studies is a stand-
ard step in the pooling process [7, 10], and is critical 
when creating a rwCC from disparate datasets, as a fun-
damental assumption of a pooled analyses is that com-
parison of a SAT to two different rwCC should yield 
statistically identical results (i.e., no heterogeneity).

However, there remain challenges for establishing 
best practices for pooling heterogeneous RWD into a 
rwCC. First, using RWD as a data source for clinical 
research requires consideration of nuances that may 
not be as critical with clinical trial data (e.g., differ-
ences in quality and organization of the datasets) [11, 
12]. Yet, there is no overarching framework, specifi-
cally for pooling RWD, that addresses both questions 
of which studies should be merged (‘what to pool?’), as 
well as how to integrate them (‘how to pool?’) [13, 14]. 
Second, standard methods for conducting a heteroge-
neity assessment are insufficient, as they require unmet 
assumptions for the rwCC use case; notably, the effect 
estimates pooled in the meta-analysis are not independ-
ent because the SAT is included in all comparisons. 
Third, the small sample sizes often observed within 
genomically-defined subpopulations [2] can negatively 
affect all methods for assessing heterogeneity, with 

implications for the role of this testing in data analyses, 
and the interpretation of its results.

To address a gap in published guidance for addressing 
the above issues, the following provides a framework for 
the methodologic considerations regarding pooling RWD 
and specifically for the rwCC use case from the perspec-
tive of the sponsor of a novel treatment. Supporting 
simulations then explore various methods of assessing 
heterogeneity in outcomes between rwCCs, including an 
approach that solves issues of non-independence. Con-
clusions are drawn regarding the strengths and limita-
tions of various heterogeneity tests in different scenarios, 
and how their results should be interpreted in the context 
of a rwCC analysis.

A framework for pooling datasets into a real‑world 
comparator cohort
In the following sections, the steps of the proposed 
framework describing the pooling of datasets into a 
rwCC are described, with component steps summarized 
in Table 1. This framework was developed based on the 
authors’ review of the literature and experience with data 
pooling projects.

Prespecification of research question and pooling processes
First, the clinical research question should be prespeci-
fied [15], followed by preparation of the associated sta-
tistical analysis plan. The data requirements for these 
analyses can then inform the prespecification of the pro-
cesses for both assessing the eligibility of the candidate 
datasets for inclusion in the systematic review [16], and 
whether pooling is appropriate.

Assess dataset eligibility
Qualitatively assess metadata for all datasets & variables 
for  relevance, reliability, and  harmonizability Before 
undertaking any assessments related to pooling, each indi-
vidual dataset that has been identified for detailed assess-
ment by meeting basic eligibility criteria [16] should first 
be evaluated for its suitability as a potential rwCC given 

Table 1 Framework for pooling datasets into a real-world comparator cohort

Step Subcomponent steps

1. Pre-specification a. A priori research question and processes for statistical analyses and dataset selection

2. Assess dataset eligibility a. Assess metadata of all datasets & variables for clinical relevance, reliability, and harmonizability

b. Quantitatively assess non-outcome characteristics and sample size after cohort selection

c. Determine the eligibility for the final pooled analysis of each dataset according to the prespecified process

3. Outcomes analyses a. Primary analyses

b. Assessment of heterogeneity in outcomes

c. Sensitivity analyses



Page 3 of 8Backenroth et al. BMC Medical Research Methodology          (2023) 23:193  

the prespecified requirements. This could include assess-
ment of their fitness-for-use (i.e., relevance and reliabil-
ity) [17], and suitability as a rwCC to a specific SAT [18, 
19]. Interpretation of the assessment results may require 
complex clinical judgment, however, published guidance 
is sparse [20].

Once candidate datasets are identified that individu-
ally could serve as rwCCs, the feasibility of pooling them 
must be determined. For this, the prespecified key vari-
ables must be harmonizable across datasets [17, 21]. This 
includes coding them to have comparable values, which 
typically involves using the lowest common denomina-
tor coding scheme, e.g., collapsing pack-years of smok-
ing into ever/never. Such reduction of the granularity 
of a confounder could lead to residual confounding, in 
which case investigators may need to weigh the trade-
off between bias and increased sample size [21]. In other 
cases, the values may be comparable but with different 
definitions and/or ascertainment, in which case pooling 
could introduce bias. For example, the outcome vari-
able real-world response, for which patients without a 
response assessment are sometimes counted as non-
responders and other times excluded.

Quantitatively assess non-outcome characteristics 
and sample size after cohort selection After applying the 
relevant inclusion/exclusion (I/E) criteria to each dataset, 
descriptive analyses can assess the sample size of each 
dataset, as well as the distributions and missingness of 
key variables in order to assess their comparability to each 
other and comparison with a priori expectations (e.g., 
published literature). If desired and allowable given the 
pre-specification, the trade-off can be assessed between 
the strictness of the I/E criteria and the sample size. Prior 
to conducting this analysis, any participants included in 
multiple datasets should be identified and deduplicated 
prior to pooling [22], to avoid double-counting. An a pri-
ori hierarchy should determine which data source to use 
for these participants (e.g., selecting the dataset that opti-
mizes criteria such as data quality and quantity/follow-up 
time, either for a particular participant or overall).

Finally, after these assessments are complete and the 
resulting information is synthesized, the eligibility for the 
final data analysis of each dataset should be determined 
according to the prespecified process.

Outcomes analysis
Primary analyses If it is determined based on the pre-
ceding steps that pooling for a particular endpoint is 
appropriate, then analysis can proceed, treating the real-
world datasets as a combined rwCC. If the previous steps 
provide evidence the individual datasets are not pool-
able, the sponsor will need to investigate the reasons for 

any differences [23], as well as analyze and interpret the 
pooled results appropriately.

Heterogeneity assessment Assessment of heterogeneity 
is a standard feature of meta-analyses [7]. Extended to 
the rwCC use case, the fundamental assumption is that 
comparison of a SAT to two different rwCC should yield 
statistically identical results (i.e., no heterogeneity). 
There has not been in-depth consideration of optimal 
methodologies for testing for heterogeneity in the rwCC 
use case; this topic is explored further in the remainder 
of this manuscript. Statistical considerations (described 
further in the Results) suggest not making the pool-
ing decision solely based on heterogeneity testing, but 
rather assessing heterogeneity descriptively after the 
pooling decision has been made based on the consid-
erations for assessing dataset eligibility described above.

Sensitivity analyses A primary benefit of pooling is 
that it facilitates certain sensitivity analyses that would 
be infeasible due to sample size limitations if carried out 
in each dataset separately. These analyses may include 
assessment of whether intervention effects vary by par-
ticipant characteristics [24] (e.g., comparing the effect 
size between different groups, or restricting to a sub-
set of participants after applying additional criteria that 
increase similarity with the SAT). In principle, hetero-
geneity should be described separately for each such 
sensitivity analysis, but if sample size is reduced in each 
individual dataset after application of these more strin-
gent criteria, then the power of tests of heterogeneity 
would be decreased.

Methods
The fundamental assumption of a rwCC analysis is 
that, after appropriate adjustment for confounders, the 
SAT-rwCC comparison yields–up to sampling variabil-
ity–the same estimate that would have resulted from 
a randomized controlled trial. Given this assumption, 
comparison of a SAT to two different rwCC should 
yield identical results up to sampling variability. How-
ever, if heterogeneity is detected, this underlying 
assumption is likely violated, and pooled results should 
be interpreted with caution. If there are many rwCCs, 
a meta-analysis using random-effects could be used to 
summarize the control arms before comparing to the 
SAT, or to summarize the results of the SAT-rwCC 
comparisons (although the validity of generating a sin-
gle summary measure in the presence of heterogeneity 
is under debate [25]). Here we assume there are only a 
few rwCCs (e.g., as low as 2 or 3), not enough to make 
such a meta-analysis feasible [26].
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Methods for testing heterogeneity
We consider two ways in which heterogeneity of out-
comes across SAT to rwCC comparisons can be assessed.

First, heterogeneity could be assessed by directly com-
paring the IPD from the rwCCs (the “IPD” method). 
Before comparing the rwCCs, it is desirable to make the 
distribution of prognostic covariates similar between 
each of these rwCCs and the SAT. This could be accom-
plished using weighting. Each rwCC would be weighted 
to the SAT using, for example, average treatment effect 
on the treated weights. Then the weighted rwCC could 
be compared to each other using appropriate statistical 
methods (e.g., using logistic regression if outcomes are 
binary).

Second, heterogeneity among the effect estimates 
separately comparing the SAT to each rwCC could 
be assessed; we call this the aggregate method since it 
requires aggregate statistics from each SAT-rwCC com-
parison. This is a traditional non-IPD meta-analysis 
approach in which the SAT would be compared to each 
rwCC separately, e.g., using a matching or weighting esti-
mator. Then, the resulting statistics can be assessed for 
heterogeneity, typically using Cochran’s Q test.

A methodology that accounts for dependence: the Adjusted 
Q‑test.
Applying the aggregate method is challenging because 
the effect estimates being pooled in the meta-analysis 
will not be independent, since the SAT is included in all 
comparisons. Therefore, standard methods for assessing 
heterogeneity, like Cochran’s Q test for heterogeneity, 
which rely on independence, will be invalid. However, a 
modified version of Cochran’s Q test can account for this 
dependence. We call this adjusted test, which is similar 
to standard methods in the literature for meta-analysis 
of dependent results [27, 28], the “Adjusted Q-test”. It 
requires three steps to calculate:

1. In the first step, the covariance matrix Σ of the effect 
estimates (e.g., risk difference, odds ratio, hazard 
ratio) from the various SAT-rwCC comparisons is 
calculated. The effect estimates from the various 
SAT-rwCC comparisons will be correlated, since 
each comparison is to the same SAT. One way to 
calculate this covariance matrix (with dimensions 
k-by-k, where k is the number of SAT-rwCC com-
parisons) is to use the bootstrap. A common rand-
omization seed could be used to generate bootstrap 
samples of the SAT. Then, for each bootstrap sample 
of the SAT, effect estimates and associated standard 
errors for each SAT-rwCC comparison could be cal-
culated, using a corresponding bootstrap sample of 

each rwCC. Then these could be used to calculate 
the covariance matrix of the effect estimates for the 
rwCC-SAT comparisons.

2. In the second step, we multiply the effect estimates 
from the SAT-rwCC comparisons by the inverse 
Cholesky transformation Σ−½. This is a so-called 
“whitening transformation” which renders the effect 
estimates uncorrelated, since if the covariance of the 
effect estimates is Σ, after multiplying those effect 
estimates by Σ−½, their covariance matrix will now be 
the identity matrix [29].

3. In the third step, Cochran’s Q can be calculated using 
the resulting statistics, whose assumed covariance 
matrix is now the identity matrix. Q is then referred 
to the chi-square distribution with I-1 degrees of 
freedom, where I is the number of rwCC datasets. 
This is in accordance with normal practice, although 
it should be noted that, when, as here, the covariance 
of the statistics is estimated, using the chi-square dis-
tribution is only an approximation to the true distri-
bution of Q and may inflate Type I error. Moreover, 
the distribution of Q depends on the effect measure 
i.e., hazard ratios or risk differences [30]. We note 
that bootstrap methods can be used instead of the 
chi-square distribution for a potentially more accu-
rate test (see Joshi et  al.) [31]. Further work could 
combine the bootstrap methods of Joshi et  al. with 
the use of the bootstrap above in Step 1.

Detecting heterogeneity
We wish to evaluate the impact of the effect sizes on 
Cochran’s Q and Adjusted Q when assessing heteroge-
neity of two SAT-rwCC comparisons using a common 
SAT. We simulate data from two rwCCs and one SAT, 
using a binary response outcome. We assume the true 
response rate (RR) is 50% in the SAT and 50% in one 
of the rwCC (i.e., no difference). However, due to bias 
from unmeasured confounding, the observed RR in 
the other rwCC may be different from 50% (i.e., het-
erogeneity). We calculate the probability that Cochran’s 
Q test and Adjusted Q will reject the null hypothesis 
that the effect sizes versus the SAT are the same (i.e., 
probability of detecting heterogeneity). We compare to 
the IPD method by also showing the probability that 
a logistic regression model rejects the null hypothesis 
that the rwCC arms have the same RR. There are 100 
subjects in the SAT and in each rwCC, and we run 1000 
replicates for each scenario. For the Adjusted Q test, we 
generate 1000 bootstrap samples for each replicate.
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Impact of heterogeneity testing
Although potentially inadvisable, one could adopt a 
conditional approach, where if the above methods did 
not reveal heterogeneity, then one would proceed with 
a pooled analysis. This is similar to the test-then-pool 
approach described by Viele et  al. [32]. To explore the 
operating characteristics of this approach, we consider 
two hypothetical scenarios of interest. In both scenarios, 
we assume that a SAT-rwCC comparison is designed 
using the assumption of an 80% RR in the SAT and 50% 
RR in the rwCC. To attain 90% power to detect a differ-
ence of this size at an alpha level of 5%, roughly 50 par-
ticipants are required in the SAT and in the rwCC. The 
sponsor aims to pool two rwCC, each with 25 partici-
pants, to achieve the desired power.

Scenario 1: impact of heterogeneity testing in null scenario
The first scenario of interest is a null scenario, where 
the true RR in the SAT and in one of the rwCC is 50%. 
However, due to some bias (e.g., missing data on patient 
responses), the RR in the second rwCC may be lower 
than 50%. To protect against the Type I error inflation 
that might result from pooling in this scenario, the spon-
sor pools only if the p-value from an IPD heterogeneity 
assessment of the two rwCCs is greater than 0.10 (0.10 as 
opposed to 0.05 is used to increase the power to detect 
heterogeneity).

Scenario 2: impact of heterogeneity testing when treatment 
improves outcomes
In the second scenario, we consider the RR in the SAT 
is 80%. The RR in the first rwCC is 50% but due to some 
bias, the RR in the second rwCC could be higher than 
50% (e.g., an unmeasured confounder), potentially lead-
ing to Type 2 error.

Results
Methods for testing heterogeneity
Detecting heterogeneity
Figure 1 shows the probability that Cochran’s Q test and 
Adjusted Q will reject the null hypothesis that the effect 
sizes versus the SAT are the same (i.e., probability of 
detecting heterogeneity). When rwCCs with identical 
true RRs are compared to the same SAT, the Type I error 
of the Q test is lower than the nominal 5% alpha level 
since there is no variability in the SAT arm across the 
comparisons. However, Type I error is close to the nomi-
nal level with the Adjusted Q test. In addition, the power 
functions of the Adjusted Q test and the IPD method 
are nearly identical, and substantially higher than for the 
traditional Cochran’s Q. The Adjusted Q test therefore 

properly accounts for the dependence in test statistics 
across the SAT-rwCC comparisons, unlike the traditional 
Cochran’s Q.

Impact of heterogeneity testing
Scenario 1: impact of heterogeneity testing in null scenario
In Table 2, we show the expected operating characteris-
tics with a range of different RRs in the second rwCC. In 
the null scenario, where because of some bias, the RR in 
one of the two rwCC may be lower than the true value of 
50%. As expected, when the response difference between 
the rwCCs increases, the Type 1 error, observed response 
difference, and probability of detecting heterogeneity 
also increase. However, given the low sample sizes in the 
rwCC, power is relatively low for detecting heterogene-
ity even at the relaxed p-value threshold of 0.10. A 30% 
RR difference is detected in only 64% of trials; the Type 
I error rate is 30% in the remaining 36% of trials where 
no heterogeneity is detected, leading to an overall Type I 
error rate of nearly 11% (30% * 36%). Thus, although het-
erogeneity testing successfully identifies some high-bias 
scenarios, in many reasonable scenarios it will be under-
powered, leading to Type 1 error inflation (albeit less 
than if we always pool).

In these simulations, the RR in the SAT and in the 
first rwCC is 50%, and the RR in the second rwCC var-
ies. The pooling probability is the probability that the 

Fig. 1 Simulation showing the probability of rejection of the null 
hypothesis (i.e., of detecting heterogeneity) using Cochran’s Q, 
Adjusted Q, and the IPD method. For Cochran’s Q and Adjusted 
Q, two rwCC are separately compared to a SAT and the resulting 
statistics are assessed for heterogeneity. For the IPD method, the two 
rwCC are directly compared. 1000 replicates were run for each 
scenario. For the Adjusted Q test, 1000 bootstrap samples were 
generated for each replicate. There are 100 subjects in the SAT 
and in each rwCC
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heterogeneity test fails to reject (if it rejects, we do not 
pool). The Type I error rate is calculated under two 
different decision rules: we pool only when the het-
erogeneity test fails to reject (‘Conditional on pool-
ing’), or we always pool (‘If always pool’). The average 
estimated response difference is also calculated (last 
column) and compared to the expected response dif-
ference when always pooling. Monte Carlo standard 
errors are in parentheses, for 100,000 replicates. 

Note that in each row of Table  2, the Type I error 
and response difference conditional on pooling are 
approximately equal to those of if we always pooled. 
This counterintuitive finding is because the average 
response across the two rwCC depends only weakly on 
whether the observed RRs are similar to each other or 
not, conditional on the true RRs in the two rwCC. For 
example, if the true RRs are 50% in rwCC #1 and 40% 
in rwCC #2, a typical case when similar RRs would be 
observed might be a rate of 45% in both datasets, while 
a typical case when different RRs would be observed 
might be a RR of 50% in one dataset and 40% in the 
other. In either case, the average rwCC RR is 45%, 
leading to Type I error inflation and bias in estimation 
of the response rate difference.

Scenario 2: impact of heterogeneity testing when treatment 
improves outcomes
In Scenario 2, we examine a situation where there should 
be a true RR difference between the SAT and both 
rwCCs, but the RR in one of the rwCCs is biased upward 
leading to Type 2 error. As shown in Table  3, the low 
power to detect heterogeneity means that the datasets 
will be inappropriately pooled often, leading to poten-
tially severe underestimation of the treatment effect. For 
example, with a 20% RR difference between the rwCC, 
datasets will be pooled 67% of the time, and the average 
estimate of the treatment effect will be 20% when pool-
ing, a third lower than the true RR difference of 30%.

In these simulations, the RR in the SAT is 80% and in 
the first rwCC is 50%, and the RR in the second rwCC 
varies. Monte Carlo standard errors are in parentheses, 
for 1,000,000 replicates.

Discussion
This article makes several contributions to the existing 
literature on data pooling [6, 21, 23, 33]. First, we pre-
sent a framework for data pooling focused on RWD, and 
specifically rwCC analyses. The three steps of this frame-
work are: pre-specification, dataset selection, and out-
comes analyses (including analysis of heterogeneity).

Second, we evaluate how best to detect heterogene-
ity in the rwCC use case and demonstrate that standard 

Table 2 Operating characteristics of a two-step procedure for deciding whether or not to pool

a Data is pooled when heterogeneity is not detected

Type I error Response difference (%)

SAT 
response 
(%)

rwCC #1 
response 
(%)

rwCC #2 
response 
(%)

Pooling  probabilitya Conditional 
on pooling

If always pool Expected when 
always pooling

Average when pooling

50 50 50 0.94 (0.0008) 0.04 (0.001) 0.04 (0.0008) 0 0.01 (0.0003)

50 50 40 0.87 (0.001) 0.06 (0.001) 0.06 (0.001) 5 5.01 (0.0003)

50 50 30 0.67 (0.001) 0.14 (0.001) 0.13 (0.001) 10 10.35 (0.0004)

50 50 20 0.36 (0.002) 0.3 (0.002) 0.27 (0.002) 15 16.04 (0.0005)

Table 3 Operating characteristics of two-step procedure for deciding whether or not to pool

a Data is pooled when heterogeneity is not detected

Rejection probability (comparison to 
SAT)

Response difference (%)

SAT 
response 
(%)

rwCC #1 
response 
(%)

rwCC #2 
response 
(%)

Pooling  probabilitya Conditional on pooling If always pool Expected when 
always pooling

Average when pooling

80 50 50 0.94 (0.0002) 0.85 (0.0001) 0.85 (0.0005) 30 30.01 (0.0001)

80 50 60 0.87 (0.0003) 0.70 (0.0002) 0.71 (0.0005) 25 24.94 (0.0001)

80 50 70 0.67 (0.0005) 0.50 (0.0003) 0.52 (0.0005) 20 19.68 (0.0001)

80 50 80 0.36 (0.0005) 0.27 (0.0005) 0.31 (0.0005) 15 13.96 (0.0001)
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approaches to heterogeneity assessment are biased. To 
address this gap, we describe an Adjusted Cochran’s 
Q test, similar to existing methods in the literature for 
meta-analysis of dependent results, which accounts for 
correlation in the treatment estimates given the com-
mon SAT, and matches the statistical power of IPD 
heterogeneity testing. In scenarios in which all IPD can 
be combined, heterogeneity can be assessed either by 
directly comparing the rwCCs, or using the Adjusted Q. 
The former is the preferable approach; however, a use 
case in which only the Adjusted Q is feasible is when 
IPD may be available but not fully shareable across 
study sites. This can occur when IPD from the SAT 
can be combined with IPD from each rwCC, but IPD 
from different rwCCs cannot be combined (i.e., if one 
or more of the rwCCs is derived from a registry) [34]. If 
the sponsor wished to combine these results, this could 
be accomplished using a fixed effect meta-analysis 
approach, although adjustments (e.g., similar to those 
proposed for the Adjusted Q test) should be made to 
standard errors to account for non-independence of the 
results being meta-analyzed (see the Appendix for fur-
ther discussion).

Third, our simulation results highlight the limitations 
of quantitative heterogeneity testing in protecting against 
Type 1 or Type 2 error especially in the presence of small 
sample sizes. While heterogeneity testing does identify 
scenarios with higher bias, its lack of statistical power 
when there are only a few rwCC (especially with the low 
sample sizes that would lead a sponsor to consider pool-
ing) make it an insufficient mitigation on its own. This 
is in line with previous research illustrating the dangers 
of two-step procedures where fixed effects or random 
effects meta-analysis is selected based on a preliminary 
test of heterogeneity [35, 36]. We note that if the goal 
of pooling RWD were to achieve greater generalizabil-
ity rather than a rwCC use case, heterogeneity would be 
expected (and potentially even desirable), and thus, test-
ing would not be needed. The latter use case is out of 
scope for the current manuscript.

Together, these results underscore the importance of 
careful selection of datasets (‘what to pool’) based on 
clinical/data considerations, to minimize heterogene-
ity prior to any statistical testing. This remains an area 
in which further research is needed, given the multitude 
of considerations and difficulty testing the underlying 
assumptions [14]. Subsequent heterogeneity test results 
should be used descriptively to contextualize study find-
ings. If statistical heterogeneity is detected or if qualita-
tively large but non-significant differences are seen, the 
investigators should present dataset-specific results, 
and conduct sensitivity analyses to investigate potential 
sources of heterogeneity [23].

Conclusions
In conclusion, we have provided a methodological frame-
work for pooling separate RWD sources, particularly 
applicable to the use case of designing a rwCC for a sin-
gle arm trial in a rare subpopulation. Additionally, we 
provide simulations demonstrating the performance of 
a heterogeneity assessment methodology and describe 
considerations for this essential component of pooling. 
As researchers and regulators seek to benefit patients 
with novel insights from RWD pooled from multiple 
available sources, we hope the methods presented herein 
can enhance the rigor of such analyses.
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