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Abstract 

Background Cancer, a complex and deadly health concern today, is characterized by forming potentially malignant 
tumors or cancer cells. The dynamic interaction between these cells and their environment is crucial to the disease. 
Mathematical models can enhance our understanding of these interactions, helping us predict disease progression 
and treatment strategies.

Methods In this study, we develop a fractional tumor-immune interaction model specifically for lung cancer (FTIIM-
LC). We present some definitions and significant results related to the Caputo operator. We employ the generalized 
Laguerre polynomials (GLPs) method to find the optimal solution for the FTIIM-LC model. We then conduct a numeri-
cal simulation and compare the results of our method with other techniques and real-world data.

Results We propose a FTIIM-LC model in this paper. The approximate solution for the proposed model is derived 
using a series of expansions in a new set of polynomials, the GLPs. To streamline the process, we integrate Lagrange 
multipliers, GLPs, and operational matrices of fractional and ordinary derivatives. We conduct a numerical simulation 
to study the effects of varying fractional orders and achieve the expected theoretical results.

Conclusion The findings of this study demonstrate that the optimization methods used can effectively predict 
and analyze complex phenomena. This innovative approach can also be applied to other nonlinear differential equa-
tions, such as the fractional Klein–Gordon equation, fractional diffusion-wave equation, breast cancer model, and frac-
tional optimal control problems.
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Introduction
Lung cancer is diagnosed as the most common cancer 
[1, 2]. In 2018, an estimated 2.1 million new lung cancer 
cases were made, accounting for 12% of the global bur-
den of cancer [1, 2]. Lung cancer is the leading cause of 
cancer-related fatalities for men while coming in second 
for women across the globe [1, 2]. Tobacco smoking is 
in the top spot on the list of risk factors for lung cancer, 
accounting for 75% of lung cancers. Genetic suscepti-
bility, occupational workplace exposure, air pollution, 
second-hand smoke, and radon exposure are other risk 
factors [3].

As of late, there has been a modest enhancement in the 
survival rate of individuals diagnosed with lung cancer. 
However, there have been considerable improvements 
in the chance of survival for most other types of cancer. 
This can be attributed to most cancer patients being diag-
nosed at the last stages of the disease [1]. The survival 
rate for all cancer types diagnosed in 5 years from 2010 
to 2016 was 63% among Black individuals, 68% among 
White individuals, and 67% overall. Lung cancer showed 
one of the lowest survival rates at about 21% [4]. Accord-
ing to an extensive examination of individuals with lung 
cancer [5], a substantial percentage of patients, ranging 
from 40 to 85%, experience respiratory symptoms such as 
coughing, shortness of breath, wheezing, and coughing 
up blood. Thus, continuous auscultation and lung sound 
monitoring [6] can be helpful for early diagnosing of such 
lung problems.

Lung cancer tumors are categorized into two Histo-
logic Diagnosis groups: Small-Cell Lung Carcinoma 
(SCLC) and Non-Small Cell Lung Carcinoma (NSCLC). 
NSCLC accounts for approximately 80 to 85% of all lung 
cancers, which include subcategories of adenocarcinoma 
(40%), squamous cell carcinoma (25–30%), and large cell 
carcinoma (10–15%) [7–9].

The characteristics of its microenvironment influence 
the progression and dissemination of a tumor. The tumor 
microenvironment comprises various cell types, includ-
ing immune cells, cancer cells, vascular endothelial cells, 
epithelial cells, dendritic cells, macrophages, lympho-
cytes, fibroblasts, and extracellular matrix proteins. In 
the respiratory system, the airway epithelium serves as 
a protective barrier and provides an environment for the 
growth of lung cancer cells. The epithelial cells release 
inflammatory mediators that attract lymphoid cells to 
the airway epithelia and activate antigen-presenting cells 
(APCs). [10].

The human immune system can search out, detect, 
and destroy infected or malignant cells while keeping 
the host safe. However, tumors can potentially evade 
and escape immune examination and destruction. This 
escape of tumor cells from immunity includes the local 

development of immune suppression, induction of 
dysfunctional T-cell signaling for excessive immune 
responses, and immune upregulation of deterrent check-
points against the indiscriminate attack on self-cells [11]. 
In the anticancer battle, the human body benefits from 
an arsenal of cytotoxic lymphocytes, macrophages, and 
granulocytes secreted from immune cells. The Cytotoxic 
T Lymphocytes (CTLs) population is leading in antican-
cer immunity. The  CD8+ lymphocytes,  CD4+ lympho-
cytes and lymphocytes B are soldiers of the CTL army, 
and natural killer (N.K.) cells and natural killer T (NKT) 
cells are members of the CTL cell population. A success-
ful cytotoxic attack entails an efficient tumor antigen 
presentation and appropriate antigen-presenting cells 
(APCs) [12]. Both cytotoxic innate and adaptive immune 
cells are crucial for anticancer immunity. The innate 
immune response comprises granulocytes, macrophages, 
natural killer (NK) cells, mast cells, and dendritic cells 
(D.C.s). On the other hand, the adaptive response is com-
prised of B cells,  CD8+ cytotoxic lymphocytes (CTLs), 
and  CD4+ helper T cells [13].

After facing tumor antigens, immature  CD4+ T cells 
are made active and polarized. They are divided into Th1, 
Th2, Th17, Th9, Th22, Tregs, and T follicular helper (Tfh) 
cells. By coordinating mediated immunity cells against  
cancer cells, Th1 among various subsets of  CD4+ T cells 
serve a direct antitumor role [13]. The N.K. cells can also 
directly eliminate tumor cells via several mechanisms; 
1) production of cytoplasmic granules, granzymes, and 
perforin, 2) induction of death receptor-mediated apop-
tosis, or 3) secretion of tumor necrosis factor-alpha 
(TNF-α ) to achieve the antitumor effect through anti-
body-dependent cellular cytotoxicity from the expression 
of CD16 [13].

Macrophages play a critical role in innate immunity 
against cancer by preventing the accumulation of apop-
totic cancer cells, which could trigger an autoimmune 
response. During the ideal phase, tumor cells express 
specific molecules on their surface that are recognized by 
macrophages, leading to the phagocytosis of tumor cells 
[13]. Macrophages can be divided into two major popula-
tions of alveolar and interstitial macrophages, where the 
former is more prevalent. The lung’s inner surface con-
tains a significant proportion of immune cells, with alve-
olar macrophages comprising 55% of these cells. These 
macrophages can be classified into two types, M1 and 
M2, based on their characteristics [10]. They can trans-
form into different subsets in response to various stimuli. 
The IFN-γ factor activates macrophages, inducing them 
to release nitric oxide (NO) and be exposed to reactive 
oxygen species and lysosomal enzymes, leading to clas-
sical macrophage activation. Initially, the Th1 cells intro-
duced the primary pathway for macrophage activation, 
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which led to the activation of M1 macrophages. Mac-
rophages at rest and activated by IL-4 and IL-13 are 
M2 macrophages, alternatively activated macrophages 
(AAMs), or anti-inflammatory macrophages. M2 mac-
rophages are responsible for counteracting the effects  
of M1 macrophages, achieved through the secretion of 
IL-10. M2 macrophages also promote tissue repair by 
adopting an anti-inflammatory profile mediated by the 
TGF-β factor and other factors. This process is essen-
tial for wound healing [14]. Dendritic cells, B-cells, 
and macrophages are characterized as professional 
antigen-presenting cells (APCs). Anti-inflammatory 
macrophages dominate the tumor microenvironment 
with an impressive immune suppression function by  
secreted cytokines, especially transforming growth factor 
(TGF)-β and IL-10 [10].

Lung cancer immunotherapy provides a complex treat-
ment additional to chemoradiotherapy by developing 
more comprehensive knowledge on the disturbance of 
antitumor immune response and the evasion mecha-
nism of host antitumor immune defense [10, 12]. Cancer 
immunotherapy has priority over chemotherapy or radi-
otherapy for its low-risk ratio and long-lasting activity. 
Identifying predictive markers for predicting antitumor 
risks, clinical effects, and survival benefits before immu-
notherapies is one of the most promising directions for 
future research in cancer immunotherapy [13].

Scientists worldwide have developed different math-
ematical models for tumor disease dynamics and its 
characteristics. Ö zk ö se et  al. [15] developed a frac-
tional-order model of the tumor-immune system using 
Caputo derivatives to investigate changes in the popula-
tion of macrophages, active macrophages, tumor cells, 
and host cells. The authors in [16] developed a math-
ematical model to study the impact of CD4 + T cells on 
tumor regression, which included interactions between 
CD4 + cells, cytokines, tumor cells, and host cells with 
treatment. Kumar et al. [17] investigated the role of vita-
min intervention in enhancing the immune system using 
a tumor-immune-vitamin (TIV) model with arbitrary 
order operators of Caputo-Fabrizio (C.F.) derivative and 
conformable fractional derivative in the Liouville-Caputo 
(L.C.) sense. In a research paper, Cherraf et al. [18] pro-
posed an interaction tumor-immune model in the pres-
ence of immune chemotherapy. In their model, immune 
cells were recruited with a constant time delay to demon-
strate the role of time delay in the stimulated accumula-
tions of cancer cells surrounded by immune cells. Their 
numerical simulation suggested tumor load reduction 
after a few months of immuno-chemotherapy. Another 
tumor-immune model was both numerically and theo-
retically investigated by Ahmad et al. [19] for both non-
singular and singular fractal fractional operators. In 

a chaotic and comparative study, the dynamic behav-
ior of tumor and effector immune cells was interpreted 
by Kumar et al. [20] through the analysis of a fractional 
tumor-immune model. To explore the effect of immune 
checkpoints on tumor regression, Yu and Jang [21] exam-
ined mathematical models of tumor-immune interac-
tions among  CD4+ T cells, malignant tumor cells, and 
antitumor cytokine with an immune checkpoint inhibitor 
of CTLA-4. Dai and Liu [22] tackled an optimal control 
problem for a broad range of reaction–diffusion tumor-
immune models with immuno-chemotherapy. The 
objective was to decrease the tumor cell burden while 
minimizing treatment costs and side effects. Fractional 
calculus is a branch of classical calculus concerned with 
integer-order formalism, which is presently used for dif-
ferent modeling approaches in various scientific fields of 
biomathematics, applied mathematics, physics, computer 
science, etc. (see [23–29]). Veeresha et  al. [30] used the 
q-homotopy analyses transform method (q-HATM) to 
solve the fractional Schistosomiasis disease model. The 
results showed that their approach was easier to apply 
and more effective in finding numerical solutions for 
multi-dimensional differential equations arising in bio-
logical phenomena. In a study by Khan et al. [31], a frac-
tional epidemic model was numerically simulated for the 
novel coronavirus in the sense of the Caputo operator 
using generalized Adams–Bashforth Moulton. Zafar et al. 
[32] expressed and investigated a fractional order model 
for Toxoplasmosis disease in cat and human populations. 
They proposed a fractional extension of the multistage 
differential transform method to model toxoplasmosis. 
Cui et al. [33] investigated the dynamics of Plasmodium 
using a time-delayed fractional-order Ross-Macdonald 
model for transmission periods of malaria and the order 
of its dynamic behavior. Abdullah et al. [34] solved a frac-
tional temporal SEIR measles model composed of four-
time fractional ordinary differential equations (TFODEs) 
in three stages. In the first stage, an approximate model 
was solved that linearized four TFODEs. Then, an ana-
lytical solution of each TFODE was obtained at each time 
step. A fractional Predictor–Corrector method was used 
in the third stage to solve the model. Hassani et al. [35] 
created an optimization algorithm that employs gener-
alized polynomials to estimate the solution of an HIV 
infection model of  CD4+ T cells.

Mathematical models can be adapted to try to esti-
mate the complex dynamics of disease and simulate the 
appropriate and effective treatments for patients in per-
sonalized medicine. Mathematical models that are adapt-
able for processes critical in cancer biology will shed 
light on unknown points in the field of oncology. Math-
ematical models contribute significantly to understand-
ing how immune and cancer cells interact and define 
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tumor-immune dynamics [15]. It has been observed that  
the models made with fractional-order differential equa-
tions (FODEs) are more compatible with the truth and 
provide more advantages when compared with integer-
order mathematical models [15]. Tumor tissue samples 
were collected from non-small cell lung cancer patients 
who had chemotherapy-naive. The best-fitted curve 
has been obtained using the real data of a lung cancer 
patient [15].

Mathematical modeling of the respiratory function as 
a response of heterogeneous tissue represents an attrac-
tive avenue toward narrowing the possibilities that 
should be tested before clinical trials. Feature extraction 
from modeling a respiratory function through a specific 
fractional order impedance model can be transposed 
to lung tumor dynamics. Furthermore, changes in the 
lung geometry along the levels of the respiratory tree are 
simulated, replacing the recurrent lung geometry for a 
tumorous lung with random asymmetry [36].

Recently, different algorithms have been developed for 
the numerical solutions of varying disease modeling sys-
tems. Ullah et  al. [37] introduced a dynamic analysis of 
the susceptible-vaccinated-infected-recovered epidemic 
model based on mean-field approximation, evolution-
ary game approach, and fractional-order derivatives. 
Ullah et al. [38] deliberated an epidemic model based on 
control measures of lockdown, physical distancing, self-
protection, quarantine, and isolation to study COVID-19 
behavior. Din and Zainul Abidin [39] comprehensively 
analyzed the fractional-order vaccinated Hepatitis-B 
epidemic model with Mittag–Leffler kernels. Din et  al. 
[40] analyzed a system of fractional order equations for 
Hepatitis B using Atangana–Baleanu Caputo (ABC) 
derivatives. The authors in [41] explored the numerical 
behavior of a fractional model that pertains to hepatitis 
B infection. The model was analyzed using integer order 
operators of differentiation, which incorporated non-
local and non-singular kernels. Ain et  al. [42] studied a 
disease transmission model of Middle East Lungs Coro-
navirus (MERS-CoV) in terms of Caputo fractional order 
variations. Kashyap et  al. [43] introduced a fractional 
model to examine how the mass mortality of predators is 
affected by the fear response of prey in the Salton Sea. A 
novel mathematical model was introduced to investigate 
the effects of interleukin-10 and anti-PD-L1 administra-
tion on cancer [44]. Uçar et al. [45] numerically simulated 
and analyzed a new model to describe the behavior of 
cancer cells. Uçar et  al. [46] designed a fractional sus-
ceptible–affected–infectious–suspended–recovered 
(SAIDR) model in the Atangana-Baleanu (A.B.) sense. 
Uçar [47] employed fractal-fractional operators to model 
hepatitis B outbreaks with the aid of Caputo deriva-
tives and actual data. Uçar [48] extracted results from a 

detailed analysis of a powered smoking model by deter-
mination and education with non-singular derivatives. 
Zafar et  al. [49] presented a numerical analysis of the 
Bazykin-Berzovskaya model with strong Allee effects. 
Zafar et  al. [50] examined the numeric paradigm of a 
stochastic suicide substrate reaction model. Zafar et  al. 
[51] evaluated the role of public health awareness pro-
grams in the spread of the Covid-19 pandemic. Zafar 
et  al. [52] also worked on the fractional order dynam-
ics of human papillomavirus. Another fractional-order 
model of toxoplasmosis was dynamically and numerically 
investigated in human and cat populations by Zafar et al. 
[32]. The dynamic behavior of tuberculosis was numeri-
cally modeled and simulated in the frame of different 
fractional derivatives by Zafar et  al. [53]. Farman et  al. 
[54] conducted a scientific investigation into the poten-
tial of genetically modified trees to reduce atmospheric 
carbon dioxide levels. The study introduced a system 
of fractional order differential equations to model the 
impact of these trees on the environment. The findings 
of this research provide valuable insights into the poten-
tial of genetically modified trees as a tool for mitigating 
climate change. Hasan et al. conducted an epidemiologi-
cal analysis of the symmetry in Ebola virus transmission 
using the power law kernel [55]. Farman et al. [56] pro-
posed a new fractional epidemic model to observe mea-
sles transmission dynamics with a constant proportional 
Caputo operator. An analysis of Covid-19 dynamical 
transmission l was also performed by Farman et al. with 
the Caputo-Fabrizio fractional derivative [57]. Tang et al. 
[58] considered the growth of artificial magnetic bacte-
ria in a non-Newtonian Powell–Eyring nanofluid on a 
stretching curved surface using a porous medium. Tang 
et al. [59] structured the interactions of tumor–immune 
in the fractional derivative framework and focused on the 
qualitative analysis and dynamical behavior of tumor–
immune cell interactions. Fioranelli  et al. [60] proposed 
a mechanism to induce T-cells around tumor cells using 
the entanglement between spinors on graphene sheets 
interior and exterior of the human body.

Fractional derivatives are useful in modeling complex 
real-world phenomena. Xu et  al. [61–64] have con-
ducted several studies that explore the impact of time 
delays on the bifurcation of fractional systems. These 
studies include stage-structured predator–prey models, 
4D neural networks, multi-delayed neural networks, 
and delayed BAM neural networks. Ahmad et  al. [19, 
65, 66] examined models that describe the interaction 
between tumors, the immune system, and vitamins. 
They also provided theoretical and numerical analy-
ses of fractional fractal models with various kernels 
to understand this interaction better. Yuttanan and 
Syam [67, 68] have investigated numerical solutions to 
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fractional partial differential equations using fractional-
order generalized Taylor wavelets and the modified 
operational matrix method, respectively. Rawani and 
Khirsariya [69, 70] have used the Haar wavelets collo-
cation method and the Homotopy perturbation general 
transform technique, respectively, to find numerical 
and analytic solutions to nonlinear partial one and two-
dimensional integrodifferential equations of frac-
tional order. These studies demonstrate the versatility 
and applicability of fractional derivatives in various 
research fields, highlighting their potential to provide 
new insights into complex systems.

Recent studies in the past decade have shown that 
compared to mathematical models of integer order, 
models composed of fractional-order differential equa-
tions are more advantageous and compatible with real-
ity. This is because many biological systems display 
characteristics such as after-effects, hereditary proper-
ties, and memory that differential equations of integer 
order cannot fully represent. Fractional-order differen-
tial equations perform better in modeling these com-
plex phenomena [14].

Cancer is a leading cause of death, accounting for nearly 
one in six deaths worldwide. Mathematical models can 
improve our understanding of cancer and help inform 
public health policies to promote healthy lifestyles. Based 
on the research mentioned above, the primary focus of 
this article is to develop a fractional tumor-immune 
interaction model for lung cancer (FTIIM-LC) and its 
numerical algorithm to capture the dynamic behaviors of 
the tumor-immune system.

Given the above consideration, this research arti-
cle presents an optimization method with the below 
contributions.

▪ The FTIIM-LC model has been considered.
▪ This article proposes new basis functions, termed 
generalized Laguerre polynomials (GLPs), for the 
approximate solution of the FTIIM-LC model.
▪ The proposed operational matrices of GLPs are uti-
lized to convert the FTIIM-LC model into a system 
of polynomial equations.
▪ The convergence of the introduced GLPs algorithm 
is proved in this paper.
▪ An optimization technique is designed for further 
efficiency improvement based on the Lagrange mul-
tipliers, and the optimal extent of unknown param-
eters is taken.
▪ In case of a low number of basis functions, meaning-
ful solutions are obtained by the proposed method.

▪ A representation matrix form is formulated for the 
GLPs.
▪ New operational matrices of ordinary and frac-
tional derivatives are evolved for these basis func-
tions.

This paper is structured as follows. In Sect.  "The frac-
tional tumor-immune interaction model related to lung 
cancer", we formulate the FTIIM-LC model and pre-
sent some definitions and valuable results of the Caputo 
operator. To discuss the main features of the proposed 
method, Sect.  "Introducing a new basis function" is 
divided into three subsections of GLPs description, oper-
ational matrices of derivatives and function approxima-
tion. In Sect. "The convergence analysis" the convergence 
analysis is shown. In Sect. "The solution for FTIIM-LC", 
we implement the GLPs method to achieve the opti-
mal solution of the FTIIM-LC model. Sect.  "Numerical 
results and discussion" presents the numerical simulation 
and compares our method’s results with other methods 
and real data. For a better understanding of the results, 
comparisons are also displayed as figures and tables. 
The main conclusions are drawn and given in Sect. 
"Conclusions".

The fractional tumor‑immune interaction model 
related to lung cancer
This section considers the FTIIM-LC model consisting 
of four fractional order differential equations to explore 
FTIIM-LC dynamics. The model includes four dependent 
variables, namely:

• T(t) represents the densities of tumor cells.
• A(t) represents the active macrophage cells.
• M(t) represents the macrophage cells.
• W(t) represents the normal tissue or host cells.

This study postulates that the tumor cells are malig-
nant and investigates two distinct mechanisms: the deg-
radation of macrophages by active macrophages and the 
conversion of macrophages into active macrophages. 
Additionally, supporting evidence indicates a compe-
tition between the tumor cells and healthy tissues for 
resources and physical area [15]. It is believed that there 
is a negative correlation between the densities of tumor 
cells and those of activated macrophages and normal 
cells, so the fractional system (2.1) satisfies positive con-
ditions. The following system of nonlinear differential 
equations is used to formulate FTIIM-LC in the Caputo 
sense [15]:
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where C0 D
υi
t  , i = 1, 2, 3, 4 , denotes the fractional deriva-

tives of order 0 < υi ≤ 1 . The model (2.1) parameters and 
their biological meaning are given in Table 1.

In applied sciences, memory properties have broad appli-
cations for a better understanding of complex phenomena. 
Given their higher degree of freedom, the desired results 
are more attainable using fractional instead of integer 
derivatives. In various fields of chemistry, biology, phys-
ics, and economy, fractional differential equations are also 
helpful for perceiving hereditary and memory problems 
or processes, given their inherent properties of non-local 
operators. Readers are suggested to refer to [71, 72]. The 
Caputo fractional derivative, C0 D

v
t  is as follows [27, 28]:

The symbol Ŵ(·) represents the Gamma function, which 
is defined as Ŵ(̺) = ∞

0 t̺−1e−tdt, where ̺ > 0 . The 
Caputo fractional derivative, utilized in the convolu-
tion integral, introduces a memory effect. As a result, the 
Caputo fractional derivative in (2.2) retains the dynamics of 
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the model over a long period by incorporating the history 
of y(t). The following equation is valid for any ̟ ∈ N:

Introducing a new basis function
In this section, we only recall some basic features of 
Laguerre polynomials (L.P.s) and propose a new class 
of GLPs basis functions. The operational matrices are 
formed to solve FTIIM-LC, and then function approxi-
mation is provided.

Description of the GLPs
Definition 3.1 (see [73] and related references) The L.P.s, 
Ln(t) , are solutions to second-order linear differential 
equations ty′ ′

+ (1− t)y
′
+ ny = 0, n ∈ N.

Definition 3.2 (see [73] and related references The 
power series for L.P.s, Ln(t) , is represented as.

The first L.P.s are given by:

The given function u(t) is generally approximated with 
the first terms n+ 1 L.P.s as:

where
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Table 1 The parameters of the FTIIM-LC (2.1)

Parameter Description

ρ1 The conversion rate of macrophages into active mac-
rophages

ρ2 The degradation of macrophages due to active mac-
rophages

d1 The growth rate of macrophage cells

d2 The growth rate of tumor cells

d3 The growth rate of normal tissue cells

α1 The competition coefficient of normal tissue cells on tumor 
cells

α2 The competition coefficient of tumor cells on normal tissue 
cells

h1 The death rate of macrophages

h2 The death rate of active macrophages

θ The rate of destruction of tumor cells due to the attack 
of active macrophages

l1 The carrying capacity of macrophages

l2 The carrying capacity of tumor cells

l3 The carrying capacity of normal tissue cells
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where βk refers to control parameters. Providing βk = 0 , 
the GLPs are identical to the classical L.P.s.

The expression of v(t) functions using GLPs can be 
expressed as:

where

and

where βk , k = 1, 2, . . . ,m , are the control parameters.
The functions T (t) , A(t) , M(t) and W (t) can be out-

lined as matrices as follows:

where

(3.5)Lm(t) =

m
∑

k=0

(−1)k

k!

(m)!

(k!)(m− k)!
tk+βk ,

(3.6)v(t) = RTS�m(t),

(3.7)S =

















s0,0 s0,1 s0,2 · · · s0,m
s1,0 s1,1 s1,2 · · · s1,m
s2,0 s2,1 s2,2 · · · s2,m
...

...
... · · ·

...
sm,0 sm,1 sm,2 · · · sm,m

















,RT = [r0r1 . . . rm],�m(t) = [1t1+β1 t2+β2 . . . tm+βm ]T ,

(3.8)sij =

{

(−1)j

j!
(i)!

(j!)(i−j)! , i ≥ j,

0, i < j,

(3.9)T (t) ≃ CT1 D1�1(t),A(t) ≃ CT2 D2�2(t),M(t) ≃ CT3 D3�3(t),W (t) ≃ CT4 D4�4(t),

(3.10)CT1 = [c10c
1
1 . . . c

1
m1

], CT2 = [c20c
2
1 . . . c

2
m2

], CT3 = [c30c
3
1 . . . c

3
m3

], CT4 = [c40c
4
1 . . . c

4
m4

],

(3.11)D1 =



















1 0 0 · · · 0

d11,0 d11,1 d11,2 · · · d11,m1

d12,0 d12,1 d12,2 · · · d12,m1

...
...

... · · ·
...

d1m1,0
d1m1,1

d1m1,2
· · · d1m1,m1



















,D2 =



















1 0 0 · · · 0

d21,0 d21,1 d21,2 · · · d21,m2

d22,0 d22,1 d22,2 · · · d22,m2

...
...

... · · ·
...

d2m2,0
d2m2,1

d2m2,2
· · · d2m2,m2



















,

(3.12)D3 =



















1 0 0 · · · 0

d31,0 d31,1 d31,2 · · · d31,m3

d32,0 d32,1 d32,2 · · · d32,m3

...
...

... · · ·
...

d3m3,0
d3m3,1

d3m3,2
· · · d3m3,m3



















,D4 =



















1 0 0 · · · 0

d41,0 d41,1 d41,2 · · · d41,m4

d42,0 d42,1 d42,2 · · · d42,m4

...
...

... · · ·
...

d4m4,0
d4m4,1

d4m4,2
· · · d4m4,m4



















,

and

with βk
i  that represent the control parameters.

Operational matrices
The fractional derivatives of order 0 < υi ≤ 1 , of �i(t) , 
i = 1, 2, 3, 4 , can be shown by

(3.13)

�1(t) � [φ1
0
(t)φ1

1
(t) . . . φ1

m1
(t)]T ,�2(t) � [φ2

0
(t)φ2

1
(t) . . . φ2

m2
(t)]T ,

�3(t) � [φ3
0
(t)φ3

1
(t) . . . φ3

m3
(t)]T ,�4(t) � [φ4

0
(t)φ4

1
(t) . . . φ4

m4
(t)]T ,

(3.14)

dkij =

{

(−1)j

j!
(i)!

(j!)(i−j)! , i ≥ j,

0, i < j,
i = 1, 2, . . . ,mk , j = 0, 1, . . . ,mk , k = 1, 2, 3, 4,

(3.15)
φk
i (t) =

{

1, i = 0,

ti+βk
i , i = 1, 2, . . . ,mk ,

k = 1, 2, 3, 4,
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where D(υi)
t  denote the following (mi + 1)× (mi + 1) 

operational matrices of fractional derivatives

where β i
j  , mi , and υi ( i = 1, 2, 3, 4 , j = 1, 2, . . . ,mi ) respec-

tively represent control parameters, basis function num-
bers, and fractional orders, with Ŵ(·) implying the gamma 
function.

Function approximation
Suppose that {1,L1(t),L2(t), . . . ,Lm1(t)} ⊂ L2[0,T ] is a 
set of GLPs and �m1 = Span {1,L1(t),L2(t), . . . ,Lm1(t)} . 
Let S(t) be an arbitrary element of L2[0,T ] . There is a 
finite-dimensional �m1 subspace of L2[0,T ] space with 
a unique optimal approximation of F(t) in �m1 , i.e. F∗(t) 
such that

Since F∗(t) ∈ �m1 , then the unique c10, c
1
1, . . . , c

1
m1

 coef-
ficients exist such that

where Eqs. (3.11) and (3.13) are devoted to the respective 
definitions ofCT1 = [c10c

1
1 . . . c

1
m1

] , also D1 and �1(t).
Any square-integrable function F(t) , t ∈ [0, 1] , can be 

expressed in terms of GLPs as

where Lm(t) =
∑m

k=0
(−1)k

k!
m!

k!(m−k)!
tk+βk is a GLPs.

(3.16)C
0 D

υi
t �i(t) = D

(υi)
t �i(t), i = 1, 2, 3, 4,

(3.17)

D
(υi )
t = t

−υi



































0 0 0 · · · 0

0
Ŵ
�

2+β i
1

�

Ŵ
�

2−υi+β i
1

� 0 · · · 0

0 0
Ŵ
�

3+β i
2

�

Ŵ
�

3−υi+β i
2

� · · · 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

0 0 0 · · ·
Ŵ
�

mi+1+β i
mi

�

Ŵ
�

mi+1−υi+β i
mi

�



































, i = 1, 2, 3, 4,

∀G(t) ∈ �m1 , � F(t)− F∗(t)�2 ≤� F(t)− G(t)�2.

F(t) ≃ F∗(t) = CT1 D1�1(t),

F(t) =

∞
∑

m=0

cmLm(t),

Theorem  3.4 The error in F(t) approximation by the 
sum of its first (m + 1)-terms is limited to the absolute 
scale of all neglected coefficients. If

then for all F(t) , m ; and t ∈ [0, 1] , we have

where M = max{|Lm(t)| : t ∈ [0, 1]}.
Proof. Since |Lm(t)| ≤ M , in view of (3.18) and (3.19), 

we conclude that.

This completes the proof.

The convergence analysis
In this section, the convergence analysis of GLPs is car-
ried out in line with the following theorems.

Theorem  3.5 ([74, 75]) Let f : [0, 1] → R be a con-
tinuous function. A GLP of Lm1(t) will then be for each 
t ∈ [0, 1] and ǫ > 0 such that

Proof. Refer to [75].
Theorem 3.6 Let F(t) be an n-times continuously dif-

ferentiable function on [0, 1] and Fm(t) be the best square 
approximation of F(t) given in Eq. (3.18). Then, we have

where L = maxt∈[0,1]|F
(m+1)(t)| , where 

M = max{|Lm(t)| : t ∈ [0, 1]} and A = max{1− t0, t0}.
Proof. Using Taylor’s expansion of F(t) , we obtain.

where t0ǫ [0, 1] and ξ ∈ [t0, t] . Assume now that

Then, we get

(3.18)Fm(t) =

∞
∑

m=0

cmLm(t),

(3.19)ELm(t) = |F(t)− Fm(t)| ≤ M

∞
∑

k=m+1

|ck |,

ELm
(t) =� F(t)−Fm(t) �=

∣

∣

∣

∣

∣

∞
∑

k=0

ckLk (t)−

∞
∑

k=m

ckLk (t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

k=m+1

ckLk (t)

∣

∣

∣

∣

∣

∣

≤

∞
∑

k=m+1

|ck |max
t∈[0,1]

|Lm(t)| ≤ M

∞
∑

k=m+1

|ck |.

|f (t)− Lm1(t)| < ǫ.

� F − Fm�
2
2 ≤

LMAm+1

(m+ 1)!
,

F(t) = F(t0)+ (t − t0)F ′(t0)+ · · · +
(t − t0)

m

m!
F (m)(t0)+

(t − t0)
m+1

(m+ 1)!
F (m+1)(ξ),

Fm(t) = F(t0)+ (t − t0)F ′(t0)+ · · · +
(t − t0)

m

m!
F
(m)(t0).
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Since Fm(t) is the best square approximation of F(t) , 
we deduce that

where Fm(t) is the best square approximation and Fm(t) 
is a GLP of degree m . This amounts to

By taking the square root of both sides of the inequal-
ity above, we arrive at the necessary conclusion to final-
ize the proof.

Theorem  3.7 Let F(t) ∈ Cm([0, 1]) and F (k)(t) be the 
k-th derivative of F(t) . If F (k)

m  , k = 1, 2, . . . , n , is the best 
approximation of F (k)(t), then

w h e r e Em,k = F (k)(t)− F
(k)
m (t)  , 

M = max{|Lm(t)| : t ∈ [0, 1]} and 
L = maxt∈[0,1]|F

(m−k+1)(t)|.
Proof. For any F(t) ∈ Cm([0, 1]) , we have 

F (k)(t) ∈ Cm−k([0, 1]) . Given Theorem 3.6, we reach the 
desired result, which completes the proof.

Theorem  3.8 Let F(t) ∈ Cm([0, 1]). Let n− 1 < υ ≤ n 
and C0 D

υ
t Fm(t) be the best approximation of C0 D

υ
t F(t). Then

where Eυ
m,υ=

C
0 D

υ
t F(t)−

C
0 D

υ
t Fm(t) and 

L = maxt∈[0,1]|F
(m−n+1)(t)|.

Proof. By the definition of Caputo derivative, we 
obtain.

This implies that

This completes the proof.

|F(t)− Fm(t)| =

∣

∣

∣

∣

∣

(t − t0)
m+1

(m+ 1)!
F (m+1)(ξ)

∣

∣

∣

∣

∣

.

� F(t)− Fm(t)�
2
2 ≤� F(t)− Fm(t)�

2
2,

� F−Fm�
2
2 ≤� F−Fm�

2
2 =

∫ 1

0

∣

∣F(t)− Fm(t)
∣

∣

2
dt ≤

∫ 1

0

(

LMAm+1

(m+ 1)!

)2

dt =

(

LMAm+1

(m+ 1)!

)2

.

(3.20)� F − Fm�
2
2 ≤

LMAm−k+1

(m− k + 1)!
, k = 1, 2, . . . , n,

� Eυ
m,n �≤

1

Ŵ(n− υ)

LMAm−n+1

(m− n+ 1)!
,

C
0 D

υ
t F(t) =

1

Ŵ(n− υ)

∫ t

0
F (n)(s)(t − s)−υ−1+nds.

� Eυ
m,n �= �C0 D

υ
t F(t)−

C
0 D

υ
t Fm(t) �

= � 1
Ŵ(n−υ)

∫ t
0(F

(n)(s)− F
(n)
m (s))(t − s)−υ−1+nds�

≤ 1
Ŵ(n−υ)

∫ t
0�(F

(n)(s)− F
(n)
m (s))�(t − s)−υ−1+nds

≤� Em,n �

≤ 1
Ŵ(n−υ)

LMAm−n+1

(m−n+1)! .

Now, we investigate the convergence of our method 
in one dimension by the following theorem.

Theorem 3.9 Let Z be a normed linear space, z0 ∈ Z

, and {xn}n∈N ⊂ Z such that Span{xn : n ∈ N} is a dense 
subset of Z . If {zn}n∈N ⊂ Z is the best approximation of 
z0 in Span{x1, x2, x3, . . . , xn}, then {zn}n∈N ⊂ Z converges 
in norm to z0.

Proof. By the density of Span{xn : n ∈ N} in Z , 
there exists a sequence {vm}m∈N ⊂ Span{xn : n ∈ N} 
such that vm → z0 as m → ∞ . We may 

assume that vm ∈ Span{x1, x2, . . . , xnm} , where 
n1 < n2 < · · · < nm < · · · . In addition, from the defini-
tion of the best approximation, we obtain.

Since the sequence {� zn − z0 �: n ∈ N} is decreasing 
in the real numbers, by employing (3.21), we conclude 
that there exists a subsequence of {� zn − z0 �: n ∈ N} 
converging to some elements of real numbers. This 
ensures that {zn}n∈N ⊂ Z converges in norm to z0 . This 
completes the proof.

Corollary 3.10 Let a > 0 be a fixed real number and 
Z = L2([0, a]) , equipped with the norm � ·�2 , xn := Ln , 
the GLPs. In view of Theorem 3.9, we deduce that for each. 
z0 ∈ L2([0, a]) , the sequence {zn}n∈N of the best approxi-
mation of z0 in Span{L1,L2, . . . ,Ln} converges to z0 which 
completes the proof.

Remark 1: Similar to the arguments discussed in [76], we 
can prove that the solutions of system (2.1) are positively 
invariant and bounded.

The solution for FTIIM‑LC
In the present section, we will numerically solve the problem 
introduced in Eq. (2.1). For this purpose, the solutions T (t) , 
A(t) , M(t) and W (t) are approximated by GLPs as follows:

where �i =
[

β i
1β

i
2 . . . β

i
mi

]

 , i = 1, 2, 3, 4 , are control 
parameters, and the coefficients CTi  , i = 1, 2, 3, 4 , are 
unknown. From (3.16), we have:

(3.21)� znm − z0 �≤� vm − z0 �, (m → ∞).

(4.1)
T (t) ≃ CT1 D1�1(t),A(t) ≃ CT2 D2�2(t),

M(t) ≃ CT3 D3�3(t),W (t) ≃ CT4 D4�4(t),

(4.2)

C
0 D

υ1
t T (t) = CT1 D1D

(υ1)
t �1(t),

C
0 D

υ2
t A(t) = CT2 D2D

(υ2)
t �2(t),

C
0 D

υ3
t M(t) = CT3 D3D

(υ3)
t �3(t),

C
0 D

υ4
t W (t) = CT4 D4D

(υ4)
t �4(t).
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Regarding the initial conditions presented in (2.1), we get

Now, Ri(t) residual functions (R.F.s), i = 1, 2, 3, 4 , can be 
written for the fractional system (2.1) as:

From Eq. (2.1), we have

The 2-norm of the R.F.s is generated as:

An optimization problem is utilized to determine the 
unknown vectors Ci and �i , i = 1, 2, 3, 4 , as:

The optimization problem is constrained by Eqs. (4.5), 
with Q serving as the objective function. To solve this 
problem, it is assumed that:

It should be noted that ξ represents the vector of 
Lagrange multipliers. The required and sufficient condi-
tions can be optimally obtained by applying the Lagrange 
multipliers method, as outlined below:

Once we have solved the system above and computed 
Ci and �i , i = 1, 2, 3, 4 , we obtain an approximate optimal 
solution for the problem described in Eqs. (4.1). To solve 
the extracted algebraic system of equations in Eq.  (4.9), 
we utilize the "fsolve" command of Maple 18.

(4.3)
T (0) ≃ CT1 D1�1(0),A(0) ≃ CT2 D2�2(0),

M(0) ≃ CT3 D3�3(0),W (0) ≃ CT4 D4�4(0).

(4.4)



















































R1(t) = CT1 D1D
(υ1)
t �1(t)− d

υ1
2 CT1 D1�1(t)(1−

CT
1 D1�1(t)

l
υ1
2

)+ θυ1CT1 D1�1(t)C
T
2 D2�2(t)

+α
υ1
1 CT4 D4�4(t)C

T
1 D1�1(t),

R2(t) = CT2 D2D
(υ2)
t �2(t)− ρ

υ2
1 CT3 D3�3(t)C

T
2 D2�2(t)+ h

υ2
2 CT2 D2�2(t),

R3(t) = CT3 D3D
(υ3)
t �3(t)− d

υ3
1 CT3 D3�3(t)

�

1−
CT
3 D3�3(t)

l
υ3
1

�

+ ρ
υ3
2 CT3 D3�3(t)C

T
2 D2�2(t)

+h
υ3
1 CT3 D3�3(t),

R4(t) = CT4 D4D
(υ4)
t �4(t)− d

υ4
3 CT4 D4�4(t)(1−

CT
4 D4�4(t)

l
υ4
3

)+ α
υ4
2 CT4 D4�4(t)C

T
1 D1�1(t).

(4.5)

�1 � CT
1
D1�1(0)− T (0) ≃ 0,�2 � CT

2
D2�2(0)− A(0) ≃ 0,

�3 � CT
3
D3�3(0)−M(0) ≃ 0,�4 � CT

4
D4�4(0)−W (0) ≃ 0.

(4.6)Q(Ci,�
i) =

∫ ζ

0
(

4
∑

j=1

R2
j (t))dt, i = 1, 2, 3, 4.

(4.7)minQ(Ci,�
i), i = 1, 2, 3, 4.

(4.8)J [Ci,�
i, ξ ] = Q(Ci,�

i)+ ξ�, i = 1, 2, 3, 4.

(4.9)











∂J
∂ξ

= 0,
∂J
∂Ci

= 0, i = 1, 2, 3, 4,
∂J
∂�i = 0, i = 1, 2, 3, 4.

Numerical results and discussion
The GLPs method is utilized for the numerical results 
of FTIIM-LC. Table  2 [15] provides the relevant data. 
The initial conditions for the simulation are T (0) = 5 , 
A(0) = 0 , M(0) = 20 and W (0) = 200 . By utilizing the 
given parameter values, we conduct simulations for the 

four state variables {T (t),A(t),M(t),W (t)}, as depicted 
in Figs.  1, 2, 3 and 4, with m1 = m2 = 4 , m3 = 6 , 
m4 = 5 , ζ = 150 for υi = υ = {0.70, 0.80, 0.90, 1} , 
i = 1, 2, 3, 4 . The runtime values and the R.F.s opti-
mal values of the proposed method are reported in 
Tables  3 and 4, with m1 = m2 = 4 , m3 = 6 , m4 = 5 for 
υi = υ = {0.70, 0.80, 0.90, 1} , i = 1, 2, 3, 4 . The approxi-
mate solutions are plotted in Figs.  5, 6, 7 and 8 with 
m1 = 3 , m2 = 5 , m3 = m4 = 7 for υ1 = 0.28 , υ2 = 0.43 , 
υ3 = 0.87 , and υ4 = 0.96.

Figures 1 and 5 show that the densities of tumor cells 
are constantly increasing. The density of tumor cells is a 
crucial factor in drug resistance and metastasis regula-
tion. Cancer cell density grows with cell proliferation in a 
space bounded by the basement membrane and enclosed 
by the stromal matrix [77]. There is ample evidence of the 
evolutionary development of tumor cells from somatic 

Table 2 The parameters of the FTIIM-LC (2.1) [15]

Parameter Values Unit

l1 5.0785× 107 Cells

l2 2.7785× 105 Cells

l3 5.4621× 106 Cells

h1 4.3884× 10−14 Day−1

h2 0.8809 Day−1

α1 4.3930× 10−14 (CellDay)−1

α2 0.7609 (CellDay)−1

d1 0.9000 Day−1

d2 0.5045 Day−1

d3  0.6169 Day−1

θ2 0.0140 (CellDay)−1

ρ1 0.0937 (CellDay)−1

ρ2 0.0122 (CellDay)−1
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ones arising from the synergy of genetic damage accu-
mulation, genetic feature variation, and specific environ-
mental factor effects. During tumor progression, cellular 
invasion and metastasis are correlated with cell-to-cell 
communication and signaling [78].

Figures  2 and 6 show that the number of activated 
macrophages is increasing. Figures  3 and 7 show that 
the number of macrophages is also rising. Macrophages 
play different roles ranging from their antitumor activ-
ity in the early stages of cancer development to their 
tumor-promoting function in established cancer [79]. 
Infiltration of tumor-associated macrophages is recruited 
to the tumor site and associated with lung tumor stage, 
metastasis focus, and unfavorable prognosis in solid 
tumors [80–82]. Macrophages comprise most immune 

infiltration in tumors and have significantly different 
effects on tumorigenesis depending on their phenotype 
within the tumor microenvironment (TME) [83].

Figures 4 and 8 show a gradually decreasing number of 
normal host cells. The tumor stroma comprises vascula-
ture, extracellular matrix, basement membrane, immune 
cells, and fibroblasts. Despite tumor-suppressing proper-
ties of stroma host cells, they are changing with malig-
nancy and instigating tumor cell invasion, growth, and 
metastasis. The progression and development of cancer 
strongly depend upon interactions among stromal and 
tumor cells [84].

Remark 2: From a numerical standpoint, our approach 
is distinct from other spectral methods in various 
aspects. The goal is to minimize the difference between 

Fig. 1 Densities of tumor cells with m1 = m2 = 4 , m3 = 6 , m4 = 5 for υi = υ = {0.70, 0.80, 0.90, 1} , i = 1, 2, 3, 4

Fig. 2 Active macrophage cells with m1 = m2 = 4 , m3 = 6 , m4 = 5 for υi = υ = {0.70, 0.80, 0.90, 1} , i = 1, 2, 3, 4
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Fig. 3 Macrophage cells with m1 = m2 = 4 , m3 = 6 , m4 = 5 for υi = υ = {0.70, 0.80, 0.90, 1} , i = 1, 2, 3, 4

Fig. 4 Host cells with m1 = m2 = 4 , m3 = 6 , m4 = 5 for υi = υ = {0.70, 0.80, 0.90, 1} , i = 1, 2, 3, 4

Table 3 The proposed method runtime (in seconds) for different choices of mi , i = 1, 2, 3, 4

CPU time CPU time CPU time CPU time

m1 m2 m3 m4 υ = 0.70 υ = 0.80 υ = 0.90 υ = 1

  4   4  6   5 34.12 35.76 37.41 35.29

Table 4 The optimal values of R.F.s with different choices of mi , i = 1, 2, 3, 4

RF RF RF RF

m1 m2 m3 m4 υ = 0.70 υ = 0.80 υ = 0.90 υ = 1

 4   4   6   5 7.2589E− 09 6.9641E− 09 4.9276E− 09 1.5394E− 09
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the numerical and exact solutions. Spectral methods, 
including Legendre, Lagrange, Jacobi, and Chebyshev 
polynomials, require the determination of coefficients to 
express the solution of a differential equation as a set of 
basis functions. The determination of coefficients can be 
achieved using three common techniques: collocation, 
tau, and Galerkin. In this case, the residual process and 
the residual 2-norm are utilized to convert the research 
problem into an optimization problem, yielding unknown 
optimal parameters. As a result, optimality conditions are 
established for a nonlinear system of algebraic equations 
with undetermined coefficients.

On the other hand, arbitrary smooth functions 
can be approximated using singular Sturm–Liouville 

eigenfunctions of Jacobi, Chebyshev, Lagrange, Hermite, 
or Legendre polynomials. However, these basis functions 
are not optimal for approximating non-analytic func-
tions since the rate at which the number of basis func-
tions approaches infinity is slower than the truncation 
error converging to zero in the approximation. Therefore, 
Generalized Laguerre Polynomials (GLPs) may be more 
effective alternatives.

Conclusions
This paper presents an optimization approach based on 
GLPs combined with Lagrange multipliers for analyzing 
FTIIM-LC. The model’s outcomes align with actual data, 
indicating a steady increase in tumor cell, macrophage, 

Fig. 5 Densities of tumor cells with m1 = 3 , m2 = 5 , m3 = m4 = 7 for υ1 = 0.28 , υ2 = 0.43 , υ3 = 0.87 , υ4 = 0.96

Fig. 6 Active macrophage cells with m1 = 3 , m2 = 5 , m3 = m4 = 7 for υ1 = 0.28 , υ2 = 0.43 , υ3 = 0.87 , υ4 = 0.96
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and activated macrophage densities and a gradual 
decrease in normal host cells. The proposed scheme 
was tested, and the results were presented in graphi-
cal and tabular forms. The computations demonstrate 
the method’s accuracy, even in cases with limited basis 
functions. The article concludes that the algorithm’s 
results help clarify FTIIM-LC’s biological behavior 
and justify theoretical statements. Also, the approach’s 
adaptability makes it helpful in exploring various 
domains in medicine and biology. The authors suggest 
that the methodology’s versatility enables researchers 
to address nonlinear partial differential equations, such 

as fractional Klein-Gordon, fractional diffusion wave, 
fractional telegraph, and fractional optimal control 
problems. Future research could focus on applying the 
proposed method to these other models and investigat-
ing their theoretical and practical implications.

Additionally, the proposed method could be applied 
to other types of cancer, such as breast or prostate 
cancer, to investigate the dynamics of tumor-immune 
interactions in these cases. This could involve develop-
ing new models for these types of cancer or adapting 
the existing FTIIM-LC model to suit the specific char-
acteristics of the tumor in question. Also, the proposed 

Fig. 7 Macrophage cells with m1 = 3 , m2 = 5 , m3 = m4 = 7 for υ1 = 0.28 , υ2 = 0.43 , υ3 = 0.87 , υ4 = 0.96

Fig. 8 Host cells with m1 = 3 , m2 = 5 , m3 = m4 = 7 for υ1 = 0.28 , υ2 = 0.43 , υ3 = 0.87 , υ4 = 0.96
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method could be further refined and improved by 
incorporating additional factors that influence tumor-
immune interactions, such as the role of cytokines or 
chemokines in the tumor microenvironment. This 
could lead to more accurate predictions of disease pro-
gression and treatment outcomes.
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