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Abstract 

Background In medical, social, and behavioral research we often encounter datasets with a multilevel structure 
and multiple correlated dependent variables. These data are frequently collected from a study population that dis-
tinguishes several subpopulations with different (i.e., heterogeneous) effects of an intervention. Despite the frequent 
occurrence of such data, methods to analyze them are less common and researchers often resort to either ignoring 
the multilevel and/or heterogeneous structure, analyzing only a single dependent variable, or a combination of these. 
These analysis strategies are suboptimal: Ignoring multilevel structures inflates Type I error rates, while neglecting 
the multivariate or heterogeneous structure masks detailed insights.

Methods To analyze such data comprehensively, the current paper presents a novel Bayesian multilevel multivari-
ate logistic regression model. The clustered structure of multilevel data is taken into account, such that posterior 
inferences can be made with accurate error rates. Further, the model shares information between different subpopu-
lations in the estimation of average and conditional average multivariate treatment effects. To facilitate interpreta-
tion, multivariate logistic regression parameters are transformed to posterior success probabilities and differences 
between them.

Results A numerical evaluation compared our framework to less comprehensive alternatives and highlighted 
the need to model the multilevel structure: Treatment comparisons based on the multilevel model had targeted Type 
I error rates, while single-level alternatives resulted in inflated Type I errors. Further, the multilevel model was more 
powerful than a single-level model when the number of clusters was higher. A re-analysis of the Third International 
Stroke Trial data illustrated how incorporating a multilevel structure, assessing treatment heterogeneity, and combin-
ing dependent variables contributed to an in-depth understanding of treatment effects. Further, we demonstrated 
how Bayes factors can aid in the selection of a suitable model.

Conclusion The method is useful in prediction of treatment effects and decision-making within subpopulations 
from multiple clusters, while taking advantage of the size of the entire study sample and while properly incorporating 
the uncertainty in a principled probabilistic manner using the full posterior distribution.
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Treatment heterogeneity, Hierarchical model
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Background
In medical, social, and behavioral research we often 
encounter datasets with a multilevel structure and mul-
tiple correlated dependent variables. An example of such 
a study is the Cognition and Radiation Study B [1, 2] that 
investigated whether local brain radiation (stereotactic 
radiosurgery) preserves cognitive functioning and qual-
ity of life better than whole brain radiation in cancer 
patients with multiple brain metastases. Patients were 
recruited from multiple hospitals and the treatment was 
executed in two treatment centers, giving the data a mul-
tilevel structure. Many other examples of such datasets 
can be found in a paper by Biswas and colleagues [3], 
who presented a nonexhaustive overview of hundreds of 
Bayesian trial protocols executed in a specialized center 
for cancer treatment. The authors noted that a) almost 
half of the reviewed studies were multicenter trials; and 
b) many studies were designed to assess effectiveness 
and side effects simultaneously, thus including at least 
two dependent variables.

Often, these multilevel, multivariate data are col-
lected from a study population that consists of sev-
eral subpopulations with potentially distinctive (i.e., 
heterogeneous) effects of an intervention. Examples 
of such studies are the two International Stroke Trials 
(International Stroke Trial (IST) and Third Interna-
tional Stroke Trial (IST-3); [4–7]), which investigated 
the effects of antiplatelet and antithrombotic treat-
ments on various (neuro)psychological, functional 
and psychosocial dependent variables respectively. 
Both trials covered multiple treatment centers from 
multiple countries and included a variety of patient 
characteristics that could potentially predict treat-
ment effects. We discuss the IST-3 in more depth as it 
serves as a running example throughout the paper. The 
IST-3 investigated the effects of an intravenous throm-
bolysis treatment on shortterm (e.g., recurrent stroke, 
functional deficits) and long-term (e.g., dependency, 
depression, pain) indicators of health status among 
patients who suffered from an acute ischaemic stroke. 
The IST-3 data revealed considerable variation in char-
acteristics of patients and disease - such as subtype or 
severity of stroke, blood pressure, and age - that can be 
predictive of treatment effects and call for exploration 
of treatment heterogeneity to gain insight into subpop-
ulation-specific effects [8].

All of the abovementioned trials made treatment com-
parisons in the context of Randomized Controlled Trials 
(RCTs): Randomized experiments in which an experi-
mental or a control treatment is randomly assigned and 
administered to a random sample of patients. RCTs often 
aim to evaluate whether the experimental treatment is 
superior or (non-)inferior to the control condition and 

ultimately guide clinicians in evidence-based assignment 
of treatments and interventions [9]. Whereas RCTs are 
considered a golden standard for treatment comparison, 
their implementation is challenged by a growing demand 
for personalized treatment [10–13]. That is, clinical 
practice relies more and more on the idea that different 
patients react differently to treatments. Treatment pre-
scription is increasingly guided by a trade-off between 
patient-specific risks and benefits, making the research 
context for these decisions multivariate and heterogene-
ous [14]. While demanding more complex methodology, 
personalization of treatments can impede the collec-
tion of sufficient data for rigorous treatment evaluation. 
Development of more targeted treatments limits eligibil-
ity for participation in trials, thereby making the recruit-
ment of subjects more difficult. As a solution, trials more 
often span multiple treatment centers or countries. This 
adds another layer of complexity to the research context: 
clustered data that require multilevel analysis. To meet 
the methodological demands of these increasingly com-
plex research problems, RCTs ideally provide a) a broad 
understanding of the treatment’s effects on multiple 
dependent variables; and b) insights potential depend-
encies of treatment effects on characteristics of patients; 
and c) an accurate handling of clustered data structures. 
In practice, such comprehensive methods are less com-
mon, and often researchers resort to either ignoring the 
multilevel and/or heterogeneous structure, analyzing 
only a single dependent variable, or a combination of 
these. Below, we discuss how the abovementioned three 
aspects can be implemented in Randomized Controlled 
Trial methodology to support research in personalized 
treatment.

First, many RCTs evaluate more than one dependent 
variable, which are analysed separately in multiple uni-
variate analyses [15]. As an example, the investigators 
of the IST-3 were primarily interested in living indepen-
dently six months after stroke and secondarily in several 
other dependent variables, such as recurrent events, 
adverse reactions to the treatment, and mental health 
indicators. Analyzing dependent variables independently 
provides useful insights in treatment effects on each of 
these dependent variables individually, but discards avail-
able information about the relation between them. When 
the effects on individual dependent variables are com-
plemented with information about their co-occurrences 
via multivariate analysis, a more detailed picture of treat-
ment effects emerges. Multivariate analysis models rela-
tionships between dependent variables and can a) be 
helpful to detect outcome patterns that would be ignored 
when dependent variables are considered in isolation; 
and b) improve the accuracy of sample size computations 
and error rates in statistical decision-making [15–18].
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Second, incorporating patient and/or disease charac-
teristics in treatment comparison can result in a consid-
erable improvement of the practical value of RCTs. The 
IST-3 used a sample of diverse patients with different 
personal and disease characteristics. This variation con-
tains valuable information regarding differences in treat-
ment effects. For example, knowing whether patients 
with different weights or blood pressures have different 
chances of a recurrent stroke or independent living has 
the potential to inform treatment recommendations. 
When treatments have distinct effects on patients with 
different characteristics, treatment effects are consid-
ered heterogeneous among (sub)populations of patients. 
In this case, average treatment effects (ATEs) give a 
global idea of treatment results among the trial popula-
tion, but have limited value in targeting treatments to 
specific patients with their individual (disease) charac-
teristics [19–21]. Conditional average treatment effects 
(CATEs) among specific patient groups provide insight in 
the variation of treatment effects among the population 
and help to distinguish patients who ultimately benefit 
from the treatment from those who do not or may even 
experience adverse treatment effects. Unfortunately, sub-
group-specific treatment comparisons are insufficiently 
implemented as part of standard trial methodology yet 
[22]. If subgroups are targeted at all, their effects are 
often analyzed independently via stratified (or subgroup) 
analysis. Such a subgroup analysis disregards informa-
tion from related subgroups and suffers from subopti-
mal power due to subsetting. Modelling heterogeneity 
is a more powerful alternative that directly uses the rela-
tion between subgroups and allows subgroups to borrow 
strength from each other [23–25].

Third, multilevel data are characterized by observa-
tional units that are grouped in clusters. For example, 
the IST-3 spans multiple treatment centers and mul-
tiple countries. Reasons to use multilevel analysis can 
be both substantive and statistical. From a substantive 
perspective, multilevel analysis can be useful to explain 
differences between clusters, while using the informa-
tion from the entire sample [26, 27]. Different trials may 
- for example - have overlapping but non-identical tar-
get populations that can be distinguished by covariate 
information and may contribute to the understanding 
of treatment effects. Statistically, differences between 
clusters should be taken into account for the sake of 
validity, even if these differences are not of direct inter-
est [28–30]. Clustered data require specific analysis 
methods that are flexible enough to treat observations 
from different clusters as more similar to each other 
than to observations from other clusters. If observa-
tions within clusters are indeed more similar, the clus-
tered structure is reflected in variance partitioning, 

where the within-cluster and the between-cluster vari-
ances are modelled separately. This induces a depend-
ence between the observations within clusters when 
marginalizing over the cluster-specific effects. When 
clustered observations are treated as independent 
observations on the other hand, variance originating 
from differences between clusters is then erroneously 
attributed to differences between a manifold of obser-
vational units and the unique amount of information is 
overestimated. As a result, standard errors are overes-
timated, Type I error rates are inflated, and validity of 
statistical inference is compromised. The larger the var-
iance between clusters relative to the variance between 
observational units within clusters, the larger the effect 
on standard errors. Properly modelling the multilevel 
structure of clustered data and allowing the parameters 
to vary over clusters is therefore crucial for accurate 
statistical decision-making [28, 29].

The current paper presents a Bayesian multilevel 
multivariate logistic regression (BMMLR) framework 
to capture the three abovementioned methodologi-
cal aspects in a comprehensive analysis and decision 
procedure for treatment comparison. We build upon 
an existing Bayesian multivariate logistic regression 
(BMLR) framework for single-level data to analyze 
multivariate binary data in the presence of treatment 
heterogeneity and present a multilevel extension to 
deal with multilevel data. The multilevel aspect adds 
another layer of complexity, making the analysis a 
non-trivial endeavour. We discuss the existing BMLR 
framework first. This framework consists of three 
coherent elements [25]: 

1 a multivariate modelling procedure to find unknown 
regression parameters;

2 a transformation procedure to convert regression 
parameters to the probability scale to make analysis 
results more interpretable;

3 a compatible decision procedure to draw conclusions 
regarding treatment superiority or inferiority with 
targeted Type I error rates.

The first element, the modelling procedure, assumes 
multivariate Bernoulli distributed dependent variables 
and assigns them a multinomial parametrization. A 
multinomial parametrization is helpful for two reasons, 
since it a) allows statisticians to draw and build upon 
existing, established multinomial techniques with trac-
table (conditional) posterior distributions; and b) has 
the flexibility to model correlations between dependent 
variables on the subpopulation level, which contributes 
to the accuracy of inference under treatment heteroge-
neity [18, 25, 31]. Several other multivariate modelling 
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procedures, such as the multivariate probit model [32] 
or multivariate logistic regression models [33, 34], have 
a more restrictive correlation structure and are therefore 
theoretically less suitable to detect treatment heteroge-
neity with adequate error control. Moreover, the multi-
variate logistic regression model by Malik and Abraham 
[33] does not provide insight in the treatment effects on 
individual dependent variables. Copula structures have 
been proposed as promising multivariate alternatives as 
well, but these models can be difficult to apply to binary 
dependent variables [35–37]. The second element, the 
transformation procedure, builds upon the close relation 
between the multinomial and multivariate parametri-
zations to express results on the scale of (multivariate) 
success probabilities and differences between them, as a 
more intuitive alternative to multinomial (log-)odds. The 
transformed parameters provide understandable insights 
in the treatment’s performance on the trial population 
(i.e., ATEs) as well as subpopulations of interest (i.e., 
CATEs). The third element, the decision procedure, con-
veniently uses the Bayesian nature of the modelling pro-
cedure, allowing for inference on the posterior samples of 
transformed parameters. Decisions can be made in sev-
eral ways to flexibly combine and weigh multiple depend-
ent variables into a single decision for a population of 
interest, while taking correlations between dependent 
variables into account.

The main contribution of the current paper is the 
extension of the single-level BMLR framework to the 
multilevel context. The novel Bayesian multilevel mul-
tivariate logistic regression (BMMLR) framework pro-
vides BMLR with a multilevel model component and 
adjusts the transformation and decision procedure 
accordingly, to make the framework suitable for the 
multilevel context, resulting in accurate type I errors. 
The remainder of the paper is structured as follows. 
Section “BMMLR: Bayesian multilevel multivariate 
logistic regression” introduces the multilevel multivar-
iate logistic regression model to obtain a sample from 
the posterior distribution of regression coefficients. 
Section “Transformation of posterior regression coef-
ficients to the probability scale” outlines how to trans-
form the obtained regression coefficients to more 
interpretable treatment effect parameters. Section 
“Decision-making based on multivariate treatment 
effects” discusses the decision procedure to use the 
treatment effect parameters for treatment comparison. 
Section “Numerical evaluation” demonstrates the per-
formance of the model numerically via simulation and 
in Section “Illustration with IST-3 data” the methodol-
ogy is illustrated with data from the IST-3. The paper 
concludes with a discussion in Section “Discussion”.

BMMLR: Bayesian multilevel multivariate logistic 
regression
Consider the general case with K ∈ {1, . . . ,K } binary 
dependent variables ykji for subject i ∈ {1, . . . , nj} in clus-
ter j ∈ {1, . . . , J } . Outcome ykji is Bernoulli distributed 
with success probability θkji .  Multivariate  vector of K 
dependent variables, yji = y1ji, . . . , y

K
ji  is multivariate 

Bernoulli distributed [31]. The multivariate Bernoulli 
distribution relies on a hybrid parameterization where 
a K-variate success probability in θ ji =

(

θ1ji , . . . , θ
K
ji

)

 is 
expressed in terms of Q = 2K  multinomial joint 
response probabilities in φji =

(

φ1
ji, . . . ,φ

Q
ji

)

 [31]. The 
qth joint response probability in φji corresponds to mul-
tinomial response combination hq , which has length K 
and is given in the qth row of the matrix of joint 
response combinations denoted by H :

Hence, joint response probability φq
ji = p

(

yji = hq
)

 . 
Note that the joint response probability φj and the suc-
cess probability θ j are identical in the univariate situa-
tion (i.e., K = 1).

Likelihood of the data
The multinomial parametrization of multivariately 
Bernoulli distributed data allows to model the relation 
between dependent variables yji and one or multiple 
predictor variables via multinomial logistic regression. 
Joint response probability φq

ji is then regressed on a 
vector of P covariates, xji =

(

xji0, . . . , xji(P−1)

)

 . Covari-
ate xji0 = 1 is a constant to estimate the intercept and 
covariate xjip for p ∈ {1, . . . ,P − 1} can, for example, 
be a treatment indicator, a patient characteristic, or an 
interaction between these.

The relation between outcome vector yji and covari-
ate vector xji is mapped with a multinomial logistic 
function that expresses the probability of yji being in 
response category q, conditional on xji:

Here, ψq
ji  is a linear predictor:

(1)H =











1 1 . . . 1 1
1 1 . . . 1 0

. . .

0 0 . . . 0 1
0 0 . . . 0 0











(2)

φ
q
ji = p

(

yji = hq|xji

)

=
exp

(

ψ
q
ji

)

Q−1
∑

r=1

exp
(

ψ r
ji

)

+ 1

,
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In Eq. 3, regression coefficients for response category q, 
γ
q
j =

(

γ
q
0j , . . . , γ

q
(P−1)j

)

 are unknown parameters of inter-
est. Regression coefficients of response categories 
1, . . . ,Q − 1 are estimated, while regression coefficients 
of response category Q are fixed at zero (i.e., γQ

j = 0 ) to 
ensure identifiability of the model. The entire set of 
regression coefficients in cluster j is denoted with γ j.

A key aspect of multilevel models is that the regression 
coefficients γ q

j  are allowed to vary over clusters accord-
ing to a common normal distribution on the second 
level. The common distribution for the random effects 
on the second level induces a dependency structure of 
the observations within clusters. The observations of 
diffferent individuals in the same clusters are assumed to 
be conditionally independent conditional on the cluster-
specific random effects. The random effects distribution 
on the second level can be written as:

Equation 4 consists of two elements that reflect the dis-
tributional parameters: 

1 The parameter γ q
p0 is the common effect in the popu-

lation and does not vary over clusters.
2 The random effect uqpj quantifies the cluster specific 

deviation from the common effect γ q
p0.

Equation 4 can be adjusted to model cluster-specific pre-
dictors or cross-level interactions between cluster-level 
predictors and individual level-predictors. Further, Eq. 4 
can be extended to model mixed effects, which combine 
regression coefficients that vary over clusters, which are 
called random effects, and regression coefficients that are 
identical for all clusters, which are called fixed effects. 
More information on the specification of more complex 
linear predictors can be found in general resources on 
multilevel models, such as Hox et al. [28] or Gelman and 
Hill [27]. In general, it should be noted that each addi-
tional random effect increases the number of parameters, 
affecting computational burden and estimation precision.

Posterior distribution of regression coefficients
The primary goal of BMMLR is estimating the joint pos-
terior distribution of unknown regression coefficients γ q

j  , 
their means γ q , and their covariance matrices �q for cat-
egory q ∈ 1, . . . , (Q − 1) . The posterior probability distri-
bution of these parameters for category q is given by:

(3)ψ
q
ji = x

′

jiγ
q
j

(4)
γ
q
pj = γ

q
p0 + u

q
pj

u
q
j =

(

u
q
0j , . . . ,u

q
(P−1)j

)

∼ N
(

0,�q
)

where γ q reflects the vector of average effects for cat-
egory q, �q is the covariance matrix of the effects across 
clusters for category q, and γ q

j  reflects the vector of clus-
ter specific effects of cluster j for category q. The poste-
rior probability distribution in Eq. 5 is proportional to the 
product of three types of probability distributions: 

1 The likelihood of the data quantifies the probability 
of the dependent variables conditional on cluster-
specific regression coefficients, p(yj|γ

q
j ) , which is the 

multinomial logistic function given by Eq. 2;
2 The probability distribution of the cluster-specific 

regression coefficients γ
q
j  conditional on their 

means γ q and covariance matrix �q for category q, 
p(γ

q
j |γ

q ,�q);
3 The prior probability distributions of regression coef-

ficient’s means γ q , p(γ q) , and covariance matrix �q , 
p(�q) for category q, before observing the data.

As the multinomial logistic function (Eq.  2) does not 
have a (conditionally) conjugate prior distribution, the 
functional form of the posterior distribution is unknown 
and the regression coefficients cannot be sampled 
directly from the posterior distribution. In the Supple-
mental material, we present a Gibbs sampling algorithm 
based on a Pólya-Gamma auxiliary variable expansion 
of the likelihood proposed by Polson et  al. [38]. The 
expanded likelihood has a Gaussian form and can be 
combined with normal prior distributions on regression 
coefficients γ q and an inverse-Wishart distribution on 
covariance matrix �q . The parameters are known to have 
conditionally conjugate posterior distributions and allow 
for direct sampling from their multivariate normal and 
inverse-Wishart distributions respectively, resulting in 
MCMC chains of the joint posterior distribution in Eq. 5. 
We also include a few comments on prior specification 
for the proposed Gibbs sampling procedure in the Sup-
plemental material.

As an alternative to the proposed Gibbs sampling proce-
dure, sampling from the posterior distribution(s) of multi-
nomial logistic regression coefficients can theoretically be 
done with other standard MCMC-methods for non-con-
jugate prior-likelihood combinations, such as Metropolis-
Hastings (e.g., [39], Ch.3 and 5; [40]; [41]) or Hamiltonian 
Monte Carlo (e.g., [42–44]) sampling algorithms.

Transformation of posterior regression coefficients 
to the probability scale
The output of the BMMLR model from Section 
“BMMLR: Bayesian multilevel multivariate logistic 
regression” is an MCMC sample of posterior multinomial 

(5)p
(

γ
q
j , γ

q
,�q |y

)

∝ p
(

yj |γ
q
j

)

p
(

γ
q
j |γ

q
,�q

)

p
(

γ q
)

p
(

�q
)

,
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regression coefficients. These regression coefficients 
reflect the importance of a predictor on a specific joint 
response combination and represent - in exponentiated 
form - the odds compared to reference category Q. While 
these regression coefficients can be insightful in a truly 
multinomial research problem, they have no straight-
forward interpretation in multivariate treatment com-
parison where marginal effects on individual dependent 
variables play a central role [15].

Transformation of regression coefficients to the mul-
tivariate probability scale forms a convenient solution to 
gain more intuitive insights in both joint and marginal 
treatment effects. These transformations rely on the close 
relationship between multinomial and multivariate para-
metrizations and can be flexibly obtained for the trial 
population (i.e., average treatment effects) or for sub-
populations (i.e., conditional average treatment effects). 
They are directly suitable for statistical decision-making 
regarding treatment comparison.

We use the framework for transformation to the prob-
ability scale and decision-making with a posterior sam-
ple of multivariate treatment differences introduced 
in [18] and [25]. Technical details of these procedures 
are presented in the Supplemental material. We use the 
remainder of this section to summarize and illustrate the 
procedure with a toy example from the IST-3-data, where 
we assume interest in the effect of Alteplase in the exper-
imental condition ( TA ) compared to no treatment in the 
control group ( TC).

Assume that we re-analyze a part of the IST-3 data 
using the BMMLR framework and take one of origi-
nally presented analyses as a starting point [6]. In the 
selected analysis, the researchers compared the effects 
of Alteplase vs. control on their primary outcome, long-
term independent living after six months (Indep6), 
among subgroups of patients based on the severity of 
their initial stroke. In our example, we perform a multi-
variate analysis of the treatment effects on the primary 
outcome (Indep6) and one of the secondary (short-
term) dependent variables: being stroke-free in the first 
seven days after the initial stroke (Strk7). We incorpo-
rate severity of the initial stroke as a predictor variable 
to study heterogeneity, using the grouping criteria from 
the original trial for the estimation of conditional aver-
age treatment effects. We aim to investigate the average 
treatment effect among the trial population as specified 
by the original eligibility criteria for inclusion. We are 
also interested in a potential interaction between the 
treatment and stroke severity, and investigate the condi-
tional average treatment effects among patients with var-
ious severities of stroke. To take the clustered structure 
of the data into account, we specified a BMMLR mixed-
effects model with random slopes for the intercept and 

the main treatment effect, resulting in the following lin-
ear predictor:

In Eq.  6, xji = (1,Tji,NIHSSji,NIHSSjiTji) with  
treatment indicator Tji and NIHSSji being the  
stroke severity score of subject i in hospital j.  
The Q = 4 resulting joint response categories are 
({Strk7 = 1, Indep6 = 1}, {Strk7 = 1, Indep6 = 0}, {Strk7 = 0, Indep6 = 1},
{

Strk7 = 0, Indep6 = 0
}

) , which we refer to as ({11}, {10}, {01}, {00}).

Transformation to cluster‑specific (differences between) 
probabilities
The main quantity of interest, the (cluster-specific) mar-
ginal multivariate treatment difference, is defined as the 
difference between cluster-specific multivariate success 
probabilities of the two treatments:

where subscripts Aj and Cj indicate cluster-specific 
parameters of the (experimental) Alteplase and control 
treatments respectively. The elements on the right-hand 
sides of Eq.  7, success probabilities θkTj , are sums of the 
multinomial joint response probabilities of all response 
categories with a success on outcome k:

The multinomial joint response probabilities φTj that 
form the elements of success probabilities θTj follow from 
plugging in posterior regression coefficients γ q

j  in the 
linear predictor (Eq. 6) and the multinomial logistic link 
function (Eq. 2) for prespecified covariates xj and for the 
relevant response category q.

The information in covariate vector xj , which directly 
affects ψq

Tj , determines the treatment as well as the sub-
population of interest. Subpopulations can be defined 
as a value, such as a stroke severity score of one stand-
ard deviation below or above the mean, that can be 
plugged in directly into Eqs. 2 and 6. When interested in 

(6)

ψ
q
ji =γ

q
0j + γ

q
1jTji + β

q
2NIHSSji + β

q
3NIHSSjiTji

γ
q
0j =γ

q
00 + u0j

γ
q
1j =γ

q
10 + u1j .

(7)
δStrk7j =θStrk7Aj − θStrk7Cj

δ
Indep6
j =θ

Indep6
Aj − θ

Indep6
Cj

(8)
θStrk7Tj =p(yj = {11}|T )+ p(yj = {10}|T ) = φ1

Tj + φ2
Tj

θ
Indep6
Tj =p(yj = {11}|T )+ p(yj = {01}|T ) = φ1

Tj + φ3
Tj

(9)φ
q
Tj ==

exp
(

ψ
q
Tj

)

Q−1
∑

r=1

exp
(

ψ r
Tj

)

+ 1

.
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a subpopulation that is defined by an interval, such as the 
groups of stroke severity in the IST-3, the joint response 
probability is marginalized over the specified interval or 
averaged over a sample of observations in this interval. In 
the latter case, joint response probability φq

Tj is computed 
for each observed subject i ∈ 1, . . . , nj via Eq. 2. The joint 
response probability for each treatment T is then com-
puted by averaging over all subjects i in treatment T and 
cluster j.

Since the model in Section “BMMLR: Bayesian multi-
level multivariate logistic regression” resulted in a sam-
ple of L posterior draws of each regression coefficient, 
multivariate treatment differences are computed for each 
draw (l) separately. The resulting posterior samples can 
be summarized with standard descriptive methods.

Pooling treatment effects over clusters
As a last step, cluster-specific estimates are pooled into 
estimates of average or conditional treatment effects 
among (sub)populations of interest via the following 
procedure:

This pooling strategy weighs cluster-specific estimates 
by cluster size, thereby balancing data with unequal clus-
ter sizes.

Decision‑making based on multivariate treatment 
effects
The obtained sample of posterior treatment differences 
can be used for statistical decision-making regarding 
treatment superiority and inferiority. The multivariate 
context has multiple options to define superiority and 
inferiority, leaving much flexibility to combine and pri-
oritize dependent variables in a suitable way. We shortly 
discuss four different decision rules to give some idea 
of possibilities, without intending to be exhaustive or 
complete. The presented rules have different theoretical 
underpinnings and distinct statistical properties, such 
as acceptance regions, a priori estimated sample sizes, 
cutoff values, and error rates. The acceptance regions 
for superiority decisions of the four presented rules are 
graphically presented in Fig. 1. More details to guide an 
informed choice for one of these decision rules in prac-
tice can be found in Kavelaars et al. [18].

Three of these rules originate from guidelines of the 
Food and Drug Administration (FDA) [15]. The FDA 
defines superiority as a treatment difference larger than 

(10)δ =

J
∑

j=1

njδj

J
∑

j=1

nj

zero on the primary outcome (which we refer to as 
“Single rule”), on all dependent variables (“All rule”) or 
on any of the dependent variables (“Any rule”). The Sin-
gle rule reduces the statistical analysis to a univariate 
problem, using only the treatment difference of inde-
pendent living after 6 months as a primary outcome 
(Single rule). The All and Any rules make no distinction 
in the importance of dependent variables and assume 
that the short-term and long-term outcome are either 
both required for superiority or inferiority (All rule), or 
are interchangeable (Any rule).

In practice, these rules can oversimplify decision-
making. Secondary outcome variables often contribute 
to treatment evaluation as well, but are given a co-pri-
mary status in the All and Any rules or are not formally 
included in the statistical decision procedure when the 
Single rule is used [17, 45]. To handle outcomes that 
differ in relative importance, linear combinations of 
dependent variables with pre-assigned (importance) 
weights have been proposed as a flexible alterna-
tive [14, 16, 18, 46, 47]. We refer to a linear combina-
tion as a Compensatory rule, referring to its inherent 
mechanism that allows (weighted) positive and nega-
tive effects to compensate each other. The Compensa-
tory rule allows the IST-3 data to consider the effects 
on the long-term much more important than the short-
term effect without completely excluding the risk of a 
recurrent stroke from the final decision. In such a situ-
ation, we can assign the primary outcome (Indep6) - for 
example - four times more weight than the secondary 
outcome (Strk7) and consider Alteplase superior to 
no treatment if a lower chance of dependency is out-
weighed by a small increase in the risk of a recurrent 
stroke.

Evidence in favor of the decision rule can be quanti-
fied by the proportion posterior draws of the pooled 
treatment difference δ that lie in the decision-rule spe-
cific acceptance region, denoted by SR . A conclusion is 
reached via comparison to pcut , which is a cutoff value 
to balance the required amount of evidence with antici-
pated Type I error rates [48]:

In the multivariate logistic regression model, the 
probability in Eq. 11 has no analytical solution. There-
fore, decisions are made via the posterior MCMC-sam-
ple of L draws. Superiority is concluded when:

Similarly, inferiority is concluded when:

(11)p(δ ∈ SR) > pcut .

(12)
1

L

L
∑

(l)=1

I
(

δ(l) ∈ SR

)

> pcut .
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In Section “Illustration with IST-3 data”, we demon-
strate these decision with data from the IST-3 as part of 
an illustration of the BMMLR framework.

Numerical evaluation
The current section presents an evaluation of the perfor-
mance of the proposed BMMLR framework. The goal of 
the evaluation was twofold and we aimed to demonstrate: 

1 how well the obtained regression coefficients and 
treatment effects correspond to their true values to 
examine bias;

2 how often the BMMLR framework results in an (in)
correct superiority or inferiority conclusion to learn 
about decision error rates;

(13)
1

L

L
∑

(l)=1

I
(

δ(l) ∈ SR

)

< 1− pcut .
Setup

Fitted models The performance of the multilevel 
model was evaluated in a treatment comparison based 
on a two-level model with two dependent variables 
and one covariate at the subject level. We compared 
the method to two different (single-level) reference 
approaches, resulting in the following three modelling 
procedures:

1 The BMMLR model presented in Section “BMMLR: 
Bayesian multilevel multivariate logistic regres-
sion”. We generated response data from a mixed 
effects model to include random effects while keep-
ing the number of estimated parameters limited. We 
included an interaction between the treatment and 
the covariate as well, resulting in the following linear 
predictor: 

Fig. 1 Superiority regions of four decision rules applied to the IST-3. The Compensatory rule has weights w = (0.20, 0.80)
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  In line with previous notation, 
xji = (1,Tji,wji,wjiTji) in Eq.  14. Further, vec-
tor γ

q
j = (γ

q
0j , γ

q
1j) reflects random effects with 

multivariate normally distributed errors (i.e., 
(u

q
0j ,u

q
1j) ∼ N (0,�q) ) for the intercept and main 

effect of the treatment. Regression coefficients 
βq = (β

q
2 ,β

q
3 ) reflect fixed effects for the covariate 

and covariate-by-treatment interaction.
2 Single-level Bayesian multivariate logistic regression 

model (BMLR; [25]), as a first reference approach. 
For this model, we use a restricted version of Eq. 14 
with fixed regression coefficients only: 

  MCMC chains were sampled with a simplified ver-
sion of the Gibbs sampling procedure in the Sup-
plemental material, that iterates over β and � . The 
model shares information in the estimation of con-
ditional treatment effects with sufficient power, but 
does not take the multilevel structure of the data into 
account.

3 Single-level unconditional Bayesian multivariate 
Bernoulli analysis (BMB; [18]), as a second reference 
approach. Bayesian multivariate Bernoulli analysis 
relies on a conjugate multinomial likelihood and Dir-
ichlet prior. MCMC draws are sampled directly from 
the posterior Dirichlet distribution with parameters 
∑J

j=1

∑nj
i=1 I(yji = hq)+ α0q , where we assigned 

prior hyperparameters α0 = (0.01, 0.01, 0.01, 0.01) . 
The approach can estimate homogeneous treatment 
effects accurately and fast, but cannot deal with mul-
tilevel data. Moreover, conditional treatment effects 
originate from subsampling, which is less power-
ful than regression due to the isolation from other 
information.

Effect size We specified a heterogeneous treatment 
effect, with pooled average treatment differences of 
zero ( δ = (0, 0) , δ(w) = 0 ) and pooled conditional treat-
ment differences larger than zero ( δ = (0.25, 0.15) , 
δ(w) = 0.20 ). This scenario aimed to demonstrate the 
Type I error rate among the trial population. It reflects 
a least favorable treatment difference for the Any and 
Compensatory rules and should therefore result in the 
targeted Type I error rate for these rules to be consid-
ered accurate. The conditional treatment effect provided 

(14)

ψ
q
ji =γ

q
0j + γ

q
1jTji + β

q
2wji + β

q
3wjiTji

γ
q
0j =γ

q
00 + u0j

γ
q
1j =γ

q
10 + u1j .

(15)ψ
q
ji = β

q
0 + β

q
1Tji + β

q
2wji + β

q
3wjiTji,

insight in the power to conclude superiority among 
the subpopulation under consideration. Outcome 
variables were negatively correlated ( ρATE = −.157 ; 
ρCATE = −.20 ). The regression parameters used to gener-
ate these effects are presented in Table 1.

For the BMMLR model, the covariance matrix of ran-
dom effects, �q , was specified as:

for all q ∈ 1, . . . ,Q − 1.

Sample size We varied the sample sizes at the clus-
ter and subject level. Since there are no clear guidelines 
regarding sample size computations in multilevel multi-
variate logistic regression, we explored performance of 
the model for different numbers of clusters and different 
sample sizes within clusters. Specifically, we used num-
ber of clusters J ∈ {10, 100} and observations per cluster 
nj ∈ {10, 100} for each treatment, resulting in four differ-
ent sample size combinations.

Procedure

Data generation For each sample size, we sampled 1000 
datasets under the mixed effects model in Eq.  14 with 
the true regression parameters in Table  1. We assigned 
nj participants to each treatment T and generated covari-
ate x from a standard normal distribution. We sampled 
response vector yji from a multinomial distribution with 
probabilities φji.

Gibbs sampling Regression coefficients for the BMMLR 
and BMLR models were estimated via the Gibbs sam-
pling procedure in the Supplemental material. We ran 
two MCMC-chains via the Gibbs sampler introduced 
in Section “BMMLR: Bayesian multilevel multivari-
ate logistic regression” with L = 50, 000 iterations plus 
10,  000 burn-in iterations. This large number of itera-
tions aims to minimize the influence of the potentially 
high autocorrelations between parameters in multilevel 

(16)
[

0.1 0
0 0.1

]

Table 1 True regression parameters used for data generation

q1 q2 q3 q4

p0 (Intercept) 0.000 0.433 0.433 0.000

p1 ( Tji) 0.000 0.000 0.000 0.000

p2 ( wji) 1.027 0.601 0.427 0.000

p3 ( wjiTji) -2.055 -1.201 -0.854 0.000
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models on the stationary distribution of the parameters. 
Autocorrelations were highest among random effect 
parameters γ j and ranged between 0.107 and 0.781 at 
lag 1 and reduced to a range of −0.012− 0.276 at lag 10. 
Further, following the guidelines in Gelman et  al. [49], 
we ensured that the multivariate potential scale reduc-
tion factor was below 1.10.

Prior specification For the multilevel model (BMMLR), 
we specified diffuse priors, which were multivariate nor-
mally distributed for regression coefficients:

The specified variance matrices of regression coeffi-
cients were motivated by a paper of Gelman et  al. [50], 
who recommend to choose a variance parameter that 
results in realistic support for the probability parameter 
after non-linear transformation in logistic regression. We 
specified an inverse-Wishart prior distribution for the 
covariance matrix:

The regression parameters βq in the single-level regres-
sion model (BMLR) were the same as in the multivariate 
approach (i.e., independent normal priors with means of 
0 and variances of 10).

Transformation and decision‑making We applied the 
procedure presented in the Supplemental material to use 
the obtained MCMC-chains of posterior regression coef-
ficients for superiority decision-making. We thinned the 
chains in the transformation procedure with a factor 10 
to reduce the computational burden.

We considered two different effects: 

1 an average treatment effect for the trial population;
2 a conditional treatment effect for a subpopulation 

scoring one standard deviation below the mean or 
lower;

The treatment effects required marginalization over 
the interval that defined the (sub)population, which we 
accomplished by averaging over joint response prob-
abilities computed for the empirical sample of data. 
Cluster-specific treatment effects were weighed by their 

(17)

(

β
q
2 ,β

q
3

)

∼ N

([

0
0

]

,

[

10 0
0 10

])

(

γ
q
00, γ

q
10

)

∼ N

([

0
0

]

,

[

10 0
0 10

])

�q ∼ W
−1

(

2,

[

0.1 0
0 0.1

])

.

sample sizes to produce a pooled estimate of the treat-
ment difference.

Decisions were made with a right-sided test for the All, 
Any, and Compensatory (equal weights, w = (0.50, 0.50) ) 
rules with formal superiority regions: 

1 Any rule: SR = {δ|max1<k<K δk > 0}|y, x and cut-
off value pcut = 1− α

K
2 All Rule: SR = {δ|min1<k<K δk > 0}|y, x and cut-off 

value pcut = 1− α

3 Compensatory rule: SR = {δ|δ(w) > 0}|y, x and cut-
off value pcut = 1− α

We computed the probability to conclude superiority 
( pSup ) as the proportion of posterior treatment differ-
ences in the superiority region via Eq.  11. The targeted 
Type I-error rate of α = .05 corresponded to decision 
threshold pcut = 1− α = 0.95 (Compensatory and 
All rules) and a for multiple tests corrected threshold 
pcut = 1− α

K = 0.975 (Any rule) [17, 18, 48].

Software
We conducted our analyses in R and made use of sev-
eral existing packages [51]. Pólya-Gamma variables were 
drawn with the pgdraw package [52]. Further, we drew 
variables from the multivariate normal, truncated nor-
mal, and Dirichlet distributions with the MASS, msm, 
and MCMCpack packages respectively [53–55]. MCMC 
chains were diagnosed with the coda and mcmcse pack-
ages [56, 57]. We parallellized the simulation procedure 
with the foreach and doParallel packages [58, 
59] and created LaTeX tables with the xtable package 
[60]. The R code used to generate results can be found on 
GitHub https:// github. com/ Xynth iaKav elaars/ Bayes ian- 
multi level- multi varia te- logis tic- regre ssion.

Results
The current subsection presents the results of the simula-
tion study. Presented decision error rates are in Table 2.

Bias
Regression coefficients, variance matrices and treat-
ment effects (success probabilities, treatment differ-
ences) could be estimated without bias in all sample sizes 
and data generating mechanisms. The absolute average 
deviation of mean point estimates from true values was 
smaller than .01.

Decision error rates

Type I error rates The average treatment effect demon-
strated that the probability to incorrectly conclude supe-
riority in multilevel regression (BMMLR) was close to the 

https://github.com/XynthiaKavelaars/Bayesian-multilevel-multivariate-logistic-regression
https://github.com/XynthiaKavelaars/Bayesian-multilevel-multivariate-logistic-regression
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targeted .05 under a least favorable scenario (i.e., Any and 
Compensatory decision rules). In general, both reference 
approaches suffered from inflated Type I error to a simi-
lar extent.

The amount of inflation in BMMLR was affected by sam-
ple size: A large number of clusters ( J = 100 ) and/or a 
large subjects per cluster ( nj = 100 ) had the largest Type 
I error rates, with the combination J = 100, nj = 100 

resulting in the most severe inflation. On the other hand, 
a small number of clusters and a small number of sub-
jects per cluster ( J = 10, nj = 10 ) resulted in an accept-
able Type I error rate for the single-level BMLR model as 
well, suggesting some robustness against the violation of 
the assumption of independent observations in the cur-
rent setup. In general, the number of subjects per clus-
ter appeared more influential on the Type I error rate 
inflation than the number of clusters, as demonstrated 

Table 2 Proportions of superiority decisions and standard errors by data-generating mechanism, estimation method, and decision 
rule

p = proportion of superiority decisions

se = Standard errors

Any All Compensatory

p se p se p se

Average treatment effect: δ = (0.000, 0.000) , δ(w) = 0.000

J = 10, nj = 10

     BMMLR 0.032 (0.006) 0.000 (0.000) 0.042 (0.006)

     BMLR 0.055 (0.007) 0.001 (0.001) 0.059 (0.007)

     BMB 0.050 (0.007) 0.001 (0.001) 0.046 (0.007)

J = 100, nj = 10

     BMMLR 0.053 (0.007) 0.002 (0.001) 0.048 (0.007)

     BMLR 0.077 (0.008) 0.003 (0.002) 0.066 (0.008)

     BMB 0.069 (0.008) 0.002 (0.001) 0.056 (0.007)

J = 10, nj = 100

     BMMLR 0.044 (0.006) 0.000 (0.000) 0.060 (0.008)

     BMLR 0.200 (0.013) 0.004 (0.002) 0.125 (0.010)

     BMB 0.188 (0.012) 0.003 (0.002) 0.113 (0.010)

J = 100, nj = 100

     BMMLR 0.057 (0.007) 0.000 (0.000) 0.054 (0.007)

     BMLR 0.252 (0.014) 0.005 (0.002) 0.169 (0.012)

     BMB 0.245 (0.014) 0.005 (0.002) 0.159 (0.012)

Conditional treatment effect: δ = (0.116, 0.069) , δ(w) = 0.092

J = 10, nj = 10

     BMMLR 0.731 (0.014) 0.245 (0.014) 0.920 (0.009)

     BMLR 0.397 (0.015) 0.065 (0.008) 0.587 (0.016)

     BMB 0.183 (0.012) 0.025 (0.005) 0.294 (0.014)

J = 100, nj = 10

     BMMLR 1.000 (0.000) 0.995 (0.002) 1.000 (0.000)

     BMLR 1.000 (0.000) 0.868 (0.011) 1.000 (0.000)

     BMB 0.933 (0.008) 0.520 (0.016) 0.980 (0.004)

J = 10, nj = 100

     BMMLR 1.000 (0.000) 0.949 (0.007) 1.000 (0.000)

     BMLR 0.997 (0.002) 0.771 (0.013) 1.000 (0.000)

     BMB 0.917 (0.009) 0.445 (0.016) 0.969 (0.005)

J = 100, nj = 100

     BMMLR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

     BMLR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

     BMB 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
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by the two scenarios with an identical total sample size 
( J = 10, nj = 100 and J = 100, nj = 10 ): A small number 
of clusters and a large sample size per cluster resulted in 
larger Type I error rates than a large number of clusters 
with a small sample size per cluster. Keeping everything 
else constant, a larger number of clusters meant more 
independent units, implying that the assumption of inde-
pendent observations was violated less severely. In other 
words, the need for a multilevel model was more promi-
nent when the number of clusters was small. A simi-
lar pattern was seen under the All rule, although Type I 
errors were small in general. This was expected, since a) 
the All rule is known to be the most conservative of the 
three introduced rules; and b) the treatment difference 
was smaller than the least favorable scenario of this deci-
sion rule.

Power The conditional treatment effect demonstrated 
the power to correctly conclude superiority for all three 
rules. Three results were highlighted. First, the multilevel 
model (BMMLR) is more powerful when the number of 
clusters is higher. The two conditions with an equal total 
sample size showed a .30 difference in power under the 
All rule. The other rules showed the same patterns, but 
had too high proportions of superiority conclusions to 
clearly distinguish the sample size conditions: The power 
in the other conditions equaled or was close to the maxi-
mum of 1.000.

Second, the single-level regression model (BMLR) 
resulted in more superiority conclusions than the mul-
tilevel regression model, implying that the posterior 
distributions of treatment differences of the single-level 
regression model had smaller variances. Again, dif-
ferences were best illustrated by the All rule and the 
condition with small sample sizes for the Any and Com-
pensatory decision rules, as these proportions were well 
below the maximum. Similar to the Type I error rates, the 
differences between the proportions of superiority con-
clusions appeared to be subject to the number of clusters, 
as demonstrated by a comparison of the two conditions 
with an identical total sample size under the All rule. The 
multilevel model was less powerful than the single-level 
model when the number of clusters was low in particu-
lar, being in line with non-independence of clustered 
observations.

Third, the multivariate Bernoulli model (BMB) has low 
power overall, despite the underestimation of variance 
due to falsely assuming independent observations. As a 
subsampling approach, conditional treatments were fit-
ted on the part of the data that makes up the subpopula-
tion of interest. Especially the J = 10 , nj = 10 condition 
suffered from a small remaining sample size.

Illustration with IST‑3 data
To illustrate the proposed framework with real data, 
we re-analyzed a subset of data from the Third Interna-
tional Stroke Trial using the BMMLR framework [6, 7]. 
The included 3, 035 subjects in the IST-3 were recruited 
from 156 different hospitals in 12 different countries, 
resulting in multilevel data from patients clustered within 
hospitals and hospitals clustered within countries. We 
selected a two-level subset of 1, 447 subjects from 75 hos-
pitals in the United Kingdom with a known health and 
survival status at six months after the initial stroke and 
a known or predicted severity score of the initial stroke 
(NIH Stroke Score; NIHSS) at randomisation. The clus-
ter sizes were skewed and ranged from 1 to 117, with a 
median cluster size of 7 (SD: 26.66). Of the selected sub-
set of data, nA = 716 subjects were in the Alteplase group 
(treatment = 1) and nC = 731 subjects were in the control 
group (treatment = 0). We compared the effects of the 
two treatments on a) being stroke-free for seven days (0 
= no; 1 = yes) and b) long-term independent living at six 
months (0 = no, 1 = yes), while taking the severity of the 
initial stroke into account. The NIHSS can range from 0 
to 42 with a higher score indicating a more severe stroke. 
The average stroke severity score in the IST-3 was 13.12 
(SD: 6.91) and comparable in both treatment groups.

Method
We fitted our model with random slopes for the inter-
cept and the treatment effect. We sought to compare 
our multilevel model (BMMLR) to the two single-level 
models (BMLR and BMB) from the “Numerical evalua-
tion” section in treatment comparison of Alteplase and 
control on dependency after six months ( δIndep6 ) and 
recurrent stroke within seven days ( δStrk7 ). The multi-
level model (BMMLR) was fitted with the linear predic-
tor in Eq. 6 and the linear predictor of the single-level 
regression model (BMLR) was:

Prior specification For the regression coefficients in the 
multilevel model (BMMLR) and the single-level regres-
sion model (BMLR), we specified independent normal 
prior distributions with means of 0 and variances of 10. 
For covariance matrix �q , we specified an improper uni-
form prior for the random effects covariance matrix for 
each category q, to enable testing for the presence of ran-
dom effects in the model comparison step discussed later.

Gibbs sampling We ran two MCMC-chains via the 
Gibbs samplers. Since the chains of regression coefficients 

(18)ψ
q
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3NIHSSjiTji



Page 13 of 19Kavelaars et al. BMC Medical Research Methodology          (2023) 23:220  

were highly autocorrelated in the multilevel model (lag 
10: β : 0.47− 0.59 ; γ : 0.62− 0.80 , � : −0.01− 0.38 ), we 
sampled a large number of 500, 000 iterations plus 10, 000 
burnin iterations. The multivariate potential scale reduc-
tion factor was below 1.01 for all parameters, implying that 
there were no signals of non-convergence. We thinned 
MCMC-chains in follow-up posterior transformations with 
a factor 10 to reduce computational demands, resulting in 
inference based on L = 50, 000 draws.

Transformation and decision‑making We applied the 
procedures presented in the Supplemental material to 
the thinned MCMC-chains of posterior regression coef-
ficients to make superiority decisions. We considered 
(conditional) average treatment effects among seven dif-
ferent (sub)populations:

1 ATE: average treatment effects for all patients in the 
trial population;

2 CATE - Low range: conditional average treatment 
effects for patients with a stroke severity score 
between 0 and 5;

3 CATE - Mid-Low range: conditional average treat-
ment effects for patients with a stroke severity score 
between 6 and 14;

4 CATE - Mid-High range: conditional average treat-
ment effects for patients with a stroke severity score 
between 15 and 24;

5 CATE - High range: conditional average treatment 
effects for patients with a stroke severity score above 
25;

6 CATE - Low value: conditional treatment effects 
for patients with a stroke severity score of 5.18, 
corresponding to 1 standard deviation below the 
mean;

7 CATE - High value: conditional treatment effects for 
patients with a stroke severity score of 19.03, corre-
sponding to 1 standard deviation above the mean.

The grouping criteria for CATEs of ranges were taken 
from the original IST-3 paper [6].

We performed two-sided tests for the All, Any, and 
Compensatory rules. Similar to the IST-3, we used liv-
ing independently as the most important outcome in the 
Compensatory rule and specified weights w = (0.20, 0.80) 
for remaining free of strokes and independent liv-
ing respectively. This specification implied that the 
long-term outcome had four times more impact on the 
decision than the short-term outcome. The targeted two-
sided Type I-error rate of α = .05 corresponded to deci-
sion threshold pcut = 1− α

2 = 0.975 (Compensatory and 
All rules) and a for multiple tests corrected threshold 
pcut = 1− α

2K = 0.9875 (Any rule).

Model comparison
Since the true model of these real-world data is unknown, 
we followed up on the analysis with a comparison of 
model fit via Bayes factors. Bayes factors [61] quantify 
the relative evidence in the data between competing sta-
tistical models. Here we use default Bayes factors which 
avoid the need to manually specify prior distributions 
[62–64].

BMLR vs. BMB To compare the two single-level mod-
els, we computed a Bayes factor on the probabilities that 
the regression coefficients of the covariate ( βq

2  ) and the 
interaction between the covariate and the interaction 
( βq

3  ) was equal to zero for all q ∈ q, . . . ,Q − 1 using the 
BF()-function from the R-package BFpack [62].

BMMLR vs. BMLR To compare the proposed multilevel 
model (BMMLR) and the single-level model (BMLR), we 
computed empirical Bayes factors as proposed by Vieira-
Generoso et  al. [64], which tests whether the random 
effects are equal across clusters using uniform priors for 
the random effects covariance matrices. This test is exe-
cuted separately for all six different random effects in the 
multilevel model.

Software In addition to the software packages used 
in Section “Numerical evaluation”, we used R packages 
haven to import the dataset [65]  and BFpack [62] to 
compute Bayes factors for comparison of the two single-
level models. Similar to “Numerical evaluation”, the R 
code used to generate results in this section can be found 
on GitHub https:// github. com/ Xynth iaKav elaars/ Bayes 
ian- multi level- multi varia te- logis tic- regre ssion.

Results
Results of different (sub)populations
Table 3 show how different analysis models and different 
decision rules provide elaborate insights in the effects of 
Alteplase vs. control on a combination of dependent vari-
ables among different (sub)populations. Analysis of the 
selected data with the BMMLR, BMLR, and BMB models 
gave the following results.

Average treatments effects The average treatment effect 
(ATE) among the UK-based part of the trial population 
showed that the Alteplase group had a lower estimated 
probability of remaining free of strokes, a higher esti-
mated probability of living independently, and a weighted 
probability difference close to zero. The three modelling 
procedures produced similar estimates and unanimously 
resulted in the conclusions that Alteplase was inferior 
according to the Any rule due to the effect on being free 

https://github.com/XynthiaKavelaars/Bayesian-multilevel-multivariate-logistic-regression
https://github.com/XynthiaKavelaars/Bayesian-multilevel-multivariate-logistic-regression
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of strokes, while neither superiority nor inferiority could 
be concluded from the All or Compensatory rules.

Conditional average treatment effects The four condi-
tional average treatment effects (CATEs) that reflected 
subpopulations as ranges sketched a more heterogene-
ous picture than the average treatment effects. Whereas 
all ranges showed a lower probability of being free of 
strokes after treatment with Alteplase, these probabili-
ties increased with the severity of the stroke. Differences 
between success probabilities of the two treatments 
appeared to increase with severity of the stroke, such that 
Alteplase appeared to have the largest negative effect on 
being stroke-free when the severity of the initial stroke 
was highest. A more diffuse relation between stroke sever-
ity and treatment difference emerged on long-term inde-
pendent living. Alteplase resulted in a slightly lower point 
estimate of the probability of independent living among 
patients with a Low stroke severity, but resulted in a higher 

estimated probability of independent living in all catego-
ries of more severe strokes. Patients in the Mid-Low and 
Mid-High ranges of stroke severity had the largest posi-
tive effect of Alteplase on independent living. The Low and 
High stroke severity patients had slightly higher weighted 
probabilities after Alteplase, while patients with a Mid-
Low and Mid-High stroke severity had weighted probabili-
ties close to zero. These non-zero point estimates were not 
unanimously supported by sufficient evidence to conclude 
superiority or inferiority. The All and Compensatory rules 
remained inconclusive for all models among all subpopu-
lations. The BMMLR and BMLR were unanimous in their 
conclusions for the Any rule: Inferiority was concluded for 
patients with a Low, Mid-Low and High stroke severity, 
while both superiority and inferiority were concluded for 
patients with a Mid-High range stroke severity. The BMB 
model remained inconclusive in the Low and High ranges 
and concluded inferiority among patients with a Mid-Low 
or Mid-High stroke severity, according to the Any rule.

Table 3 Average (ATE) and conditional average (CATE) treatment effects of the specified (sub)populations of the IST-3

Pop = Posterior probability

 > = superiority concluded

 < = inferiority concluded

(δStrk7, δIndep6) Pop Any All δ(w) Pop Comp

ATE nA = 716 , nC = 731

     BMMLR (−0.114, 0.029)     (0.000, 0.886) < - 0.000 0.504 -

     BMLR (−0.116, 0.033)     (0.000, 0.941) < - 0.003 0.572 -

     BMB (−0.117, 0.032)     (0.000, 0.911) < - 0.003 0.549 -

CATE - Low range nA = 99 , nC = 105

     BMMLR (−0.078,−0.023)     (0.003, 0.317) < - −0.034 0.200 -

     BMLR (−0.081,−0.016)     (0.004, 0.365) < - −0.029 0.225 -

     BMB (−0.110,−0.036)     (0.019, 0.318) - - −0.051 0.207 -

CATE - Mid-Low range nA = 327 , nC = 334

     BMMLR (−0.090, 0.038)     (0.000, 0.884) < - 0.013 0.679 -

     BMLR (−0.092, 0.044)     (0.000, 0.937) < - 0.017 0.752 -

     BMB (−0.114, 0.045)     (0.001, 0.853) < - 0.013 0.642 -

CATE - Mid-High range nA = 237 , nC = 252

     BMMLR (−0.139, 0.051)     (0.000, 0.992) < & > - 0.013 0.753 -

     BMLR (−0.141, 0.054)     (0.000, 0.995) < & > - 0.015 0.783 -

     BMB (−0.118, 0.047)     (0.006, 0.938) < - 0.014 0.694 -

CATE - High range nA = 53 , nC = 40

     BMMLR (−0.183, 0.020)     (0.002, 0.980) < - −0.021 0.100 -

     BMLR (−0.188, 0.021)     (0.001, 0.982) < - −0.021 0.100 -

     BMB (−0.173, 0.019)     (0.069, 0.687) - - −0.019 0.327 -

CATE - Low value

     BMMLR (−0.078,−0.007)     (0.002, 0.440) < - −0.021 0.291 -

     BMLR (−0.080, 0.000)     (0.002, 0.503) < - −0.016 0.328 -

CATE - High value

     BMMLR (−0.140, 0.052)     (0.000, 0.991) < & > - 0.014 0.751 -

     BMLR (−0.142, 0.055)     (0.000, 0.994) < & > - 0.015 0.777 -
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The two conditional average treatment effects (CATEs) 
that specified subpopulations by values illustrated 
treatment differences for two hypothetical individual 
patients. After receiving Alteplase, both patients would 
have a lower probability of remaining free of strokes. 
Only the patient with a High stroke severity value had 
a higher probability of long-term independent living. 
The weighted failure probability difference was slightly 
below zero for the patient with a Low stroke severity and 
around zero for the patient with a High stroke severity. 
Again, the All and Compensatory rules remained incon-
clusive, whereas the Any rule would result in an inferior-
ity conclusion for the patient with a Low stroke severity 
and in both inferiority and superiority for the patient 
with a High stroke severity.

Model comparison Bayes factors [66] are computed to 
test whether there is evidence that a dependency struc-
ture is present in the data that is caused by the multilevel 
structure. The results are presented in Table  4. These 
results indicate that there is evidence that each of the 
six different random effects do not vary across clusters. 
This implies that the parsimonious single-level model 
(BMLR) is preferred over the multilevel model (BMMLR) 
for these specific data. This result is also in agreement 
with the obtained estimates which are virtually identical 
under both models. Model comparison between the two 
single-level models (BMLR vs. BMB) resulted in a log-
transformed Bayes factor of 16.348, reflecting strong evi-
dence that the a regression model (BMLR) fitted the data 
better than the multivariate Bernoulli (BMB) model. We 
give a general recommendation on model selection in the 
“Discussion” section.

Conclusions and discussion
Several conclusions regarding the BMMLR framework 
could be drawn from the presented results. First, multi-
level analysis did not affect point estimates in the used 
subset of IST-3 data: BMMLR and BMLR models resulted 
in similar point estimates of δ and δ(w) , as expected 
from the negligible bias in the results of the simulation 
study. The posterior probabilities of the BMMLR and the 
BMLR model were similar and did not lead to different 

superiority or inferiority conclusions. A model compari-
son based on Bayes factors resulted in evidence in favor 
of a single-level model. It would be helpful to have infor-
mation about clustering beforehand and we concluded 
that these results call for a proper method to quantify the 
degree of dependence among observations within clus-
ters prior to the analysis. Such insights could help in clar-
ifying the statistical urgency of a multilevel model and 
the appropriateness of a single-level model in advance.

Second, average treatment effects indicated an 
increased probability of recurrent events and a slightly 
decreased probability of long-term independent living 
after receiving the experimental treatment. However, dif-
ferent decision rules led to different conclusions. When 
the individual treatment effects had to be better on both 
dependent variables (All rule) or were weighted (Com-
pensatory rule), no superiority or inferiority could be 
concluded. When any of the dependent variables had to 
demonstrate a relevant treatment difference (Any rule), 
both inferiority on recurrent events and superiority on 
long-term independent living could be concluded. This 
demonstrated a general potential problem with the Any 
rule: Contrasting decisions can result from the same 
analysis. Recall that the Any rule treats all outcome vari-
ables as equally important, raising the question which 
conclusion to favor for patients in the Mid-High range 
or with a High value of severity. This problem does not 
occur with the other rules: The All and Compensatory 
rules are unambiguous in their conclusions.

Third, conditional (average) treatment effects suggested 
a trend in heterogeneity on the individual dependent 
variables that was not reflected by the average treatment 
effect. These trends were partially supported by supe-
riority and/or inferiority decisions, depending on the 
specified decision rule. Even without clear conclusions, 
conditional treatment effect sizes provided detailed 
insights: Considering average treatment effects only 
would have overlooked these trends. Further, the BMB 
model in the High range demonstrated that subgroup 
analysis can be a suboptimal approach to estimate con-
ditional average treatment effects, as it can suffer from 
power loss. The High range subgroup is a relatively small 
fraction of the total sample size and performing an inde-
pendent analysis on this group reduces the amount of evi-
dence. This is reflected in the comparison to the BMMLR 
and BMLR methods: BMB has less extreme posterior 
probabilities, while treatment effect estimates are similar.

Discussion
The current paper presented the BMMLR framework as 
a multilevel extension to the Bayesian multivariate logis-
tic regression (BMLR) analysis framework. The BMMLR 
framework consisted of three elements: 

Table 4 Logarithmic transformations of Bayes factors of BMLR 
vs. BMMLR

q = 1 q = 2 q = 3

NIHSS 5.769 5.642 11.238

NIHSS × Trt 5.653 6.181 8.555
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1 a Bayesian multilevel multivariate logistic regression 
model;

2 a transformation procedure to interpret results on 
the (multivariate) probability scale;

3 a statistical decision procedure to draw superiority 
and inferiority conclusions with targeted frequentist 
Type I errors

The presented framework accurately handled the mul-
tilevel structure of the data in the presence of heteroge-
neous treatment effects on multiple (correlated) binary 
dependent variables. A simulation study demonstrated 
that the proposed model indeed a) estimated average and 
conditional treatment effects in multilevel data without 
bias; and b) resulted in statistical decisions with targeted 
Type I error rates. A multilevel model was clearly supe-
rior for clustered data: Naive models that did not take 
the multilevel structure into account resulted in inflated 
Type I-error rates. Further, the logistic model promoted 
information-sharing between clusters and subpopula-
tions, being a more powerful alternative than subgroup 
analysis to identify heterogeneous treatment effects. A re-
analysis of the IST-3 provided another perspective on the 
data than the original paper [6]. Detailed insights as well 
as the varying treatment effects among subpopulations 
demonstrated the importance of a) a well-considered and 
specific decision rule; and b) the assessment of treatment 
heterogeneity. The statistical need for a multilevel model 
has not clearly become evident for this specific analysis. 
The results suggested that a substantive cluster structure 
in the data does not necessarily imply a relevant statisti-
cal dependency structure between observations. We dem-
onstrated that an implied dependency structure can be 
tested using empirical Bayes factors [64]. If these Bayes 
factors provide evidence that none of the random effects 
varies, a single-level model gives a more parsimonious 
description of the data. In case of evidence for the pres-
ence of random effects due to the multilevel structure in 
the data, the proposed multilevel multivariate model is 
preferred as it gives more accurate type I errors. If there 
is evidence that some of the random effects do not vary 
across clusters, it is recommended to fix these parameters 
to give a more parsimonious description of the data.

Application of the BMMLR framework is not limited to 
the presented analyses. Theoretically, the model can be 
adapted to the longitudinal setting, may be used to bor-
row strength from different trials, or may be extended 
to data with multiple levels of clustering for example. In 
practice, such extensions require additional exploration 
of the (computational) properties of the model, since 
MCMC sampling procedures appeared sensitive to the 
amount of autocorrelation and the number of param-
eters. In a related fashion, carefully choosing which 

random effects to include is helpful for smooth execution 
of multilevel analysis. The model has a large number of 
options regarding specification of the model, giving a lot 
of flexibility to model cluster effects precisely. This flex-
ibility reduces parsimony however, as it easily increases 
the number of model parameters. While it is technically 
possible to expand the model, some care must be taken 
when adding many outcome variables and many covari-
ates however. This would result in many more model 
parameters, which results in considerably less parsimo-
nious description of the data and can intensify compu-
tations notably. Similarly, the multinomial setup is most 
suitable for a limited number of dependent variables. 
Increasing the number of dependent variables results in 
a large number of response categories, which may lead to 
sparsity issues.

Future research might advance the design of the 
BMMLR framework in multiple ways. First, a priori sam-
ple size computation and power analysis have priority 
in medical research. Sample sizes in logistic regression 
should not be too small and preferably take the success 
probability into account [67, 68]. In line with our find-
ings, larger numbers of clusters generally appear to be 
more powerful than larger numbers of subjects within 
clusters [69], although a study into sample sizes for mul-
tilevel logistic regression analysis provided less clear 
results [70]. Expanding and refining knowledge regarding 
sample sizes in multilevel models aids in strategic experi-
mental design [71–73] Additionally, ethical aspects, 
such as risks and burden of (potentially inferior) treat-
ment, and practical considerations, such as limited access 
to (large numbers of ) subjects, require more in-depth 
understanding of power and sample sizes. Especially in 
precision medicine - where treatments are targeted at 
specific patient populations - numbers of eligible subjects 
are limited and a priori power analysis helps to manage 
expectations in terms of duration.

Second, the methodology can be placed into a broader 
framework of Bayesian statistics. The framework can be 
extended with the computation of Bayes factors to aid 
in decision-making regarding superiority and inferior-
ity as well, for example following the ideas presented in 
Van Ravenzwaaij et al. [74]. Further, the specification of 
prior distributions requires consideration. Specification 
of non-informative priors may not be trivial. The general 
tendency to choose relatively large variance parameters 
for normally distributed prior distributions [50], does not 
necessarily work well with the proposed model. Covering 
a range far beyond realistic parameter values, can (nega-
tively) affect the efficiency of the sampling procedure and 
even the resulting posterior distribution. Thus, concrete 
guidelines for the specification of non-informative priors 
would be helpful.
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Third, pooling of treatment estimates can be done in 
several other ways than presented. In general, the pooled 
treatment effect over clusters is a weighted combina-
tion of cluster-specific estimates, where the weights aim 
to balance aspects that influence estimation and are 
imbalanced over clusters (e.g., cluster size or variance). 
Whereas we applied a cluster size-based approach, sev-
eral advanced weighing procedures balance unequal 
variances within clusters via regularization methods (for 
overviews, see [75–77]). These weighing methods gener-
ally produce shrinkage to the mean a) when group level 
variance is smaller; and/or b) when sample sizes are 
smaller ([27],  p. 269). Such weighing procedures have 
interesting balancing properties but are probably less 
suitable for trials with clusters of single subjects, such as 
IST-3. These clusters have no variance, should not be dis-
carded or merged inconsiderately, and call for the explo-
ration of suitable weighing procedures for such data.

Finally, the BMMLR framework and multilevel models 
for discrete data in general lack a standard way to quan-
tify the degree of clustering and the corresponding need 
for a multilevel model. Often, the degree of clustering is 
quantified as the variance between clusters relative to the 
variance within clusters, expressed via an intraclass cor-
relation coefficient (ICC). The computation of ICCs in 
binary data is not straightforward: The variance within 
clusters - and therefore the ICC - is a function of the pre-
dictors in the model and the ICC depends on the preva-
lence, requiring an alternative approximation to obtain 
an appropriate estimate of the ICC [78–81]. We leave the 
extension of our framework in this direction for future 
research.

Conclusion
The presented Bayesian method aimed to capture a mul-
tilevel structure and treatment heterogeneity simultane-
ously in data with multiple correlated binary outcome 
variables and observed covariates. The framework was 
built upon three major components: a multivariate logistic 
regression analysis, a subsequent transformation of regres-
sion coefficients to the multivariate probability scale, and 
a procedure to make decisions regarding treatment supe-
riority or inferiority. When the sample is sufficiently large, 
treatment effects can be estimated unbiasedly and deci-
sions regarding average and conditional treatment effects 
can be made with targeted error rates and a priori esti-
mated sample sizes. The method is useful in prediction of 
treatment effects and decision-making within subpopula-
tions from multiple clusters, while taking advantage of the 
size of the entire study sample and while properly incorpo-
rating the uncertainty in a principled probabilistic manner 
using the full posterior distribution.
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