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Abstract 

Background  Fractures are rare events and can occur because of a fall. Fracture counts are distinct from other count 
data in that these data are positively skewed, inflated by excess zero counts, and events can recur over time. Analytical 
methods used to assess fracture data and account for these characteristics are limited in the literature.

Methods  Commonly used models for count data include Poisson regression, negative binomial regression, hurdle 
regression, and zero-inflated regression models. In this paper, we compare four alternative statistical models to fit 
fracture counts using data from a large UK based clinical trial evaluating the clinical and cost-effectiveness of alterna-
tive falls prevention interventions in older people (Prevention of Falls Injury Trial; PreFIT).

Results  The values of Akaike information criterion and Bayesian information criterion, the goodness-of-fit statistics, 
were the lowest for negative binomial model. The likelihood ratio test of no dispersion in the data showed strong evi-
dence of dispersion (chi-square = 225.68, p-value < 0.001). This indicates that the negative binomial model fits the data 
better compared to the Poisson regression model. We also compared the standard negative binomial regression 
and mixed effects negative binomial models. The LR test showed no gain in fitting the data using mixed effects nega-
tive binomial model (chi-square = 1.67, p-value = 0.098) compared to standard negative binomial model.

Conclusions  The negative binomial regression model was the most appropriate and optimal fit model for fracture 
count analyses.

Trial registration  The PreFIT trial was registered as ISRCTN71002650.

Keywords  Fracture counts, Poisson regression, Negative binomial regression, Count data, Excess zero counts

Introduction
Reducing fractures in older people is a public health 
priority. Few community-based clinical trials of frac-
ture prevention have been sufficiently powered to show 
reductions in fractures [1, 2]. Inevitably, sampling par-
ticipants from the general population means that only a 
very small proportion of the target population sustain a 
fracture over the period of observation. For a large UK 
cluster randomised controlled trial (RCT) (63 general 
practices, n = 9803 participants) investigating a screen 
and treat approach offering falls prevention interventions 
to prevent falls and fractures, we required an appropriate 
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statistical strategy for the trial analyses. The Prevention 
of Falls Injury Trial (PreFIT) methods and results have 
been reported in detail elsewhere [2–4].

Statistical methods specifically for analysing fracture 
counts are less common in the literature, compared to 
methods for the analyses of falls. Fracture data are dis-
tinct from other count data for a number of reasons, 
including: (a) the majority of data are positively skewed 
with a large proportion of zero events; (b) multiple frac-
tures can occur at one anatomical site at the same time 
(e.g. hand, foot or rib fractures); (c) fracture events can 
be recurrent, in that some people can fracture repeatedly 
over a period of time, and (d) some have multiple injuri-
ous falls with multiple fracture events. A Cochrane sys-
tematic review of interventions to prevent falls in older 
people identified 62 trials that had used inappropriate 
statistical analysis methods to test intervention efficacy 
[5]. Some trials incorrectly assumed normality for distri-
bution of falls data and used linear regression and t-tests, 
whereas other trials used analysis of variance. The num-
ber of falls or fractures over time are count data, often 
positively skewed with a large proportion of zeros. There 
are several recommended methods for analysing count 
data, namely, Poisson regression, generalised Poisson 
regression, negative binomial regression, hurdle regres-
sion, and zero-inflated regression [6]. However, it is not 
clear which statistical method works best when count 
data are positively skewed with a large proportion of zero 
counts.

Robertson et. al. [7] compared the performance of 
negative binomial regression with two different sur-
vival analysis methods (Andersen-Gill and marginal 
Cox proportional hazards regressions) using data from 
two randomised trials testing the Otago home exercise 
programme to prevent falls. The authors recommended 
using negative binomial regression to measure the effi-
cacy of fall prevention trials. However, the research team 
did not compare the performance of negative binomial 
regression to other methods of analysing count data. 
The superseded Cochrane systematic review [8] identi-
fied that many trials used negative binomial regression 
to compare the intervention between treatment arms, as 
recommended by Robertson [7]. Guthrie et. [9] investi-
gated the performance of different statistical methods for 
skewed counts using genetic data and showed that nega-
tive binomial regression performed well compared to the 
other methods for count data. However, it was unclear 
how well the negative binomial distribution would per-
form when data have more than 95% zero counts. In this 
study, we undertook a secondary analysis to examine the 
utility of different statistical models that take account 
of count data, using the example of fracture events. We 

propose these issues should be considered in future anal-
yses of fracture outcomes in clinical trials.

The paper is organised as follows. We firstly present 
a brief introduction to Poisson distribution, Poisson 
regression, negative binomial regression, hurdle and 
zero-inflated regression models. We then present our 
analyses using the PreFIT dataset, describing the good-
ness-of-fit statistics and results for each statistical model. 
Finally, we discuss the implications of our findings.

Data
We used anonymised data from a completed, large UK-
based, three-arm pragmatic cluster RCT, PreFIT [10]. 
The aim of the trial was to compare the clinical and cost-
effectiveness of three alternative fall prevention interven-
tions: advice only, advice with exercise, and advice with 
multifactorial falls prevention (MFFP), in adults aged 
70 years and older. Sixty-three general practices (total 
9803 participants) were randomised into three interven-
tion arms: 21 practices [3223/9803 (33%) participants] to 
advice only; 21 practices [3279/9803 (33%)] to exercise, 
and 21 practices [3301/9803 (34%)] to MFFP. The primary 
outcome was fractures over 18 months, expressed as the 
fracture rate per person per 100 years [2]. We ascertained 
fractures using multiple methods, from a) UK National 
Health Service (NHS) Digital Hospital Episode Statis-
tics (HES) (Admitted Patient Care and Accident and 
Emergency data); b) general practices using consultation 
codes, x-ray reports and hospital correspondence; and 
c) participant self-report collected by postal survey. All 
fracture events were independently confirmed by a panel 
of clinicians blinded to treatment allocation.

Overview of analytical approaches
The poisson distribution
The Poisson distribution is commonly used to model the 
number of events (count data) over a specified period 
[11]. The Poisson distribution assumes that (i) the prob-
ability of an event occurring in a distinct and non-over-
lapping interval of time is independent of the probability 
of an event occurring in other intervals, and (ii) the prob-
ability of an event occurring in an interval is proportional 
to the length of the interval [12]. Both the mean and the 
variance of Poisson distribution are equal to the only 
parameter of the distribution, which is calculated as the 
rate of the occurrence of the events.

Poisson, negative binomial, hurdle, and zero‑inflated 
regression models
The Poisson regression, negative binomial regression, 
hurdle regression, and zero-inflated regression models 
are generalised linear models widely used to model count 
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data. We briefly discuss the assumption of each of these 
models (Table 1).

The Poisson regression model assumes that the mean 
and variance of the outcome are the same [12], which is 
a very strong assumption and is unlikely to hold in prac-
tice. With count data, it is commonly observed that the 
variance of the outcome is greater than the mean of the 
outcome, known as over-dispersion. Negative bino-
mial regression is widely used for over-dispersed count 
data [13, 14]. Sometimes count data contain excess zero 
counts relative to data from a standard Poisson distri-
bution. For example, the number of GP (general prac-
tice) visits for seasonal flu within a population could be 
inflated by zero counts by those who did not have flu. 
In such cases, there are two types of zero counts in the 
data: (i) the number of GP visits is zero (certain zeros) for 
those who did not have flu and thus did not visit their GP, 
and (ii) the number of GP visits is zero (sampling zeros) 
for those who had flu but did not attend their GP. The 
zero-inflated models are used in such cases. The certain 
zeros, also known as structural or non-risk zeros, are due 
to some specific structure in the data as they will always 
be zero [14, 15]. A logit model is used to predict the prob-
ability of these zero counts. Sampling or at-risk zeros, 
with other positive counts, can be modelled using Pois-
son or negative binomial regression. The hurdle model 
assumes that all zeros are structural, that is, certain zero 
due to some structure of the data, and the positive values 
are due to sampling [16, 17].

Presence of repeated observations
In a cluster RCT, it is assumed that the observations are 
more likely to be similar within the same cluster com-
pared to observations in the other clusters [18]. Ignor-
ing such dependencies between the observations in the 
same cluster will underestimate the standard error of 
the parameter estimates and, consequently, will result 
in an inflated type I error rate [19]. One way to account 
for such intra-cluster dependencies is to include a ran-
dom effect term into the model, called a mixed effects 
model. In cohort studies and clinical trials, it is com-
mon for participants to have variable follow-up times. In 

such cases, the natural logarithm of the follow-up peri-
ods is included in the model as an offset term to allow us 
to model counts in proportion to the variable follow-up 
periods. In clinical trials, individuals or clusters of indi-
viduals are randomly allocated to intervention groups. 
This randomisation ensures that interventions groups 
are balanced, on average, in terms of baseline covari-
ates. However, this assumption might not be valid with 
small number of clusters in each group [20]. To account 
for possible imbalance between the arms, the analysis 
model is usually adjusted for baseline covariates, which 
increases the credibility of the trial findings and improves 
the statistical power [21].

Data Analysis
The Prevention of Falls Injury Trial (PreFIT) dataset
In this post-hoc analysis, we applied the four regression 
models described in Sect.  3.2 to the PreFIT dataset. As 
described, the primary outcome was the rate of frac-
tures over the 18 months period per person per time 
unit. The follow-up periods varied by participant. Table 2 
shows the distribution of the number of fractures over 18 
months by the three intervention arms. Of the 9803 par-
ticipants, 9424 (96%) participants had no fractures and 
379 (4%) participants had at least one fracture over the 18 
month follow-up period. The distribution of the number 
of fractures across the intervention arms were similar. 
The mean and variance of the number of fractures were 
0.05 and 0.07, respectively, which suggests over disper-
sion in the data.

People can experience multiple fractures from one 
fall. Instead of recording the number of fractures asso-
ciated with each fall, the trial recorded the number of 
fall-related fracture episodes over the entire follow up 
period, which represents the total number of times a 
participant had fractures due to falling. Table  3 shows 
the distribution of the number of fracture episodes by 
three intervention arms. We observed that 9424/9803 
(96%) participants had zero fracture episodes, 356/9803 
(3.6%) participants had a single fracture episode only, 
and 23/9803 (0.3%) participants had repeated fracture 
episodes, that is, more than one fracture episode over 18 

Table 1  Possible statistical models and assumptions for count data

Model Assumptions

Poisson regression Mean and variance are equal

Negative binomial regression Overdispersion in the data, where variance is greater than mean

Zero-inflated model Two sources of zeros: “structural” and “sampling”. Structural zeros are due to some spe-
cific structure in the data and sampling zeros are due to Poisson or negative binomial 
distribution

Hurdle model All zeros are from a “structural” source and all positive values are from a “sampling source”
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months follow up. The number of fracture episodes was 
evenly distributed across the intervention arms. It was 
not possible to fit a statistical model to compare fracture 
episodes due to the small number of participants with 
repeated episodes (n = 23; 0.3%).

Statistical analysis
As discussed in section Poisson, negative binomial, hur-
dle, and zero-inflated regression models, the zero-inflated 
model assumes two sources of zeros (structural and sam-
pling) and the hurdle model assumes certain zeros in the 
data. In the PreFIT dataset, the zero fracture counts were 
sampling zeros and we, therefore, did not consider zero-
inflated and hurdle models although had 96% zero counts 
in the data.

A series of four models were fitted: Poisson regres-
sion, negative binomial regression, mixed effects Pois-
son regression, and mixed effects negative binomial 
regression. We included an offset in each of the models 
to account for variable follow up periods. Models were 
adjusted for the baseline covariates of age, gender, GP 
deprivation score, and natural logarithm of baseline falls 
count. We adjusted for the natural logarithm of baseline 
falls count because the distribution of baseline falls count 
was highly skewed and this approach fitted the model 

better compared to adjusting for baseline falls count. We 
added 0.5 to the zero baseline falls count for mathemati-
cal convenience. To account for the possible dependency 
among the observations from the same general practice, 
we included a random effect for general practices in the 
mixed effects models. The rate ratios (RaRs) with 95% 
confidence interval (CI) were calculated to compare the 
effects of the active intervention arms (exercise or MFFP) 
versus the control arm (advice). The goodness-of-fit of 
the models was assessed using Akaike information cri-
terion (AIC) and Bayesian information criterion (BIC). 
Lower values of AIC and BIC indicate a better fit. We also 
used the likelihood ratio (LR) test to test the following 
hypotheses: (i) there was no dispersion in the data, that 
is, there was no gain of using standard negative bino-
mial regression over standard Poisson regression, (ii) the 
mixed effects Poisson model fitted the data better com-
pared to the standard Poisson model, and (iii) the mixed 
effects negative binomial model fitted the data better 
compared to the standard negative binomial model. We 
used STATA (version 17) to analyse data.

Table 4 presents the goodness of fit statistics, AIC and 
BIC, for each of the four considered models. The results 
show that both AIC and BIC values are the lowest for 
the negative binomial model, which means the negative 
binomial model fitted the fracture data better compared 
with the other three models. The LR test of no dispersion 
in the data showed strong evidence of dispersion (chi-
square = 225.68, p-value < 0.001). This indicates that the 
negative binomial model fitted the data better compared 
to the Poisson regression model. When we compared the 
mixed effects Poisson regression model and the standard 

Table 2  Distribution of number of fracture events amongst 9803 
participants over 18 months by PreFIT treatment arm

Figures in parentheses are column percentages, and the sum of column 
percentages might not be exactly 100 because of rounding

No. of Fractures Advice
N (%)

Exercise
N (%)

MFFP
N (%)

Total
N (%)

0 3113 (96.6) 3153 (96.2) 3158 (95.7) 9424 (96.1)

1 93 (2.9) 104 (3.2) 121 (3.7) 318 (3.2)

2 13 (0.4) 18 (0.6) 17 (0.5) 48 (0.5)

3 2 (0.1) 4 (0.1) 4 (0.1) 10 (0.1)

4 2 (0.1) 0(0) 0(0) 2 (0.02)

6 0 (0) 0(0) 1 (0.03) 1 (0.01)

Total 3223 3279 3301 9803

Table 3  Distribution of fracture episodes in participants by 
intervention arm

Figures in parentheses are column percentages, and  the sum of column 
percentages might not be exactly 100 because of rounding

No. of 
fracture 
episodes

Advice
N (%)

Exercise
N (%)

MFFP
N (%)

Total
N (%)

0 3113 (96.6) 3153 (96.2) 3158 (95.7) 9424 (96.1)

1 102 (3.2) 121 (3.7) 133 (4.0) 356 (3.6)

 >  = 2 8 (0.3) 5 (0.2) 10 (0.3) 23 (0.3)

Total 3223 3279 3301 9803

Table 4  Goodness of fit statistic and likelihood test results for 
model comparisons

AIC Akaike Information Criterion, LR Likelihood ratio. aAdjusted for baseline 
covariates age, gender, deprivation score and log of baseline falls count, bLR test 
of mixed effects Poisson regression vs standard Poisson regression, cLR test of 
dispersion, dLR test of mixed effects NB regression vs standard negative binomial 
regression, and ethe LR tests results are for the unadjusted models

Regression Models AIC BIC LR teste

Poisson

  Unadjusted 3875.85 3897.42 -
-  Adjusted1 3528.97 3579.11

Mixed effects Poisson

  Unadjusted 3866.23 3895.00 Chi-square value = 11.62b

  Adjusteda 3527.10 3584.40 p-value < 0.001

Negative Binomial (NB)

  Unadjusted 3652.17 3680.93 Chi-square value = 225.68c

  Adjusteda 3363.62 3420.93 p-value < 0.001

Mixed effects NB

  Unadjusted 3652.50 3688.45 Chi-square value = 1.67d

  Adjusteda 3363.62 3420.93 p-value = 0.10
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Poisson regression, the LR test showed strong evidence 
(chi-square = 11.62, p-value < 0.001) that the mixed-effect 
Poisson model fitted the data better compared to the 
standard Poisson model.

Finally, we compared the standard negative bino-
mial regression and mixed effects negative binomial 
models. The LR test showed no gain in fitting the data 
using mixed effects negative binomial model (chi-
square = 1.67, p-value = 0.098) compared to standard 
negative binomial model. In addition, the same adjusted 
AIC and BIC for the standard negative binomial regres-
sion model and mixed-effect negative binomial regres-
sion model indicated that there was no clustered 
structured in the data although the data came from a 
large, multicentre trial. It is important here to note that 
one should fit mixed-effect negative binomial regression 
models first over the standard negative binomial model 
when data are clustered.

Therefore, the negative binomial regression model was 
the best fit for the fracture data among the considered 
possible models based on AIC value and LR test. Table 5 
presents the adjusted and unadjusted rate ratios (RaRs) 
from the negative binomial regression for fractures over 
18 months. The advice arm was used as the reference 
group in the primary analyses for PreFIT. The unadjusted 
and adjusted fracture RaRs (95% Cis) for the exercise 
group compared to those randomised to advice were 1.11 
(95% CI: 0.84, 1.46) and 1.20 (95% CI: 0.91, 1.59), respec-
tively, indicating a statistically non-significant increase 
in fracture rate in the exercise group compared to advice 
only. For the comparison of MFFP with advice only, the 
unadjusted and adjusted fractures RaRs were 1.27 (95% 
CI: 0.97, 1.66) and 1.30 (95% CI: 0.99, 1.71), respectively, 
also indicating a statistically non-significant increase in 
fracture rate in the MFFP group compared to advice only.

Discussion
We explored the utility of several statistical models to fit 
fracture counts recorded within a large pragmatic clini-
cal trial. Despite being the largest UK falls prevention 
trial to date, recruiting almost 10,000 older people and 
observing outcomes over 18 months, the PreFIT dataset 

had a low proportion of fall-related fractures overall and 
thus an excess of zero events. Fracture count data have 
distinct properties including positively skewed distribu-
tion, potential for recurrent fracture events, and multiple 
fracture events at one or more anatomical sites at time of 
injury.

We can summarise our findings as follows. Firstly, the 
zero-inflated and the hurdle models were not eligible 
to model fracture counts although our data had excess 
zeros. This is because zero fracture counts equate no 
fracture whereas zero-inflated models assume two zero 
generating processes and the hurdle models assumes 
‘certain’ zeros. Secondly, based on the goodness-of-fit 
statistics, the standard Poisson model did not fit the data 
well. This was because there was data over-dispersion, 
but the Poisson model ignored this by assuming equal-
ity between mean and variance. The negative binomial 
model fitted the model better compared to the standard 
Poisson model as it accounted for the over-dispersion. 
The extended Poisson model and the extended negative 
binomial model, incorporating a random effect term to 
account for possible dependence among observations, 
did not give any gain over standard Poisson and standard 
negative binomial model, respectively. This suggests that 
the correlation between the two observations from the 
same cluster are negligible. Therefore, the negative bino-
mial model fitted the fracture count data in the PreFIT 
dataset very well.

In our dataset, there were no missing fracture counts 
due to rigorous data collection using national hospital 
statistics and GP/radiographic records and triangula-
tion approaches to confirm self-reported and routinely 
reported fracture events across the whole recruited sam-
ple. Therefore, we did not undertake sensitivity analy-
sis. However, in practice, it is common to have missing 
counts. In such cases, one needs to consider sensitiv-
ity analysis under different missingness mechanisms 
to check the validity of model results. Our findings are 
based on this sample of community-dwelling older adults 
recruited from primary care thus may not apply to other 
clinical studies with much higher fracture event rates e.g. 
hospitalised or screened osteoporotic populations. We 

Table 5  Adjusted and unadjusted rate ratios (RaRs) with 95% CI and p-values from the negative binomial regression for fractures over 
18 months

a Advice is the reference group
b Adjusted for baseline covariates age, gender, deprivation score and log of baseline falls count. CI Confidence Interval

Treatment comparisonsa Unadjusted Adjustedb

Rate ratio (95% CI) p-value Rate ratio (95% CI) p-value

Exercise vs Advice 1.11 (0.84, 1.46) 0.45 1.20 (0.91, 1.59) 0.08

MFFP vs Advice 1.27 (0.97, 1.66) 0.19 1.30 (0.99, 1.71) 0.06
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therefore encourage further work to externally validate 
our models.

In conclusion, after comparing four alternative statisti-
cal models for the analyses of fracture counts, we found 
that the negative binomial regression model was the best 
model to fit fracture counts with excess zeros within our 
large trial dataset of over 9000 older people. We recom-
mend that this analytical approach should be considered 
for future population based studies recording fracture 
events.
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