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Abstract 

Random Forests are a powerful and frequently applied Machine Learning tool. The permutation variable importance 
(VIMP) has been proposed to improve the explainability of such a pure prediction model. It describes the expected 
increase in prediction error after randomly permuting a variable and disturbing its association with the outcome. 
However, VIMPs measure a variable’s marginal influence only, that can make its interpretation difficult or even mislead‑
ing. In the present work we address the general need for improving the explainability of prediction models by explor‑
ing VIMPs in the presence of correlated variables. In particular, we propose to use a variable’s residual information 
for investigating if its permutation importance partially or totally originates from correlated predictors. Hypotheses 
tests are derived by a resampling algorithm that can further support results by providing test decisions and p-values. 
In simulation studies we show that the proposed test controls type I error rates. When applying the methods to a Ran‑
dom Forest analysis of post-transplant survival after kidney transplantation, the importance of kidney donor qual‑
ity for predicting post-transplant survival is shown to be high. However, the transplant allocation policy introduces 
correlations with other well-known predictors, which raises the concern that the importance of kidney donor quality 
may simply originate from these predictors. By using the proposed method, this concern is addressed and it is dem‑
onstrated that kidney donor quality plays an important role in post-transplant survival, regardless of correlations 
with other predictors.

Keywords  Random forest, Permutation variable importance, Resampling test, Kidney transplantation

Introduction
Prediction models are of large interest in medical 
research. They play, for example, an important role in the 
US process for allocating donor kidneys to patients due 
to a severe shortage of kidneys available for transplanta-
tion [1]. Next to regression models that are implemented 
within that allocation process [2, 3], a growing interest 
can be observed in machine learning methods for inves-
tigating important predictors for the post-kidney trans-
plant survival [4, 5]. There is a conflicting debate on how 
predicting graft survival in kidney transplantation bene-
fits from using machine learning methods [6–8]. Whereas 
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Ravindhran et al. [6] showed that machine learning often 
predicts outcomes more accurately than regression, Bae 
et  al. [7] argued that the reason could simply be that 
many machine learning models are trained with more 
predictors. When training a regression and machine 
learning model on different kidney transplant outcomes 
each with the same set of predictors, they could no longer 
find any relevant differences in prediction performance. 
As a consequence they argue in favor of regression mod-
els because of their explainability.

Random forests and permutation variable importance
Our research contributes to exploring the explainability 
of the most commonly applied machine learning meth-
ods, the Random Forests. Random Forests were originally 
introduced by Breiman [9] for regression and classifica-
tion and have been extended to Random Survival For-
ests for the analysis of right-censored survival data [10]. 
Important steps of the algorithm are randomly drawing 
bootstrap samples and randomly selecting a subset of 
variables that define the candidates for splitting at each 
node. These random components decorrelate the trees 
and thus improve the prediction performance, which 
is derived from the ensemble of trees. Random For-
ests operate nonparametrically and are pure prediction 
models. In contrast to regression models, that provide 
an estimate of the regression surface, explainability is a 
concern in Random Forests as well as other pure pre-
diction models [11]. Importance measures have been 
proposed to describe the contribution of explanatory 
variables to prediction and thus to connect prediction 
with the assignment of relevance to individual predictors 
[9, 12–14]. Efron [15] defined this connection as attribu-
tion. We here consider the permutation variable impor-
tance (VIMP), that is frequently applied as a tool to make 
Random Forests more explainable [16]. VIMPs measure 
the importance of a variable as the increase in out-of-bag 
prediction error that would result from a decorrelation 
of the outcome and the particular variable by random 
permutation.

Limitations of permutation variable importance 
and proposed solutions
The permutation variable importance measure can be of 
limited use when information is shared by several varia-
bles. Amongst others, Gregorutti et al. [17], Debeer et al. 
[18] and Efron [15] have shown that correlations and 
other dependencies between variables affect the VIMPs 
and can make their interpretation difficult. VIMPs meas-
ure a variable’s marginal influence and can suggest a high 
importance for prediction although it is only low when 
conditioning the corresponding variable’s information on 
other features. They can also suggest a low importance 

when prediction can be derived from different combi-
nations of features as Efron has illustrated in a microar-
ray study of prostate cancer. As a consequence, different 
methods for improving the explainability of Random 
Forests by extending the concept of variable importance 
to conditional variable importance have been proposed. 
Among them Watson and Wright [19] derived a statisti-
cal test for the contribution of a set of features to predic-
tion accuracy, conditional on some other pre-selected 
features [19]. Using the concept of knock-off variables 
[20], this test investigates effects on the model’s loss func-
tion and thus does not refer to any particular statistical 
model or method. Its benefit in generalizability limits at 
the same time its usefulness for our purposes because 
test results do not explicitly refer to VIMPs. For Random 
Forests, Strobl and others proposed the conditional per-
mutation importance, an approach to better reflect the 
true importance of each considered feature [18, 21]. The 
conditional permutation importance describes the con-
ditional influence of a feature by permuting a predictor 
within strata of other predictors that are correlated with 
that predictor. Their method of conditional permutation 
importance is appealing, but also has some limitations: 
First, it relies on particular implementations of Random 
Forests, that do not include the ranger implementation 
that is often used for its computational speed [22]. Fur-
thermore, it requires a pre-selection of correlated predic-
tors for building the strata, that is based on p-values and 
thus might depend on sample size. Finally, the concept of 
conditional permutation importance does not contribute 
a statistical test for the decrease in importance by corre-
lations, that however could facilitate their interpretation.

Objective
In this paper, we further contribute to a better under-
standing of VIMPs. In particular, we address the ques-
tion whether or not the prediction importance of some 
selected feature is partially or totally caused by related 
features. Our methods focus on a single selected feature 
for which its contribution to prediction is of particular 
interest and needs explanation. Investigating the role of 
kidney quality on transplant outcome is an example for 
such a situation and has motivated this research. For 
that, we explore the importance of the variable’s residual 
information and compare it to its marginal importance. 
Additionally we provide a statistical test for this compari-
son. The algorithm does not rely on a particular Random 
Forest implementation. In our accompanying R package 
we use the ranger implementation for its computational 
speed. We illustrate the derived methods by exploring the 
importance of kidney quality to post-transplant survival 
in the presence of many correlated predictors. The analy-
sis is based on about 60 000 patient data registered in the 
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transplant information database of the United Network 
for Organ Sharing (UNOS).

Motivating example
This work has been motivated by a Random Forest analy-
sis of post-transplant survival following kidney transplan-
tation. Organ transplantation can be an effective therapy 
for patients suffering from end-stage kidney failure, but 
there is a severe shortage of donor organs in many coun-
tries. Still, many kidneys being available for transplanta-
tion are discarded with a median of 16 discarded graft 
offers per patient [23]. The major reason for discarding is 
donor quality [23]. To investigate if discarding organs of 
lower quality is justified by a particular poor prediction, 
the importance of donor quality for disease-free survival 
has been investigated in a Random Survival Forest analy-
sis. In fact, the Kidney Donor Profile Index (KDPI) that 
captures donor quality shows the second highest impor-
tance for prediction (see Application section). However, 
whether organ quality really drives the prediction is 
unclear, because organ quality is correlated with impor-
tant other predictors such as age or diabetes disease of 
the recipient: Transplants of higher quality are offered to 
patients with a good prognosis, which follows from the 
American kidney allocation rules. Data of the UNOS [24] 
with about 60 000 kidney transplant observations show 
that correlation. Figure  1 shows for example the corre-
lation between recipient’s age and donor organ quality. 
Motivated by the obvious confounding effects we look for 
a decision criterion, whether the estimated importance 
of KDPI for prediction is totally or partially driven by 

correlated variables such as recipient’s age, that are obvi-
ously strong predictors for post-transplant survival.

Methods
Notations
We consider a situation where the goal is to predict an 
outcome Y by the realization of a set of random vari-
ables X = (X1, . . . ,Xp) . The random variables Xi poten-
tially have dependencies to Y as well as to other Xj,j  =i . 
We define X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xp) as the vec-
tor of all random variables except Xi . For considering 
VIMPs we need the concept of a permuted variable. We 
follow the notation of Gregorutti [17] and define π(Xi) 
as a random permutation of Xi , that is defined as an i.i.d. 
replication of Xi but independent to X and Y. We use the 
notation πi(X) for the random vector X with permuted 
i-th coordinate, thus Xi is replaced by π(Xi) . We define 
the general statistical model as Y = f (X)+ ǫ . Prediction 
can then be defined as an estimate of the functional f(x) 
given X = x.

General concept
Consider a loss function L : R2 → R and the expected 
loss E[L(Y , f (X))] when explaining Y by some model 
f. Following the definition of Breiman [9] the VIMP for 
some variable of interest Xi is defined as the difference 
between the expected loss after and before permuting the 
values of Xi

In Random Forests VIMPs can be estimated from 
the prediction error in out-of-bag data after and before 
permuting the values of Xi . The idea behind the VIMP 
is, that for a variable that is not associated with the 
response, permutation will have no influence on the pre-
diction error and thus the estimated VIMP will be close 
to zero. For a variable associated with Y, permutation 
will destroy this association and thus the prediction error 
after permuting will be higher than before permuting and 
thus the estimated VIMP will be positive.

Commonly applied loss functions are mean squared 
error in regression forests ( L(x, y) = (x − y)2 ) and 0-1-
loss in classification forests ( L(x, y) = I(x �= y) ). In sur-
vival forests y is unknown for censored observations and 
C-index [10] or squared error loss after weighting obser-
vations [25] are used to estimate the prediction error.

In the following we propose a general concept for 
investigating if and how the VIMP of a particular variable 
is driven by correlations with other predictors. The vari-
able of interest is renamed as Z and w.l.o.g. Z = Xp . The 
general idea is to investigate 

(1)VIMP(Xi) = E[L(Y , f (πi(X)))]− E[L(Y , f (X))]

Fig. 1  Boxplot of recipient’s age grouped by KDPI values 
for the patients registered by the United Network of Organ Sharing 
(UNOS). A detailed description of the population is given in 
Application section
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a)	 if the importance decreases when Z is decorrelated 
from X1, . . . ,Xp−1

b)	 if the decorrelated part of Z still contributes to the 
prediction of Y

For that we first derive the residuals of variable Z when 
predicted by X−p and then explore the permutation 
importance of these residuals: We select a class of models 
G that will be used for explaining Z by X1, . . . ,Xp−1 and 
define g : Rp−1 → R as the best fitting model within G:

Assuming additive errors we then can describe Z as

In other words, we separate the part of Z that can be 
explained by X1, . . . ,Xp−1 ( g(X−p) ) from the part that is 
independent from X1, . . . ,Xp−1 ( ǫZ ). Note, that the loss 
function used here to model Z can differ from the loss 
function used in the Random Forest analysis of Y. The 
choice of the loss function and class G will be based on 
the distribution of (X1, . . . ,Xp−1,Z).

In a second step, we derive the permutation variable 
importance VIMP(ǫZ) of ǫZ from a Random Forest with 
the independent variables X1, . . . ,Xp−1, ǫZ . To keep 
in mind that VIMP(ǫZ) originates from an adjusted 
model having X1, . . . ,Xp−1, ǫZ as predictors, we define 
VIMPA(Z) as the VIMP of Z derived from the original 
model and VIMPB(ǫZ) as the VIMP of ǫZ derived from 
the adjusted model.

Exploring VIMPB(ǫZ) compared to VIMPA(Z) will 
then show whether or not the importance of Z par-
tially or totally originates from correlated predictors: 
A decrease in VIMPB(ǫZ) compared to VIMPA(Z) 
( VIMPB(ǫZ) < VIMPA(Z) ) means that the importance 
of Z for predicting Y is at least partially caused by infor-
mation in Z that can by explained by other predictors 
X1, . . . ,Xp−1 . In other words, the importance of vari-
able Z borrows importance that originates from other 
variables. Furthermore, a VIMPB(ǫZ) larger than 0 
( VIMPB(ǫZ) > 0 ) means that information in Z that can 
not by explained by the other predictors X1, . . . ,Xp−1 
still contributes to predicting Y.

For additive models and squared error loss the rela-
tions between VIMPA(Z) and VIMPB(ǫZ) are analyti-
cally tractable as shown in Appendix A. However, for 
the more relevant non-additive models that motivate 
a Random Forest analysis this relation gets lost. Still, 
exploring differences between VIMPA(Z) and VIMPB 
can provide useful insight into variable importance 
which will be illustrated in the application.

(2)g = argmin
g̃∈G

E L(Z, g̃(X−p))

(3)Z = g(X−p)+ ǫZ

As highlighted by one of the reviewers, avoiding over-
fitting when modeling g is of high importance as oth-
erwise residuals will be artificially small and could 
suggest an artificially small VIMPB(ǫZ) . Therefore, we 
recommend to choose a model class G for fitting g that 
addresses overfitting. Simple regression models can 
be useful in low-dimensional problems whereas ridge 
regression will be preferable in higher dimensions, where 
overfitting is reduced by adding a L2-penalty term to the 
loss function. Also, ensemble methods such as Random 
Forests could be useful, that reduce the model’s variance 
by means of bagging. We will discuss a further approach 
in Discussion section, that we did not yet investigated so 
far but will be the scope of future research.

In contrast to overfitting, in a misspecified model 
Z can not properly be predicted by X−p , that could 
result in only small differences between VIMPA(Z) and 
VIMPB(ǫZ) and could underestimate the impact of cor-
related predictors on the importance of Z.

Statistical test
We now derive statistical tests for the two hypotheses of 
particular interest. These are:

We define the alternative hypotheses one-sided because 
residual information will in general not be more impor-
tant than full information (that can be shown for the spe-
cial case of additive models, see Appendix A, Eq.  (12)) 
and because of VIMPB(ǫZ) ≥ 0 . The null hypothesis H (1)

0  
describes the case that the part of Z that can be explained 
by X−p does not improve its variable importance. Thus, 
VIMPA(Z) describes the actual importance of this varia-
ble. In contrast, the alternative hypothesis H (1)

1  describes 
the case that importance does also originate from shared 
information with other predictors. The null hypothesis 
H

(2)
0  describes the case that the part of Z that can’t be 

explained by X−p is of no importance for the prediction.
For deriving the test decision we assume learning 

samples (xi, yi), i = 1, . . . , n , that are realizations of 
independently distributed random variables with same 
distribution as (X, Y). Using these data, we first estimate 
the distribution of VIMPB(ǫZ) by resampling: We inde-
pendently draw m random samples from our learning 
sample, each containing 63.2% of all n observations. For 
each sample we derive ǫZ as the vector of residuals of the 
best fit of Z by X−p within model class G. Using the m 
random samples with their residual vectors ǫZ we com-
pute m Random Forests for predicting Y by X−p and ǫZ . 
With the empirical results for VIMPB(ǫZ) we estimate the 
corresponding density dVIMPB(ǫZ ).

H
(1)
0

: VIMPA(Z) = VIMPB(ǫZ ) vs. H
(1)
1

: VIMPA(Z) > VIMPB(ǫZ )

H
(2)
0

: VIMPB(ǫZ ) = 0 vs. H
(2)
1

: VIMPB(ǫZ ) > 0
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We now compare the observed VIMPA(Z) to this den-
sity. The null hypothesis H (1)

0  that VIMPA(Z) equals 
VIMPB(ǫZ) is rejected if VIMPA(Z) exceeds the empirical 
(1− α)-quantile of dVIMPB(ǫZ ).

In a second step we compare this density to the value of 
0. The null hypothesis H (2)

0  is rejected if the α-quantile of 
dVIMPB(ǫZ ) exceeds 0.

Algorithm 1 Resampling test

In step 1a) of the Algorithm 1 we use subsamples with-
out replacement instead of the commonly used boot-
strap samples with replacement. Bootstrapping results 
in duplicates during the sample, which causes problems: 
Bootstrap samples are already drawn within the Ran-
dom Forest algorithm defining both the forests trainings 
data as well as the out of bag data for evaluating the cor-
responding prediction error. Duplicates in the learning 
sample can therefore cause a single observation to be 
part of both the training and the out-of-bag sample. This 
is contradictory to the concept of out-of-sample data.

For subsampling, we apply the 0.632-rule, which means 
drawing 63.2% of all samples without replacement, to let 
the probability for each observation to be drawn being 
the same as the probability to be included in a bootstrap 
sample of size n [26].

For dVIMPB(ǫZ ) we use the empirical density with a shift 
to correct for finite sample sizes. The empirical distribu-
tion of VIMPB(ǫZ) is derived from subsamples of size 
0.632n and we have to consider that finite sample VIMPs 
only converge with sample size to their asymptotic lim-
its. With VIMP(n)(Xi) describing the expected VIMP of 
a variable Xi derived from a sample of size n it can be 
shown that

The proof that relies on some mild assumptions is 
following ideas of Ishwaran and Lu [27] and is given in 
Appendix B.

lim
n→∞

VIMP(n)(Xi) = VIMP(Xi).

For this reason within Algorithm 1, E
[

dVIMPB(ǫZ )

]

 might 
systematically differ from full sample E[VIMPB(ǫZ)] 
and thus also from E[VIMPA(Z)] even under H0 . 
To correct for this difference, we shift the empiri-
cal density dVIMPB(ǫZ ) in step 3 of the algorithm, so that 
E
[

dVIMPB(ǫZ )

]

= VIMPB(ǫZ) and then use this estimate 
in step 4 of Algorithm 1 to test our hypotheses.

The proposed statistical tests investigate the contri-
bution of a particular variable of interest to prediction. 
If that variable shows a high importance measured by 
VIMPA(Z) , an investigation of its conditional importance 
can provide further insight. If that variable shows a small 
importance VIMPA(Z) only, its further investigation will 
be of minor interest.

The interplay between VIMPB(ǫZ) and the permutation 
importance of other variables within the same model can 
provide interesting insights. If the importance of some 
variable Xi increases when Z is replaced by its residuals 
ǫZ , this indicates that a part of variable’s Z importance 
might originate from variable Xi . We will observe this 
pattern within the data example (Application section).

More difficult is the interpretation in  situations 
where not only one selected variable is of main inter-
est. Applying the proposed method to several vari-
ables will for example not answer the question which 
variable is a better predictor because the results will 
depend on the presence and degree of correlations 
with further variables. For the same reason, if for two 
variables H (1)

0  can be rejected while H (2)
0  is accepted, 

the reason could either be that both variables share 
the same information or that the two variables carry 
very different information each of which is shared with 
third variables.

Implementation
We implemented our methods as a R package called 
RVIMP1 which is an abbreviation for ResidualVIMP as 
our method relies on the density dVIMPB(ǫZ ) of VIMPs cal-
culated for residuals.

For Random Forest analysis within our algorithm we 
apply the package ranger [22] and benefit from its fast 
implementation.

The most computational intensive part of our test is 
step 1 in Algorithm  1. Especially for survival data this 
step is time-consuming. So the replication parameter m 
is crucial for computational time. In our simulations we 
used m = 100 , which showed satisfactory results.

Besides the test procedure the package provides a vis-
ualization of the test result and a comparison between 
VIMPA and VIMPB for each variable Xi.

1  https://​github.​com/​romilt/​RVIMP

https://github.com/romilt/RVIMP
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Simulation study
In the following we will evaluate the proposed test proce-
dures by the use of simulations.

Objectives: The aim of this simulation study is to fig-
ure out, whether our test is able to control the α-error 
rates and how the power depends on sample size and 
the degree of correlations between the variables and 
to the outcome. Empirical type I error and power are 
investigated both for regression and classification forest 
analyses.

Simulation Design A:
For investigating empirical type I error and power for 

a regression forest analysis data are simulated that follow 
the linear model

with ǫ1 ∼ N (0, σ 2
1 ) . Realizations of X = (X1,X2, . . . ,X5) are 

simulated as i.i.d. random samples from a multivariate 
normal distribution with E(Xi) = 0 and Var(Xi) = 1 for 

i = 1, . . . , 5 . Correlations are specified as C(X1,X2) = c > 0 
and C(X1,Xi) = C(X2,Xi) = C(Xi,Xj) = 0 for i, j > 2 and 
i  = j.

The variable of interest Z is defined conditional on X1 
and X2 by

with ǫ2 ∼ N (0, σ 2
2 ) . The parameters b1,...,b6 , σ 2

1  , and σ 2
2  

are set to values that induce a correlation C(Y, Z) between 
Y and Z of 0.3, 0.6 or 0.9 and a semipartial correlation 
spC(Y ,Z|X1, . . . ,X5) = C(Y , ǫ2) that is reduced by 1/3 or 
2/3, respectively. For that we chose the regression param-
eters as b1 = b2 = 0.5 , b3 = b6 = 1 , b4 = b5 = 0 . Details 
on how to identify σ 2

1  and σ 2
2  that result in a particu-

lar correlation and semipartial correlation are given in 
Appendix C, Table A1 together with the identified values. 
The correlation c between X1 and X2 was defined to be 
equal to C(Y, Z).

Furthermore, a design with no semipartial correlation 
at all between Y and Z was considered. For this design the 
model parameters of eq. (4) are set to b1 = b2 = b3 = 1 
and b4 = b5 = b6 = 0 . For each scenario 1 000 datasets 
with each 500, 1 000 , or 5 000 observations are gener-
ated, respectively. For each of these datasets we apply 
the proposed resampling tests to the variable of interest 
Z at a local significance level of α = 0.05 . Thereby, we 
apply a linear model for g. In the considered simulation 
designs H (1)

0  is true if C(Y ,Z) = spC(Y ,Z|X1, . . . ,X5) 
and H (2)

0  is true if spC(Y ,Z|X1, . . . ,X5) = 0 . For each null 

(4)Y = b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6Z + ǫ1

Z = 0.5X1 + 0.5X2 + ǫ2

hypothesis and simulation design we derive the empirical 
rejection rate over the 1 000 replications. In simulation 
designs with H (k)

0  being true this provides an estimate 
of the α-error rate. In simulation designs with H (k)

0  being 
false this provides an estimate of the power.

To further investigate α-error rates for H (1)
0

 and H (2)
0  we 

apply our test procedure also to variable X4 . For this vari-
able H (1)

0  and H (2)
0  both are true in each simulation design 

as C(Y ,X4) = spC(Y ,X4) = 0 . The results for this setup 
are shown in the Appendix D.a in Table A2.

We perform 1 000 replications only as our test proce-
dure is computational intensive. Thus, random variation 
in the estimates derived from the simulations must be 
considered when interpreting results.

Simulation Design B:
To investigate the proposed test procedures also for 

classification forests, we slightly adjusted the simulation 
design: The dependent variable Y was defined as binary 
with a logistic response function applied to the linear 
predictor:

with b1 = b2 = b3 = 1 and b4 = b5 = b6 = 0 . We use the 
same distribution of (X1, . . .X5,Z) with c = 0.3 , the same 
distribution of ǫ1 and ǫ2 with σ 2

1 = 4.04 and σ 2
2 = 0.26 

and the same choice for g as applied in Simulation Design 
A. We did not vary σ1 , σ2 , and c because these parameters 
do not define partial and semipartial correlations any-
more in a classification setting. Instead, we applied our 
proposed test on all 6 variables to investigate different 
setups with respect to both hypotheses.

Simulation Design C:
Additionally we investigated another simulation design 

for regression forests with more variables. Details about 
Simulation Design C are given in Appendix D.b.

Simulation results
The results when applying the test procedures to variable 
Z in Simulation Design A are shown in Table 1.

When the null hypothesis H (2)
0  is true (that is the case 

when spC(Y ,Z) = 0 ) it is rejected with a probability 
between 0.019 and 0.027. These rates suggest that the 
test keeps the 5% significance level for H (2)

0  . Results 
in Appendix D, Table A2 further confirm this result by 
showing rejection probabilities of H (2)

0  between 0.02 and 
0.057 when applied to variable X4 for different simula-
tion designs and sample sizes. We do not consider this 
as a violation of the anticipated 5%-error-level because of 
the quite large standard error of an empirical rate in only 
1000 replications (SE=0.007).

Y ∼ B(1, p) with p = (1+ exp(−(b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6Z + ǫ1)))
−1
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The power for rejecting H (1)
0  ranges between 0.538 and 

1 and depends, as common for statistical tests, on the one 
hand on the number of observations n and on the other 
hand on the difference between C(Y, Z) and spC(Y, Z). As 
expected, the power increases with increasing n as well as 
with increasing difference between C(Y, Z) and spC(Y, Z).

The power for rejecting H (2)
0  ranges between 0.237 

and 1. As expected it increases with n and with increas-
ing spC(Y, Z).

The results from Simulation Design B, where we inves-
tigated a classification task, are shown in Table  2. The 
results for the classification task confirm our results of 
simulation design A: The test holds the type I error rates 
close to the significance level of α = 5% with rates for 
H

(1)
0  between 0.000 and 0.002 and for H (2)

0  between 0.045 
and 0.074. Again, we consider the slightly increased error 
rates for H (2)

0  as random variations. The power for reject-
ing H (1)

0  ranges between 0.154 and 1.000 and the power 
for rejecting H (2)

0  ranges between 0.776 and 1.000 in 
Simulation Design B. For both hypotheses it increases as 
expected with increasing n.

The results for Simulation Design C are shown in 
Appendix D.b in Table A3.

Application: Exploring the importance of kidney 
donor organ quality for post‑transplant survival
We applied the proposed methods to the American kid-
ney transplantation data as provided by the United Net-
work for Organ Sharing (UNOS) [24]. The methods are 
used to investigate the importance of donor organ qual-
ity (KDPI score) for prediction in the presence of cor-
relations with recipients’ characteristics (see Motivating 
example section). A Random Survival Forest is fitted to 
post-transplant survival as outcome variable, defined as 
the time from transplantation to recipient’s death, graft 
failure or graft rejection whatever happens first. Data of 
about 60 000 adult patients is used, where every patient 
has received a single deceased donor kidney while not 
waiting for further donor organs and not having received 
any organ transplantation before. Only patients with a 
transplantation date between 01/01/2015 and 02/01/2020 
are considered because the allocation process has 
changed in 2015.

To investigate the importance of KDPI for prediction 
and how its importance is driven by correlated predic-
tors, KDPI is included as the variable that combines 
10 donor factors together with 28 characteristics that 

Table 1  Simulation results (1000 simulated datasets, each with n patients) showing empirical rejection probabilities of the proposed 
resampling tests for a regression Random Forest. Correlations within the simulation model are given as the correlation between Y and 
Z (C(Y, Z)) and semipartial correlation between Y and Z ( spC(Y , Z) := spC(Y , Z|X1, . . . , X5))

Simulation design Rejection probability of H(1)
0

   Rejection probability of H(2)
0

  

 C(Y, Z) spC(Y, Z) n=500 n=1000 n=5000 n=500 n=1000 n=5000

0.3 0 0.946 0.995 1.000 0.019 0.027 0.020

0.3 0.1 0.985 0.999 1.000 0.237 0.396 0.937

0.3 0.2 0.538 0.801 0.999 0.775 0.968 1.000

0.6 0.2 1.000 1.000 1.000 0.946 1.000 1.000

0.6 0.4 0.994 1.000 1.000 1.000 1.000 1.000

0.9 0.3 1.000 1.000 1.000 1.000 1.000 1.000

0.9 0.6 0.999 1.000 1.000 1.000 1.000 1.000

Table 2  Simulation results (1000 simulated datasets, each with n patients) showing empirical rejection probabilities of the proposed 
resampling tests for a classification Random Forest. For all variables the information is given whether or not H(1)

0  and H(2)
0  is true. Thereby, 

H
(1)
0  is considered to be true for variables that are independent to all variables Xi with non-zero regression coefficient ( X3, X4, X5 ) and H(2)

0  
is considered to be true when the variable’s regression coefficient is zero ( X4 , X5 , Z)

Variable Rejection probability of H(1)
0

   Rejection probability of H(2)
0

  

 Z= H
(1)
0

=   H
(2)
0

=   n=500 n=1000 n=5000 n=500 n=1000 n=5000

X1 false false 0.300 0.571 1.000 0.797 0.969 1.000

X2 false false 0.303 0.561 0.999 0.776 0.963 1.000

X3 true false 0.000 0.000 0.000 0.866 0.985 1.000

X4 true true 0.000 0.000 0.002 0.061 0.058 0.066

X5 true true 0.000 0.002 0.001 0.063 0.050 0.074

Z false true 0.154 0.226 0.572 0.045 0.065 0.063
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describe the recipient and the transplantation proce-
dure. The selection of the recipient and transplantation 
characteristics was motivated by the review of Kabore 
et al. [28]. Next to frequently used variables according 
to [28] we further included additional variables with a 
low frequency of missing values. A full list of all vari-
ables is shown in the Appendix E.

Figure  2 shows the 10 highest VIMPs under model 
description modelA of all 29 variables that were inves-
tigated in the Random Survival Forest analysis. Each 
VIMP is presented together with the corresponding 
VIMP of modelB , where Z=KDPI is replaced by its 
residuals ǫZ . Thereby, ǫZ is derived from a Random For-
est to allow for non-linear and non-additive dependen-
cies between KDPI and the other variables. The VIMPs 
of all variables are shown in the Appendix F in Fig. A2.

KDPI shows the second largest importance for pre-
diction (VIMP=0.0087). Only the expected post trans-
plantation survival (EPTS) shows a larger importance. 
EPTS is an aggregated score containing for example the 
recipients age, thus its high importance is not surprising. 
The importance of KDPI substantially decreases when 

considering only its residuals in the Random Survival 
Forest analysis whereas the importance of EPTS as well 
as variables contributing to EPTS such as recipient’s age 
and diabetes increases. This suggests that the importance 
of KDPI is partially caused by these correlations, that 
arise from the allocation procedure as described in Moti-
vating example section. However, KDPI remains the sec-
ond most important predictor besides EPTS.

The statistical test results are illustrated in Fig.  3. The 
observed marginal VIMP of 0.0087 exceeds the 95%-quan-
tile of the density dVIMPB(ǫZ ) , which provides a statistically 
significant test result for H (1)

0  ( p < 0.001 ). This confirms, 
that the importance of KDPI is at least partially caused by 
sharing information with correlated predictors. However, 
H

(2)
0  can also be rejected ( p < 0.001) indicating still a con-

ditional importance of KDPI. In summary, the test results 
fit well to the results given in Fig. 2.

Discussion
In simulated and real data we have demonstrated the use-
fulness of investigating a variable’s residual information 
together with statistical tests for the hypotheses that the 

Fig. 2  The figure shows the VIMPs of the 10 variables with highest importance in the Random Survival Forest analysis of UNOS data under model 
description modelA as well as the corresponding VIMPS under model description modelB . Thereby, in modelB KDPI was replaced by its residuals 
whereas all other variables remained unchanged. Thus, VIMPB(KDPI) refers to residual information and all other VIMPs to original variables’ 
information within the two models
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variable’s importance partially or totally originates from 
correlated predictors. It can give further insight into a 
variable’s importance for prediction and thus contrib-
utes to the general need for improving the explainability 
of machine learning results. Given that Random Forests 
are only one of many options for prediction modeling in 
organ transplantation [6, 29, 30] and a lack of consensus 
about the meaning of variable importance, there will not 
be a single answer to the question of explainability and 
our work contributes one piece of information to that 
question.

Issues and recommendations for applications
Our methods refer to applications where a single vari-
able might be of particular interest with respect to its 
importance for prediction. This must be differentiated 
from another active field of research on how to use vari-
able importance for variable selection [31–35] possibly 
based on p-values [36]. Our research has been motivated 
by an investigation of the role of kidney quality for post-
transplant survival and this example can give some guid-
ance on how to apply our method and interpret its results. 
The variable of interest was kidney quality (measured as 
KDPI) and we could demonstrate that its high importance 
for prediction partially originates from patient charac-
teristics that are correlated to KDPI due to the allocation 
policy. However, our results also confirm that irrespective 
of these correlations kidney quality still is a major predic-
tor for post-transplant survival even if not as high as its 
VIMP originally would suggest. The latter results might 
support findings of Bae et al. [37], who question the need 
for rejecting many kidneys of lower quality in the pres-
ence of a severe shortage of donor organs.

Our methods do not rely on a particular implementa-
tion of Random Forests, as the algorithm itself is not 

adapted but is applied to residual information that are 
derived in a preceding step (see Algorithm 1). This is an 
advantage towards for example the investigation of Con-
ditional Permutation Importance (CPI) [18, 21] that rely 
on particular R implementations and are at least cur-
rently not compatible with ranger or Python implementa-
tions. However, CPIs have the advantage that conditional 
importance is derived by permuting a variable within 
strata of correlated variables and therefore do not rely on 
the specification of some model g and its accuracy.

To make the methods easily accessible and facilitate 
their application, we provide an implementation within 
the statistical software R. It uses the ranger implemen-
tation that is helpful in particular when it comes to the 
computationally challenging permutation tests.

Limitations and extensions
One limitation of the proposed algorithm is that it cannot 
clearly identify which variable or group of variables con-
tribute to the importance of the variable of interest. To 
some extent this question can be explored by investigat-
ing how the importance of other variables changes when 
considering only the residual information of the variable 
of interest, but this will neither clearly identify nor quan-
tify correlations. Furthermore, it is important to note that 
neither causal pathways nor the direction of causal effects 
can be identified with the proposed methods.

Our simulation studies showed that the proposed sta-
tistical tests control the type I error. However, it must 
be considered that the reported empirical error rates 
have high standard errors as the number of simulations 
was limited by computational restrictions. For the same 
reason we could provide simulation results only for low-
dimensional settings but not for situations that usually 
motivate machine learning: large sample sizes with many 

Fig. 3  The figure shows the test result for variable KDPI. The observed VIMPA for KDPI (solid vertical line) exceeds the 95%−quantile 
of the estimated density of VIMPB(ǫZ ) . The dotted vertical line shows the observed VIMPB(ǫZ ) for KDPI
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predictors. This is a common drawback of simulation 
studies for Random Forests [18, 19, 21].

As Random Forests operate nonparametrically, we 
could not rely on a particular statistical distribution 
when deriving the test procedure. Instead, we used resa-
mpling techniques. Here, double-bootstrapping had to 
be circumvented by drawing subsamples of the learn-
ing data without replacement as has also been used by 
Ishwaran and Lu when investigating the variability of 
VIMPs [27].

As discussed before, a drawback of the proposed 
method is that it relies on a reasonable choice of model 
g that does not suffer from overfitting. We believe that 
our algorithm could further be improved towards that 
direction by training g under cross-validation and deriv-
ing the residuals ǫZ from the leave-out folds only. A fur-
ther alternative could be the use of knock-off variables 
[20] instead of residual information, that also relies on 
much less assumptions. Both will be investigated in 
future work.

Conclusion
Random Forest analyses are often accomplished by a 
description of the variable’s importance for prediction, 
that usually is defined as permutation importance. How-
ever, interpretability of VIMPs can be disturbed when 
predictors are correlated as has been highlighted by dif-
ferent researchers [15, 17, 18]. Our methods can improve 
its interpretation for single variables for which the con-
tribution to prediction is of particular interest and needs 
explanation. Investigating the role of kidney quality on 
transplant outcome is only one example for such a situa-
tion and has motivated this research.

Conditional importance has also been investigated 
by Strobl and others [18, 21]. Compared to them, our 
approach does not rely on particular software implemen-
tations and is enhanced by statistical test results. This 
however comes at the price of being less flexible with 
respect to the pattern of correlations between predictors.

Abbreviations
EPTS	� Expected Post Transplantation Survival
KDPI	� Kidney Donor Profile Index
UNOS	� United Network for Organ Sharing
VIMP	� Permutation Variable Importance

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​023-​02023-2.

Additional file 1. 

Acknowledgements
We thank the Organ Procurement and Transplantation Network (OPTN) for 
kindly providing the data on kidney transplantation. We thank Marvin Wright 
for kindly indicating ways to improve computational speed when applying 
the ranger package to event time data. We thank the reviewers for their con‑
structive feedback and suggestions which helped to improve the manuscript.

Authors’ contributions
A.J. and G.G. conceptualized this work and outlined the methods for this 
study. C.W. elaborated the methods, performed the data analysis and wrote a 
first draft of the manuscript. R.M. implemented the methods and conducted 
the simulation study. All authors contributed to the interpretation of results 
and reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This research 
project was funded by the Federal Ministry of Education and Research (project 
13FH019KX1) and the German federal state of Hesse.

Availability of data and materials
The data reported here have been supplied by the United Network for Organ 
Sharing as the contractor for the Organ Procurement and Transplantation Net‑
work (data request number DATA0005808). The interpretation and reporting of 
these data are the responsibility of the authors and in no way should be seen 
as an official policy of or interpretation by the OPTN or the U.S. Government. 
Based on OPTN data as of June 20, 2020. Data can be requested at: https://​
optn.​trans​plant.​hrsa.​gov/​data/​view-​data-​repor​ts/​reque​st-​data/ [24].

Declarations

Ethics approval and consent to participate
The data analysis presented in this manuscript uses retrospective and 
anonymized data provided by UNOS, where informed consent has been given 
by each subject and/or their legal guardian(s). Therefore, for this research the 
definition of human subjects research does not apply and all methods were 
carried out in accordance with relevant guidelines and regulations. Ethical 
approval was waived by the Ethics Committee of the State Medical Associa‑
tion of Hesse.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 1 March 2023   Accepted: 23 August 2023

References
	1.	 Hart A, et al. OPTN/SRTR 2016 Annual Data Report: Kidney. Am J Trans‑

plant. 2018;Suppl 1(Suppl 1):18–113.
	2.	 Rao P, et al. A comprehensive risk quantification score for deceased donor 

kidneys: the kidney donor risk index. Transplantation. 2009;88:231–6.
	3.	 Israni A, et al. New national allocation policy for deceased donor kidneys 

in the United States and possible effect on patient outcomes. J Am Soc 
Nephrol. 2014;25(8):1842–8.

	4.	 Guijo-Rubio D, Gutiérrez P, Hervás-Martínez C. Machine learning 
methods in organ transplantation. Curr Opin Organ Transplant. 
2020;25(4):399–405.

	5.	 Briceño J. Artificial intelligence and organ transplantation: challenges and 
expectations. Curr Opin Organ Transplant. 2020;25(4):393–8.

	6.	 Ravindhran B, et al. Machine learning models in predicting graft survival 
in kidney transplantation: meta-analysis. BJS Open. 2023;7(2):zrad011.

	7.	 Bae S, Massie AB, Caffo BS, Jackson KR, Segev DL. Machine learning to 
predict transplant outcomes: helpful or hype? A national cohort study. 
Transpl Int. 2020;33(11):1472–80.

https://doi.org/10.1186/s12874-023-02023-2
https://doi.org/10.1186/s12874-023-02023-2
https://optn.transplant.hrsa.gov/data/view-data-reports/request-data/
https://optn.transplant.hrsa.gov/data/view-data-reports/request-data/


Page 11 of 11Wies et al. BMC Medical Research Methodology          (2023) 23:209 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	8.	 Truchot A, et al. Machine learning does not outperform traditional 
statistical modelling for kidney allograft failure prediction. Kidney Int. 
2023;103(5):936–48.

	9.	 Breiman L. Random Forests. Mach Learn. 2001;45:5–32.
	10.	 Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival 

forests. Ann Appl Stat. 2008;2(3):841–60.
	11.	 Tjoa E, Guan C. A Survey on Explainable Artificial Intelligence 

(XAI): Toward Medical XAI. IEEE Trans Neural Netw Learn Syst. 
2020;32:4793–813.

	12.	 Ishwaran H. Variable importance in binary regression trees and forests. 
Electron J Stat. 2007;1:519–37.

	13.	 Louppe G, Wehenkel L, Sutera A, Geurts P. Understanding variable 
importances in forests of randomized trees. Adv Neural Inf Process Syst. 
2013;26:431–9.

	14.	 Epifanio I. Intervention in prediction measure: a new approach to 
assessing variable importance for random forests. BMC Bioinformatics. 
2017;18(1):230.

	15.	 Efron B. Prediction, Estimation, and Attribution. J Am Stat Assoc. 
2020;115(530):636–55.

	16.	 Paluszynska A, Biecek P, Jiang Y. randomForestExplainer: explaining and visu‑
alizing Random Forests in terms of variable importance. R package version 
0.10.1. 2020. https://​CRAN.R-​proje​ct.​org/​packa​ge=​rando​mFore​stExp​lainer.

	17.	 Gregorutti B, Michel B, Saint-Pierre P. Correlation and variable importance 
in random forests. Stat Comput. 2017;27(3):659–78.

	18.	 Debeer D, Strobl C. Conditional permutation importance revisited. BMC 
Bioinformatics. 2020;21(1):307.

	19.	 Watson D, Wright M. Testing conditional independence in supervised 
learning algorithms. Mach Learn. 2021;110(8):2107–29.

	20.	 Candès E, Fan Y, Janson L, Lv J. Panning for gold: ‘model-X’ knockoffs for 
high dimensional controlled variable selection. J R Stat Soc Ser B (Stat 
Methodol). 2018;80(3):551–77.

	21.	 Strobl C, Boulesteix A, Kneib T, Augustin T, Zeileis A. Conditional variable 
importance for random forests. BMC Bioinformatics. 2008;9(1):307.

	22.	 Wright M, Ziegler A. ranger: a fast implementation of Random Forests for 
high dimensional data in C++ and R. J Stat Softw. 2017;77(1):1–17.

	23.	 Husain S, et al. Association between declined offers of deceased donor 
kidney allograft and outcomes in kidney transplant candidates. JAMA 
Netw Open. 2019;2(8):e1910312.

	24.	 Organ Procurement and Transplantation Network: Data Request. https://​
optn.​trans​plant.​hrsa.​gov/​data/​reque​st-​data/. Accessed 1 Jan 2023.

	25.	 Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. Survival 
ensembles. Biostatistics. 2006;7(3):355–73.

	26.	 Hastie T, Tibshirani R, Friedman J. The elements of statistical learning data 
(2nd). US: Springer; 2009.

	27.	 Ishwaran H, Lu M. Standard errors and confidence intervals for variable 
importance in random forest regression, classification, and survival. Stat 
Med. 2019;38(4):558–82.

	28.	 Kabore R, Haller MC, Harambat J, Heinze G, Leffondre K. Risk prediction 
models for graft failure in kidney transplantation: a systematic review. 
Nephrol Dial Transplant. 2017;23:68–76.

	29.	 Gholamzadeh M, Abtahi H, Safdari R. Machine learning-based techniques 
to improve lung transplantation outcomes and complications: a system‑
atic review. BMC Med Res Methodol. 2022;22:331.

	30.	 Gotlieb N, et al. The promise of machine learning applications in solid 
organ transplantation. NPJ Digit Med. 2022;5:89.

	31.	 Ellies-Oury M, et al. Statistical model choice including variable selection 
based on variable importance: A relevant way for biomarkers selection to 
predict meat tenderness. Sci Rep. 2019;9:10014.

	32.	 Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection 
methods for random forests and omics data sets. Brief Bioinforma. 
2019;20(2):492–503.

	33.	 Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS. High-dimensional 
variable selection for survival data. J Am Stat Assoc. 2010;105(489):205–17.

	34.	 Speiser JL, Miller ME, Tooze J, Ip E. A comparison of random forest variable 
selection methods for classification prediction modeling. Expert Syst 
Appl. 2019;134:93–101.

	35.	 Bommert A, Welchowski T, Schmid M, Rahnenführer J. Benchmark of 
filter methods for feature selection in high-dimensional gene expression 
survival data. Brief Bioinforma. 2021;23(1):1–13.

	36.	 Hapfelmeier A, Hornung R, Haller B. Efficient permutation testing of vari‑
able importance measures by the example of random forests. Comput 
Stat Data Anal. 2023;181:107689.

	37.	 Bae S, et al. Who can tolerate a marginal kidney? Predicting survival after 
deceased donor kidney transplant by donor-recipient combination. Am J 
Transplant. 2019;19(2):425–33.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://CRAN.R-project.org/package=randomForestExplainer
https://optn.transplant.hrsa.gov/data/request-data/
https://optn.transplant.hrsa.gov/data/request-data/

	Exploring the variable importance in random forests under correlations: a general concept applied to donor organ quality in post-transplant survival
	Abstract 
	Introduction
	Random forests and permutation variable importance
	Limitations of permutation variable importance and proposed solutions
	Objective

	Motivating example
	Methods
	Notations
	General concept
	Statistical test
	Implementation

	Simulation study
	Simulation results

	Application: Exploring the importance of kidney donor organ quality for post-transplant survival
	Discussion
	Issues and recommendations for applications
	Limitations and extensions
	Conclusion

	Anchor 20
	Acknowledgements
	References


