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Abstract 

Background Cancer surveillance researchers analyze incidence or mortality rates jointly indexed by age group 
and calendar period using age‑period‑cohort models. Many studies consider age‑ and period‑specific rates 
in two or more strata defined by sex, race/ethnicity, etc. A comprehensive characterization of trends and patterns 
within each stratum can be obtained using age‑period‑cohort (APC) estimable functions (EF). However, currently 
available approaches for joint analysis and synthesis of EF are limited.

Methods We develop a new method called Comparative Age‑Period‑Cohort Analysis to quantify similarities and dif‑
ferences of EF across strata. Comparative Analysis identifies whether the stratum‑specific hazard rates are proportional 
by age, period, or cohort.

Results Proportionality imposes natural constraints on the EF that can be exploited to gain efficiency and simplify 
the interpretation of the data. Comparative Analysis can also identify differences or diversity in proportional rela‑
tionships between subsets of strata (“pattern heterogeneity”). We present three examples using cancer incidence 
from the United States Surveillance, Epidemiology, and End Results Program: non‑malignant meningioma by sex; mul‑
tiple myeloma among men stratified by race/ethnicity; and in situ melanoma by anatomic site among white women.

Conclusions For studies of cancer rates with from two through to around 10 strata, which covers many outstanding 
questions in cancer surveillance research, our new method provides a comprehensive, coherent, and reproducible 
approach for joint analysis and synthesis of age‑period‑cohort estimable functions.
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Introduction
In cancer surveillance research [1], a basic unit of analysis 
is a matrix of incidence or mortality hazard rates jointly 
indexed by age group and calendar period [2]. Alongside 
classical [3, 4] and contemporary [5–8] descriptive meth-
ods, the age-period-cohort (APC) model provides an 
established paradigm to quantify rate patterns and trends 

along each temporal direction – age, period, and birth 
cohort – adjusted for the other two [9].

There are several formulations of the age-period-
cohort model for cancer research [10]. Here, we will 
focus on estimable functions (EF) of the parameters in 
an extended version [11] of Holford’s classic model [12]. 
EF are linear combinations of model parameters that 
are invariant with respect to identifiability constraints 
imposed on the model parameters to account for co-line-
arity between year of birth, year of event and age at event.

A comprehensive set of EF are available [13] based 
on the extended age-period-cohort model [11] (hence-
forth, the “New Model”). Amongst them, Local Drifts 
(LD) [14–17] and Cohort Rate Ratios (CRR) [18–20], 
are especially useful. For example, LD and CRR curves 
for colorectal cancer [14] provided critical evidence 
that prompted the ACS [21], the USPSTF [22], and the 

*Correspondence:
Philip S. Rosenberg
rosenbep@mail.nih.gov
1 Division of Cancer Epidemiology and Genetics, Biostatistics Branch, 
National Cancer Institute, NCI Shady Grove, Room 7E‑130, 9609 Medical 
Center Drive, Bethesda, MD 20892, USA
2 Cancer Control Group, QIMR Berghofer Medical Research Institute, 
Brisbane, QLD, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-023-02039-8&domain=pdf


Page 2 of 13Rosenberg et al. BMC Medical Research Methodology          (2023) 23:238 

MSTF [23] to reevaluate the evidence and recommend 
that individuals in the United States at average risk 
begin colorectal cancer screening at age 45, down from 
age 50.

In practice, few studies examine a single rate matrix in 
isolation. Typically, hypotheses are explored by examin-
ing multiple sets of rates (strata) defined by sex, race/
ethnicity, geographic region, tumor characteristics, etc 
[24–28]. Even so, currently available methods are lim-
ited to quantify similarities and differences of EF across 
strata.

Riebler et al. [29–31] considered stratified APC mod-
els with common age effects and smoothing priors on 
the second differences of the period and cohort effects, 
with estimates obtained by Markov Chain Monte Carlo 
(MCMC) and integrated nested Laplace approxima-
tions. Reimers et  al. [32] used standard Wald tests to 
compare identifiable APC trend parameters in sepa-
rate models fitted to each stratum, while Chien et  al. 
[6, 33] compared summary statistics obtained from 
Lexis diagrams smoothed using Bernstein polynomials 
and MCMC. Most studies to date have relied on purely 
descriptive comparisons, which makes it challeng-
ing for researchers to draw objective and reproducible 
conclusions.

Frequently, the number of relevant strata G is around 
10 or less. In this paper we present a novel approach to 
tackle these essential small G problems, which include 
studies of sex differences, racial and ethnic dispari-
ties, regional differences, tumor heterogeneity, etc. 
We call our new approach Comparative Age-Period-
Cohort Analysis (“Comparative Analysis”). This work 
generalizes previous results for two-hazard problems 
[34]. Comparative Analysis is now made possible by 
the New Model via its fundamental decomposition 
principle.

Our approach makes three key assumptions. First, 
the stratum-specific hazard rates are available over the 
same age groups and calendar periods. This is always so 
for data obtained from official cancer registries. Second, 
the hazard rates are statistically independent within and 
between strata. This is always a reasonable basis for anal-
ysis when the cases in each stratum are different people, 
for example, for cases within strata defined by sex, demo-
graphic subgroup, geographic region, etc. Third, when we 
fit a separate New Model to each stratum, no concerning 
lack of fit (LOF) is detectable. This is the most important 
assumption. Current methods to assess LOF include esti-
mating over-dispersion parameters, comparing observed 
and fitted values, and examining residuals. In those cases 
where the LOF is notable, one remedy is to split the rate 
matrix into blocks within which the LOF is minimized. 
See Best et al. [35] for details.

Comparative Analysis provides a comprehensive, 
coherent, and reproducible characterization of simi-
larities and differences of EF across two, three, or more 
strata, along with efficient (model-based) estimates of EF 
and EF differences, including Local Drifts. It does so by 
identifying whether the stratum-specific hazard rates are 
proportional along one of the three fundamental tempo-
ral directions (age, period, or birth cohort). As we will 
show, when proportionality exists, it imposes natural 
constraints on the EF that can be exploited to gain effi-
ciency and simplify the interpretation of the data.

Comparative Analysis can be conducted using a 
“hypothesis testing” approach or an “exploratory” 
approach. In the former, we aim to characterize pro-
portionality across all the strata. In the latter, we don’t 
know a priori which stratum in the set – if any – might 
have rates that vary in concert. Therefore, our aim is to 
describe pattern heterogeneity. This can be accomplished 
by modeling the rates within partitions of the strata.

We will illustrate both approaches using data from 
the United States Surveillance, Epidemiology, and End 
Results (SEER) Program [36].

Data
SEER cancer incidence
We present three examples: 1) non-malignant meningi-
oma by sex; 2) multiple myeloma among men stratified 
by race/ethnicity; 3) In  situ melanoma by site among 
non-Hispanic white women. In our analyses race/ethnic 
groups are non-Hispanic white (NHW), non-Hispanic 
black (NHB), Hispanic (HIS) and Asian and Pacific 
Islander (API). Melanoma sites are head and neck (HN), 
upper limb (UL), trunk (Tr) and lower limb (LL). See 
Online Supplement Part 1 for details.

Canonical case: a two‑hazard problem
Figure 1 presents Lexis diagram heat maps for meningi-
oma incidence among NHW women (Panel A) and men 
(Panel B). The heat maps reflect something we already 
know – meningioma incidence is higher among women. 
More revealing, the corresponding female-to-male Cross-
Hazard Rate Ratios (CH-RRs, Panel C, bubble plot) show 
that the female excess is mostly constant over time (i.e., 
across the rows) but increases with decreasing age (i.e., 
down the columns).

A four‑hazard problem: multiple myeloma
Figure  2 presents Lexis diagram heat maps for multiple 
myeloma incidence among men within four race/ethnic 
groups (Panels A – D). The heat maps reflect that mye-
loma incidence is highest in NHB and lowest in API. 
Compared to NHW, corresponding CH-RRs for NHB 
versus NHW (Panel E), HIS versus NHW (Panel F), and 
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API versus NHW (Panel G) are more-or-less constant. 
The excess in NHB versus NHW does appear highest in 
younger age groups (Panel E).

Exploratory analysis: melanoma
As we will show in “Site differences of in  situ mela-
noma”  section, exploratory Comparative Analysis can 
reveal structure that is difficult to discern using tradi-
tional approaches.

Methods
Cross‑hazard rate ratios: four canonical proportionalities
Comparative Analysis seeks to identify proportional haz-
ards (PH) between strata along one time scale or another. 
For the case G = 2 , this problem was solved [34].

As illustrated in Fig.  3, when we compare two sets 
of hazard rates ascertained over the same Lexis dia-
gram, each following an age-period-cohort model, 
there are five possibilities. The expected CH-RRs can 

be constant along diagonals (Panel A, “PH-L”, L for 
longitudinal), constant across rows (Panel B, “PH-T”, T 
for time), constant down the columns (Panel C, “PH-
X”, X for cross-sectional age), or constant everywhere 
(Panel D, “PH-A”, A for absolute). Alternatively, if none 
of the PH models hold, then the CH-RRs are free to 
vary along diagonals, rows, and columns. When this 
happens, we say the data are not PH (Panel E, “N-PH"). 
Furthermore, it turns out that if any two of the PH 
models hold for a pair of hazards, then the third PH 
model must also hold; this is why there are five pos-
sible PH models rather than eight.

These result for G = 2 were worked out using the 
algebra of the classic age-period-cohort model. Hap-
pily, using the algebra of the New Model, it is straight-
forward to generalize from G = 2 to G ≥ 2 and obtain 
useful formulas. Hence, we can now identify for the 
first time whether the scenarios shown in Fig.  3 hold 
simultaneously for all pairs of hazard rates within a 

Fig. 1 Meningioma incidence. Lexis diagram heat maps for meningioma incidence among NHW women (A) and men (B). See Online Supplement 
Part A for details. Inside colorbar shows color‑mapped rates per 100,000 person‑years. Bubble plot shows corresponding female‑to‑male 
cross‑hazard incidence rate ratios (CH‑RRs, C). CH‑RR values are denoted by area and color (outside colorbar)
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Fig. 2 Myeloma incidence. Lexis diagram heat maps for myeloma incidence among men by race/ethnicity. Non‑Hispanic Whites (NHW, A), 
Non‑Hispanic Blacks (NHB, B); Hispanics (HIS, C), and Asians and Pacific Islanders (API, D). Bubble plots show corresponding CH‑RRs for NHB 
versus NHW (E), HIS versus NHW (F), and API versus NHW (G). See Online Supplement Part A and the legend to Fig. 1 for details

Fig. 3 Proportional hazards: a schematic illustration. Grid represent a Lexis diagram indexed by age groups (rows) and calendar periods (columns). 
Area and color of each bubble maps CH‑RR values for two sets of rates. PH‑L, constant along diagonals or cohorts (A). PH‑T, constant across rows 
or periods (B). PH‑X, constant down columns or age groups (C). PH‑A, constant everywhere (D). N‑PH, not constant along diagonals, rows, 
and columns (E)
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larger ensemble of G > 2 stratum and quantify the 
implications.

A fundamental theorem for comparative 
age‑period‑cohort analysis
The New Model allows us to decompose age-
period-cohort fitted rates four equivalent ways [11]. 
Each EF-based decomposition of the hazard rates 
�(g)(a∗, p∗, c∗), g = 1, . . . ,G includes a baseline haz-
ard function, a main effect, and an interaction along 
one of the three temporal directions of age a∗ , period 
p∗ or cohort c∗ = p∗ − a∗ . These decompositions can 
be related to the canonical proportional hazards models 
illustrated in Fig. 3. For a definition of each EF in terms 
of the APC model parameters, please refer to Table 1 of 
Rosenberg [11].

PH‑L: Longitudinal in age
Given the decompositions:

If the stratum-specific Longitudinal Age Curves 
LongAge(g)(a∗) are proportional to each other, the period 
deviations π(g)(p∗) are all equal, but the Cohort Rate 

�(g)(a∗|c∗) = LongAge(g)(a∗)× CRR(g)(c∗)× exp
(
π̃ (g)(p∗ = c∗ + a∗)

)
, g = 1, . . . ,G

Ratios CRR(g)(c∗) are not equal for any two or more stra-
tum, we say the rates are PH-L. When PH-L holds, CH-
RRs are determined by birth cohort effects:

In this expression, FCP(g)(c∗) is an EF called the Fit-
ted Cohort Pattern that describes the expected rate at an 
arbitrary reference age a∗(aref ) for each birth cohort in 
stratum (g).

This expression works because 
CRR(g)(c∗) ≡

FCP(g)(c∗)

FCP(g)
(
c∗
(
cref

)) ≡
FCP(g)(c∗)

LongAge(g)
(
a∗

(
aref

)) . That is, 

the intercept terms in the Longitudinal Age Curves cancel 
the reference values in the Cohort Rate Ratio curves, which 
permits the CH-RRs values to range freely. This is crucial: 
CH-RRs are not referent RRs, with one category arbitrarily 
chosen as a baseline. Rather, they are floating RRs. For 
example, in Fig. 1C, the CH-RRs never fall below 1.0.

PH‑T: Cross‑sectional in period
Given the decompositions:

PH − L ⇒
�
(j)(a∗|c∗)

�(k)(a∗|c∗)
= RR

(j):(k)
CH (c∗) =

FCP(j)(c∗)

FCP(k)(c∗)

�(g)(p∗|a∗) = FTT (g)(p∗)× CARR(g)(a∗)× exp
(
γ̃ (g)(c∗ = p∗ − a∗)

)
, g = 1, . . . ,G

Table 1 Comparative age‑period‑cohort  analysisa

a  Set-up for G ≥ 2 stratum each defined on the same Lexis diagram with A age groups and P calendar periods
b  Model df  for N-PH is 2G(A+ P − 2) 
c  Intercept terms for log-scale estimable functions are: µ(k)

FTT = log CrossAge(k)(a∗), µ(k)
CAC = logFTT (k)(p∗(pref )), µ(k)

LAC
= log FCP(k)(c∗(cref )), µ(k)

FCP = log LongAge(k)(a∗(aref )) 
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If the stratum-specific Fitted Temporal Trends 
FTT (g)(p∗) are proportional, the cohort deviations γ̃ (g)(c∗) 
are all equal, but the Cross-Sectional Age Rate Ratios 
CARR(g)(a∗) are not equal for any two or more stratum, 
we say the rates are PH-T. When PH-T holds, CH-RRs 
are determined by age effects:

This works because CARR(g)(a∗) ≡
CrossAge(g)(a∗)

CrossAge(g)
(
a∗

(
aref

))

≡
CrossAge(g)(a∗)

FTT (g)
(
p∗

(
pref

)).

Hence, the intercept terms in the Fitted Temporal 
Trends cancel the reference values in the Cross-Sectional 
Age Rate Ratio curves, which permits the CH-RRs values 
to range freely.

PH‑T: Cross‑sectional in cohort
Given the decompositions:

If the stratum-specific Fitted Cohort Patterns 
FCP(g)(c∗) are proportional, the period deviations 

π̃(g)(p∗ = c∗ + a∗) are all equal, but the Longitudinal 
Age Rate Ratios LARR(g)(a∗) are not equal for any two or 
more stratum, we also say the rates are PH-T. From these 
expressions, CH-RRs are also determined by age effects:

This works because 
LARR(g)(a∗) ≡

LongAge(g)(a∗)

LongAge(g)
(
a∗

(
cref

)) ≡
LongAge(g)(a∗)

FCP(g)
(
c∗
(
cref

)).

Hence, the intercept terms in the Fitted Cohort Pat-
terns cancel the reference values in the Longitudinal Age 
Rate Ratio curves, which permits the CH-RRs values to 
range freely.

So now we have two different ways of getting PH-T. 
Fortunately, the results are equivalent.

PH − T ⇒
�
(j)(p∗|a∗)

�(k)(p∗|a∗)
= RR

(j):(k)
CH (a∗) =

CrossAge(j)(a∗)

CrossAge(k)(a∗)

�(g)(c∗|a∗) = FCP(g)(c∗)× LARR(g)(a∗)× exp
(
π̃ (g)(p∗ = c∗ + a∗)

)
, g = 1, . . . ,G

PH − T ⇒
�
(j)(c∗|a∗)

�(k)(c∗|a∗)
= RR

(j):(k)
CH (a∗) =

LongAge(j)(a∗)

LongAge(k)(a∗)

Corollary 1
When PH-T holds,

For all pairs of strata 
(
j
)
 and (k) . This holds because

Under PH-T, the Fitted Temporal Trends FTT (g)(p∗) 
are all proportional, which implies that the Net 
Drifts , (πL + γL)

(g) are all equal. Hence

Furthermore, under PH-T, it follows that

for all values of c∗ and p∗.

PH‑X: Cross‑sectional in age
Given the decompositions:

If the stratum-specific Cross-Sectional Age Curves 
CrossAge(g)(p∗) are proportional, the cohort deviations 
γ̃ (g)(c∗) are all equal, but the Period Rate Ratio curves 
PRR(g)(p∗) are not equal for any two or more stratum, we 
say the rates are PH-X. When PH-X holds, CH-RRs are 
determined by period effects:

This works because PRR(g)(p∗) ≡
FTT (g)(p∗)

FTT (g)
(
p∗

(
aref

)) ≡

FTT (g)(p∗)

CrossAge(g)
(
a∗

(
aref

)) , g = 1, . . . ,G.

Hence, the intercept terms in the Cross-Sectional Age 
curves cancel the reference values in the Period Rate 
Ratio curves, which permits the CH-RRs values to range 
freely.

LongAge(j)(a∗)

LongAge(k)(a∗)
=

CrossAge(j)(a∗)

CrossAge(k)(a∗)

LongAge(j)(a∗) = exp
({

(αL + πL)
(j) − (αL − γL)

(j)
}
(a∗ − a∗)

)
CrossAge(j)(a∗)

= exp
(
(πL + γL)

(j)(a∗ − a∗)
)
CrossAge(j)(a∗)

LongAge(j)(a∗)

LongAge(k)(a∗)
−

CrossAge(j)(a∗)

CrossAge(k)(a∗)
= 0.

FCP(j)(c∗)

FCP(k)(c∗)
−

FTT (j)(p∗)

FTT (k)(p∗)
= 0,

�(g)(a∗|p∗) = CrossAge(g)(a∗)× PRR(g)(p∗)× exp
(
γ̃ (g)(c∗ = p∗ − a∗)

)
, g = 1, . . . ,G

PH − X ⇒
�
(j)(a∗|p∗)

�(k)(a∗|p∗)
= RR

(j):(k)
CH (p∗) =

FTT (j)(p∗)

FTT (k)(p∗)
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PH‑A: Absolute proportionality
It is easy to demonstrate that if any two models PH-L, 
PH-T, or PH-X hold, then the third model must also hold. 
When this happens, we say the data are “absolutely pro-
portional” (PH-A). Under PH-A the CH-RRs depend 
only on the intercepts, PH − A ⇒ RR

(j):(k)
CH = e

(
µ(j)−µ(k)

)
.

N‑PH: Not proportional
If none of the models PH-L, PH-T, or PH-X hold (which 
implies that PH-A cannot hold), we say the data are “not 
proportional” (N-PH). Under N-PH the CH-RRs vary 
freely according to age, period, and cohort.

Corollary 2
The results described below are summarized in Table 1. 
Online Supplement Part 2 discusses some computational 
details.

Recall that an LD curve is obtained by sliding a window of 
width P (number of calendar periods) through the cohort 
deviations and extracting the least squares slope, and then 
adding these “deflection” terms to the overall Net Drift.

It follows that the LD are not parallel under PH-L or 
N-PH; identical under PH-T and PH-A; and parallel 
under PH-X (Table 1, Row K). Furthermore, under PH-X, 
the constant difference between LD curves for stratum 

(
j
)
 

versus (k)  is determined by the corresponding difference 
between the Net Drifts. Model-based LD curves are also 
more precise.

PH-T is characterized by constant ratios between the 
Fitted Temporal Trends (Table  1, Row J), and identi-
cal constant ratios between the Fitted Cohort Patterns 
(Table 1, Row I). Model-based estimates for these EF are 
also more precise than the corresponding unconstrained 
estimates obtained under the N-PH model.

Conversely, under PH-L, the Longitudinal Age Curves are 
all proportional (Table 1, Row G), but the cohort deviations 
(Table 1, Row C) are heterogeneous. However, because the 
period deviations are all equal (Table 1, Row D), differences 
between the Fitted Temporal Trends (Table 1, Row J) vary 
linearly and are estimated with increased precision.

Model selection
Each PH model can be evaluated for lack-of-fit via P-val-
ues. Even so, P-values don’t always tell the whole story. 
Information Theory provides a means to balance statisti-
cal significance with predictive utility; for this purpose, we 
will use the Bias-Corrected Akaike Information Criterion 
( AICc) , as recommend by Burnham and Anderson [37].

Hypothesis‑based comparative analysis: results
Example 1: Sex differences in meningioma
Composite Tests for proportionality fail to reject PH-T, 
but strongly reject PH-L, PH-X, and PH-A (Fig.  4A). 

Therefore, based on P-values, the rates are PH-T. Fur-
thermore, the AICc is minimized for PH-T (Fig. 4B), and 
no other model comes close.

Figure 4 panels C – H present EF curves based on the 
PH-T model (females, solid blue; males, dashed red). The 
female excess narrows with age (Fig. 4C and E). Incidence 
is increasing in successive birth cohorts (Fig.  4D) but 
slowing over time (Fig. 4F) at the same rate in women and 
men. Incidence is increasing in every age group (Local 
Drifts, Fig. 4G). The U-shaped pattern in the Local Drifts 
reflects that the moderation that occurred among Baby 
Boomers was not sustained in younger birth cohorts 
(Fig. 4D). Increases over time in the younger cohorts may 
reflect increases in clinical detection activities (e.g., brain 
imaging) over time [38]. The Gradient Shifts are parallel 
and stable (Fig. 4H).

Example 2: Race/ethnic differences in myeloma
The rates are PH-T based on P-values (Fig. 5A), but PH-A 
has the lowest AICc (Fig. 5B). Indeed, neither the PH-T 
model nor any other model comes close. EF curves based 
on the PH-A model are shown in Fig.  5 panels C – H. 
Incidence by age is highest among NHB, lowest among 
API, and nearly identical among NHW and HIS (Fig. 5C 
and E). Under PH-A, the LD curves do not differ by 
race/ethnicity (Fig. 5G). The gradient shifts (Fig. 5H) are 
equal with an inverted U-shape. Incidence over time is 
increasing most rapidly in the youngest age groups with 
the same annual percentage changes in each race/ethnic 
group. Based on the PH-A model parameters, Myeloma 
incidence is consistently 2.24-fold (95% Confidence 
Interval [CI]: 2.2 – 2.3) higher in NHB versus NHW; 
marginally lower (CH-RR = 0.95, 95% CI: 0.91 – 0.99) in 
HIS versus NHW, and 0.37-fold (95% CI: 0.33 – 0.40) 
lower in API versus NHW (based on CH-RR values of 
0.63 (95% CI: 0.60 – 0.66).

Pattern heterogeneity
Epidemiologists say that “patterns” are heterogeneous 
when two or more parameters vary across stratum. This 
is distinct from generic heterogeneity of a single param-
eter. There are many notable examples of pattern hetero-
geneity in the literature [39–44].

In the setting of a Comparative Analysis, we define Pat-
tern Heterogeneity as the occurrence of differences or 
diversity in proportional relationships (as determined by 
multiple parameters, Table 1) between subsets of strata. 
We can identify Pattern Heterogeneity by modeling par-
titions of the strata and ranking the partitions by predic-
tive utility, as measured by the bias-corrected AIC for the 
partition. We will call this process a Multiplex Analysis 
because the algorithm can be parallelized.
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Fig. 4 Meningioma incidence: model selection and estimable functions. A Composite goodness‑of‑fit tests [11] for proportionality (PH‑L, PH‑T, 
PH‑X, PH‑A) and EF parallelism (Par‑LAC, parallel Longitudinal Age Curves; Par‑CAC, parallel Cross‑Sectional Age Curves; Par‑FTT, parallel Fitted 
Temporal Tends; Par‑FCP, parallel Fitted Cohort Patterns). Abscissa values show − log10 (P – Values). B Bias‑corrected AIC values, AICc , relative 
to the model with lowest AICc . C – H Females, solid blue curves, Males, dashed red curves. Longitudinal Age Curves (C), Fitted Cohort Patterns (D), 
Cross‑Sectional Age Curves (E), Fitted Temporal Trends (F), Local Drifts (G), and Gradient Shifts (H). All curves are estimated under the PH‑T model. C, 
D, E, and F EF rates per 100,000 on the natural log scale. G and H EF annual percentage changes

Fig. 5 Myeloma incidence: model selection and estimable functions. See legend to Fig. 4 for details. NHW, solid blue, NHB, dot‑dash red, HIS, dash 
Green, API, dotted magenta. All curves estimated under the PH‑A model
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For example, suppose we have G = 4 stratum 
A,B,C , andD . A partition is a division of the strata into 
non-overlapping subsets, e.g.,

Call the set of non-empty subsets SG = {∫1, ∫2, . . . , ∫N } 
and the corresponding set of partitions PG = {p1, p2, . . . , pB} . 
For G = 4 , N = 15 and B = 15 . The number of partitions 
B is described by Bell’s numbers [45], and efficient algo-
rithms are available to enumerate the partitions [46, 47].

Bell’s numbers increase exponentially: The first 10 are 
B = 1, 2, 5, 15, 52, 203, 877, 4140, 21147, and 115975.

To determine the bias-corrected AIC value for each 
partition pb, b = 1, 2, . . . ,B we need to keep track of its 
constituent subsets in SG and the order of occurrence 
of those subsets. Record these values in a B× N  corre-
spondence matrix TG.

Algorithm 1. Multiplex analysis [37]

Exploratory comparative analysis: example
Site differences of in situ melanoma
Observed data are shown in Fig. 6A (left column). Results 
of a Multiplex Analysis are summarized in Fig.  6B. The 
best-fit partition which appears in the lower-left corner 
of the plot in Panel B identifies pattern heterogeneity: 

{ABCD}, {A}|{BCD}, {B}|{ACD}, . . . , {AB}|{CD}, . . . , {AB}|{C}{D}, . . . , {A}|{B}|{C}|{D}

head and neck (H) and upper limb (U) are PH-L, whereas 
trunk (T) and lower limb (L) are PH-X. No other parti-
tion fits as well. Fitted values for this partition are shown 

in Fig. 6A (right column). The fitted values are very simi-
lar to the observed values.

EF curves for this configuration are shown in Fig. 7. For 
head and neck (HN) and upper limb (UL), the Longitudi-
nal Age Curves are parallel (Panel A), whereas the Cross-
Sectional Age Curves and Local Drifts are not (Panels B 
and C, respectively). Indeed, whereas incidence of HN 
is increasing at a qualitatively similar annual percentage 
change over time in all age groups, with increasing age, 
UL is increasing much more quickly than HN over time. 
In contrast, for trunk (Tr) and lower limb (LL), the Cross-
Sectional Age Curves (Panel E) and the Local Drifts 
(Panel F) are parallel, but the Longitudinal Age Curves 
are not (Panel D). In every age group, Tr increased by 
0.7 (95% CI: 0.30 – 1.15) percent per calendar year faster 
than LL.

Discussion
In practice, comparative studies can be surprisingly hard. 
This reflects the multivariate nature of the problem. Each 
stratum-specific rate matrix spans four timescales, each 
with informative EF, and there are four relevant cross-
hazard proportionalities. Our new methods automate 
and streamline the identification of key similarities and 
differences between stratum within a comprehensive 
framework. In this regard, we believe the summary of 
our results for hypothesis-based comparative studies in 
Table 1 provides a helpful overview for the practitioner.

In brief, under PH-L the age-associated natural history 
curves in each stratum are parallel, but the cohort and 
period effects are not. In contrast, under PH-T, the natu-
ral histories are distinct, but the cohort and period effects 
are parallel. Under PH-X, differences between strata are 
modulated through the Net Drifts and period deviations. 
Under PH-A, stratum-specific event rates differ only by 
constants.

As illustrated by our examples, our approach can pro-
vide new insights. For meningioma, the female excess 
narrows with age, but temporal patterns are strikingly 
similar over time and across generations – a textbook 
example of PH-T. For male myeloma, the disparity 
among black men has long been recognized, but the 
absolute proportionality of the rates across race/ethnic 
groups has not. For melanoma in NHW females, our 
exploratory approach identified proportional Longitu-
dinal Age Curves and distinct Local Drifts for HN and 
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UL, versus distinct Longitudinal Age Curves and pro-
portional Local Drifts for Tr and LL. In our experience, 
our examples are typical, not outliers. In ongoing stud-
ies of other cancers, proportionality – with and without 
pattern heterogeneity – is a common occurrence. These 
findings provide new clues for cancer researchers and 
medical decision makers to follow.

In our view, the reasons for these successes are 1) our 
method’s reliance on information theory, specifically, the 
bias-corrected AIC statistic, to drive the model selection 
process, 2) the New Model often provides an excellent 
second-order approximation to the rates in each stra-
tum, and 3) the proportionality relationships that the 
method is designed to detect, i.e., PH-L, PH-T, PH-X or 
PH-A (Fig. 3), make the most sense from an epidemio-
logic perspective.

Our exploratory approach builds upon the foundation 
provided by our hypothesis-based approach. Indeed, 
within any given subset of a partition, if a PH model 
holds (more or less, given the limitations discussed 
below), it’s a win–win-win: It simplifies the story; it 

identifies which EF drives cross-hazard heterogeneity; it 
provides increased precision. In contrast, if the rates are 
N-PH, then one can conclude that the rates are undeni-
ably heterogeneous. In that case, all the EF contribute to 
the cross-hazard differences, and any description of the 
data should make note of this fact.

Our approach has several limitations. The famous 
aphorism “all models are wrong, but some are useful 
[48]” describes our approach to a “T”. The New Model, 
which provides the foundation for both hypothesis-
based and exploratory comparative analysis, can never be 
entirely correct. Furthermore, it is naïve to assume that 
a PH model could flawlessly characterize relationships 
between strata. Occasionally, more than one PH model 
or partition may have similar bias-corrected AIC values. 
When that happens, the fitted values are similar, but it 
remains unclear which model or partition provides the 
most robust insight. In this situation, one could employ 
model averaging [37].

With these limitations in mind, Algorithm 1 for Mul-
tiplex Analysis can readily be performed for 2 ≤ G ≤ 8 

Fig. 6 NHW female melanoma incidence by site: multiplex analysis. A Heat maps of observed data (left column) and optimal fitted values (right 
column). B Model selection. Abscissa values �b =

(
AIC∗

c p
b
− AIC∗

c p
opt

)
, b = 1, . . . , 15 , differentials of bias‑corrected AICc for the 15 partitions of 4 

strata, versus the overall minimum. Body site codes are Head and Neck, blue “H”, Upper Limb, purple “U”, Trunk, green “T”, and Lower Limb, pink “L”. 
The optimal partition number is 4, which consists of subsets {HU}{TL}. Y‑axis Label {L}{X} indicates that subset {HU} is PH‑L and subset {TL} is PH‑X
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strata. Because the algorithm can be parallelized (see 
Online Supplement Part 2), it appears feasible for slightly 
larger values of G . Even so, the complexity of the analy-
sis increases exponentially with G , and for G = 12 , the 
number of partitions exceeds 4.2 million. At some point, 
one must restrict the number of strata or evaluated par-
titions. As illustrated here, many important problems 
involve fewer than 10 strata. Furthermore, adding more 
strata isn’t necessarily better, because the bias correc-
tion term increases as the square of the number of added 
parameters, which tends to make our methods less sen-
sitive as G increases.

Bayesian methods are attractive when G > 10 [49–51]. 
Bayesian analysis can estimate the distribution of EF 
across an arbitrary number of strata assuming that the 
parameters are realizations from an estimated posterior 
distribution. This approach implies that the parameters 
are broadly similar. In contrast, a Multiplex Analysis 
of 2 ≤ G ≤ 10 strata in search of pattern heterogeneity 

does not make the same assumption. Perhaps hybrid 
multi-scale methods could be developed that marry the 
strengths of each approach. In the context of a spatial 
age-period-cohort analysis, regions could be partitioned 
using Multiplex Analysis, and small areas within related 
regions could be modeled using Bayesian methods.

Another complementary approach for small G prob-
lems is to smooth the Lexis diagrams up front using a 
non-parametric approach, and then extract features of 
interest from the de-noised data [6, 7, 33, 52–54]. For 
example, estimates of age-specific period slopes from 
the smoothed data can be compared to Local Drifts 
from the Multiplex Analysis. Consistency between the 
two approaches would bolster conclusions from the 
model.

Comparative analysis using purely descriptive 
approaches is time consuming and labor intensive. 
Our new methods provide a comprehensive, coherent, 
and reproducible method for small G problems. This 

Fig. 7 Melanoma incidence: estimable functions. A‑C PH‑L model results for Head and Neck (HN) and Upper Limbs (UL). D‑E PH‑X model results 
for Trunk (Tr) and Lower Limbs (LL). A, B, D, and E Longitudinal and Cross‑Sectional Age Curves. Rates per 100,000 on the natural log scale. C 
and F Local Drift annual percentage changes
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covers many outstanding questions in cancer surveil-
lance research. Our essential R code, sample data, and 
vignettes are freely available.

Conclusions
It is now possible to evaluate whether estimable functions 
(EF) from stratified age-period-cohort models are essen-
tially equal, parallel, or distinct. These relationships reflect 
the presence or absence of proportionality across the strata, 
conditional on age, period, or birth cohort. Stratum-spe-
cific EF that incorporate proportionality are more precise. 
Comparative Analysis can test a priori hypotheses, or it can 
identify differences or diversity in proportional relation-
ships between subsets of strata (“pattern heterogeneity”). 
These new methods can help researchers tackle many out-
standing questions in cancer surveillance research.
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