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Abstract 

Background INTEROCC is a seven-country cohort study of occupational exposures and brain cancer risk, includ-
ing occupational exposure to electromagnetic fields (EMF). In the absence of data on individual exposures, a Job 
Exposure Matrix (JEM) may be used to construct likely exposure scenarios in occupational settings. This tool was con-
structed using statistical summaries of exposure to EMF for various occupational categories for a comparable group 
of workers.

Methods In this study, we use the Canadian data from INTEROCC to determine the best EMF exposure surrogate/
estimate from three appropriately chosen surrogates from the JEM, along with a fourth surrogate based on Berk-
son error adjustments obtained via numerical approximation of the likelihood function. In this article, we examine 
the case in which exposures are gamma-distributed for each occupation in the JEM, as an alternative to the log-nor-
mal exposure distribution considered in a previous study conducted by our research team. We also study using those 
surrogates and the Berkson error adjustment in Poisson regression and conditional logistic regression.

Results Simulations show that the introduced methods of Berkson error adjustment for non-stratified analy-
ses provide accurate estimates of the risk of developing tumors in case of gamma exposure model. Alternatively, 
and under some technical assumptions, the arithmetic mean is the best surrogate when a gamma-distribution is used 
as an exposure model. Simulations also show that none of the present methods could provide an accurate estimate 
of the risk in case of stratified analyses.

Conclusion While our previous study found the geometric mean to be the best exposure surrogate, the present 
study suggests that the best surrogate is dependent on the exposure model; the arithmetic means in case of gamma-
exposure model and the geometric means in case of log-normal exposure model. However, we could present a bet-
ter method of Berkson error adjustment for each of the two exposure models. Our results provide useful guidance 
on the application of JEMs for occupational exposure assessments, with adjustment for Berkson error.
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Background
In a retrospective cohort study, it is a challenge to 
find accurate measures of exposure to hazardous sub-
stances and radiation. Group-based exposure surro-
gates, such as those provided by job exposure matrices 
(JEM) in occupational epidemiological studies, are 
usually used to establish past exposures [1]. Another 
solution is to use a Berkson error model providing a 
model of the unobserved actual exposure via avail-
able exposure estimates, such as those derived from 
JEMs. While adjustment for Berkson error is an attrac-
tive concept, there remain open questions about the 
robustness of such approaches, as well as which expo-
sure surrogates are best in different situations that may 
be encountered in practice.

Epidemiologists frequently make use of both pro-
spective and retrospective cohort studies to identify 
risk factors for adverse health outcomes. In both cases, 
the goal is to identify risk factors that can discriminate 
between cases experiencing the adverse health effect 
of interest and controls who do not demonstrate this 
adverse effect. Mantel and Haenszel (1959) demon-
strated the importance of stratification on covariates 
related to the outcome of interest and gave an estima-
tor of the odds ratio formed by combining estimators 
from individual strata [2]. Truett, Cornfield and Can-
nel (1967) extended this pioneering work using a lin-
ear discriminant function to best discriminate between 
cases and controls for a given potential risk factor [3]. 
Day and Kerridge (1967) considered a method of dis-
crimination based on maximum likelihood estimation 
that reduced the existing discriminant procedures to 
multivariate discriminant analysis [4]. The logistic 
discrimination function used by Day and Kerridge for 
dichotomous outcomes was generalized by Ander-
son (1972), in [5], to the polychotomous situation to 
accommodate three or more population groups. Pren-
tice (1976) was the first to consider a binary logistic 
regression model for retrospective exposure probabili-
ties that led to a direct estimate of the odds ratio [6]. 
This method was popularized in the well-known text on 
statistical methods for case–control studies by Breslow 
and Day (1980), in [7], which gave a detailed analysis 
of case–control studies and explained the advantages 
of conditional logistic regression over unconditional 
logistic regression [8]. Yanagawa (1979) provided in [9] 
an insightful discussion of the design of those types of 
studies, which up until this time had been retrospective 
in nature.

The notion of prospective studies in which exposed 
subjects would be followed to identify incident cases of 
the disease of interest was introduced by Prentice and 

Pyke (1979) in [10], extending previous work by Ander-
son (1972) in [5] and Breslow et  al. (1978) in [11] for 
retrospective studies. In 1993, Wang and Carrol [12], 
generalized Prentice and Pyke’s results to robust logistic 
studies. Zhang (2006) subsequently extended this meth-
odological work to a broader class of statistics using 
unbiased estimating equations [13].

Berkson error happens when using group exposure 
measurement in place of the actual individual measure-
ments. This differs from classical measurement error, 
which arises due to inaccuracies in the measurement 
process. Berkson error does not lead to biased estimates 
in linear regression but can cause biased estimates of 
parameters in nonlinear models. Classical measurement 
error, on the other hand, can occur in various studies and 
can lead to biased estimates of relationships between var-
iables. Both types of errors require careful identification 
in studies and the application of relevant statistical pro-
cedures to mitigate their effect on the results; otherwise, 
they may lead to misled conclusions. See [14] for more 
details about both types of errors.

In this article, we evaluate new approaches to adjust-
ing JEM-based occupational exposure estimates for 
Berkson error in stratified and non-stratified analy-
ses, using both logistic and Poisson regression. The 
main assumption is that variation in exposure about 
the true value follows a gamma distribution, a com-
mon choice in exposure modeling, e.g. [15, 16]. In [1], 
a non-stratified analysis using logistic regression was 
only considered under the assumption that the expo-
sure is following a lognormal distribution. We deter-
mine the accuracy in the new methods and robustness 
of the exposure estimates to the change in assumptions 
using computer simulation. For the simulations to be 
relevant to real-world conditions, we use actual data 
from the INTEROCC study [17] to guide the simula-
tion study. The theoretical and simulation compo-
nents of this work are based on a maximum likelihood 
approach that facilitates Berkson error adjustment in 
extremely low frequency (ELF) electromagnetic field 
exposures. We show how the choice of the statistical 
model to describe exposure (lognormal versus gamma 
distributions) can affect the performance of the Berk-
son error adjustment and the exposure surrogates 
considered.

Methods
Canadian INTEROCC study
INTEROCC was a follow-up to the 13 country INTER-
PHONE [18] study of risk factors for brain cancer. 
While the primary goal of INTERPHONE was to 
investigate the association between brain cancer and 
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use of mobile phones, socio-demographic, medical, 
occupational and other potential risk factors were also 
examined.

The INTEROCC study is a collaborative effort 
between 7 of these 13 countries (Australia, Canada, 
France, Germany, Israel, New Zealand, and the United 
Kingdom). One of the specific aims of INTEROCC was 
to investigate a possible association between occupa-
tional exposure to EMF and brain tumors (glioma and 
meningioma). This study used a JEM comprised of 
full-shift measurements of the TWA magnitudes of 
the ELF magnetic field B, in micro-tesla (μT). Each job 
was coded to the ISCO 1968 and 1988 occupational 
classification and each industry to the ISIC 1971 clas-
sification [19].

Out of 9,536 subjects in this cohort study, the Cana-
dian component is comprised of 813 subjects of which 
165 are brain cancer cases and the remaining 648 are 
controls. Each subject is classified by gender, educa-
tion, age, and urban center. There are four education 
subclasses (primary-secondary, intermediate college, 
tertiary or do not know), four different age groups 
(< 40, 40—49, 50—50, and 60 + years of age), and three 
urban centers (Montreal, Ottawa, and Vancouver) 
within this database.

This study uses the Canadian INTEROCC database 
in a simulation study that simulates the brain cancer 
cases at different selected odd ratios based on simu-
lating individual exposures using the job histories of 
the subjects. The odds ratios are then estimated using 
different exposure surrogates and the Berkson error 
adjustment described below. The study uses the JEM 
which consists of full-shift measurements of the TWA 
(time-weighted average) of the ELF magnetic field B, in 
micro-tesla (µT). The corresponding data were grouped 
by their ISCO (International Standard Classification of 
Occupation) codes [19]. The entries in the JEM were 
aggregated from different exposure studies to provide 
the arithmetic mean (AM) and standard deviation (SD), 
and the geometric mean (GM) and geometric standard 
deviation (GSD).

Modeling exposures
Let the exposure Xij for the  ith subject in the  jth occupation 
be modeled using any probability density function f (x) . 
Here, we will use the gamma distribution.

The cumulative magnetic field (MF) exposures for sub-
ject i = 1, . . . , N is given as

(1)CumMFi =
Ji

j=1
tijXij,

where Ji is the number of jobs held by subject i, tij is the 
time (in years) spent by subject i in job j with annual 
exposure Xij , and N is the number of subjects. We use a 
gamma probability distribution for Xij with shape param-
eter rj= AM2

j /SD
2
j   and rate  �j = AMj/SD

2
j ,which are 

determined using the JEM to determineCumMFi.

Berkson error adjustment
The likelihood function in the Berkson error model is 
obtained by integrating across the exposure error distri-
butions as

(Here and elsewhere, boldface symbols are used to rep-
resent vectors and matrices.)

Also, let y =
(

y1, y2, . . . , yN
)

 be the vector of responses 
of the N  subjects.

Ordinary logistic regression
In a non-stratified analysis, we would use ordinary logis-
tic regression for which the following proposition is used 
for Berkson error adjustment.

Proposition 1 For β0 ≥ 0, β1 > 0, and gamma exposure 
model, Eq. (2) can be expressed as

where

The proof of proposition 1 is given in Appendix I.

Remark Modeling exposure with other probability dis-
tributions with moment generating function MX (t) (if it 
exists) will only affect the results in the right-hand side of 
Eq. (4). That is,

and

(2)L
(

y|β0,β1, r, �
)

=

∫ ∞

0
f
(

y|β0,β1, x
)

f (x|r, �)dx.

(3)L(y|β0,β1, r, �) =

N
∏

i=1

(pi(r, �))
yi (1− pi(r, �))

1−yi

pi(r, �) =

∞
∑

n=0

(−1)nexp
(

−nβ0

) 1

∏Ji
j=1

(

1+
nβ1tijSD

2
j

AMj

)AM2
j /SD

2
j

.

∞
∫

0

exp
(

−nβ1tijxij
)

fXij

(

xij
)

dxij = MXij

(

−nβ1tij
)

pi(r, �) =

∞
∑

n=0

(−1)nexp
(

−nβ0

)

Ji
∏

j=1

MXij

(

−nβ1tij
)

.
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The gradient and Hessian of the log-likelihood of the 
adjusted ordinary logistic regression model is given in 
Appendix II.

Proposition 2 For the gamma exposure model with 
β0 ≥ 0andβ1 > 0,  if AM/SD is sufficiently large for all jobs, then 
the AM is the best surrogate (to approximate exposure) and

where

Proof of proposition 2
Notice that when AM/SD is very large, then

And

This completes the proof. □

Poisson regression
For exposures Xij modeled using the gamma distribution 
given above and

where the rates �(β0,β1, xi) are defined by

we have the following proposition.

Proposition 3 For the gamma exposure model with 
β0 ≥ 0andβ1 > 0, Eq. (2) can be expressed as

L(y|β0,β1, r, �) =

N
∏

i=1

(pi(AM))yi(1− pi(AM))1−yi

pi(AM) =
exp

(

β0 + β1
∑Ji

j=1 tij AMj

)

1+ exp
(

β0 + β1
∑Ji

j=1 tij AMj

) .

∏Ji

j=1

(

1+
nβ1tijSD

2
j

AMj

)AM2
j /SD

2
j

≈
∏Ji

j=1
exp

(

−nβ1tijAMj

)

= exp

(

−nβ1
∑Ji

j=1
tijAMj

)

∞
���

0

pi(x)

Ji
�

j=1

fXij

�

xij
�

dxij ≈

∞
�

n=0

(−1)nexp
�

−nβ0

�

exp



−nβ1

Ji
�

j=1

tijAMj





=
exp

(

β0 + β1
∑Ji

j=1 tijAMj

)

1+ exp
(

β0 + β1
∑Ji

j=1 tijAMj

) .

Yi ∼ Poisson(�(β0,β1, xi))

�
�

β0,β1, xi
�

= E
�

Yi|β0,β1, xi
�

= exp



β0 + β1

Ji
�

j=1

tijxij





where

The proof of Proposition 3 is given in Appendix I.

Proposition 4 For the gamma exposure model with 
β0 ≥ 0andβ1 > 0, if AM/SD is sufficiently large for all 
jobs, then the AM is the best surrogate (to approximate 
exposure) and

where

Proof of proposition 4 The proof is similar to the proof 
of proposition 2.

Conditional logistic regression
If the N subjects are assigned to S strata according to 
covariates such as gender and age and there are  Nk con-
trol subjects for k = 1, 2, . . . , S , then the conditional like-
lihood under a logistic regression model is given by

(Breslow and Day 1980) [8]. Here, 0 : k and 0j : k refer 
to the case in stratum k and the case in stratum k with 
job index j ; and i : k and ij : k refer to the control subject 
number i in stratum k and the control subject number i 
in stratum k with job index j.

In one situation, the conditional logistic likelihood is the 
same as the conditional Poisson likelihood with 
Yi:k ∼ Poisson

(

exp
(

β1
∑Ji:k

j=1 tij:kxij:k

))

 for i = 0, 1, 2, . . . ,Nk (case 

(4)L(y|β0,β1, r, �) =

N
∏

i=1

1

yi!
q
(

yi, r, �
)

q
(

yi, r, �
)

=

∞
∑

n=0

(−1)n

n!
exp

(

(n+yi)β0

)

Ji
∏

j=1

1

(

1−
(n+yi)β1tijSD

2
j

AMj

)

AM2
j

SD2
j

.

L(y|β0,β1, r, �) =

N
∏

i=1

1

yi!
(�(β0,β1,AM))yi e−�(β0,β1,AM)

�(β0,β1,AM) = exp



β0 + β1

Ji
�

j=1

tijAMj



.

(5)

LC (β1) =

S
∏

k=1

exp
(

β1
∑J0:k

j=1 t0j:kx0j:k

)

exp
(

β1
∑J0:k

j=1 t0j:kx0j:k

)

+
∑Nk

i=1 exp
(

β1
∑Ji:k

j=1 tij:kxij:k

)
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and control subjects) for k = 1, 2, . . . , S , with the random 
variables Yi:k are independent for all i and k . That situation 
happens when y0:k = 1 and y1:k = · · · = yNk :k = 0 for all k 
( k = 1, 2, . . . , S).

Notice that for each k ( k = 1, 2, . . . , S)

Therefore,

which is the SoftMax function, leading to the afore-
mentioned equivalence.

Berkson error adjustment for Poisson regression: (revisited)
Following (Prentice 1982) [6], for exposures Xij that can 
be modeled using the gamma distribution considered 
above and

we have

Thus,

�

Y0:k |Y0:k + Y1:k + · · · + YNk :k = M
�

∼ Binomial



M,
exp

�

β1
�J0:k

j=1 t0j:kx0j:k

�

exp
�

β1
�J0:k

j=1 t0j:kx0j:k

�

+
�Nk

i=1 exp
�

β1
�Ji:k

j=1 tij:kxij:k

�



.

P
(

Y0:k = 1|Y0:k + Y1:k + · · · + YNk :k = 1
)

=

exp
(

β1
∑J0:k

j=1 t0j:kx0j:k

)

exp
(

β1
∑J0:k

j=1 t0j:kx0j:k

)

+
∑Nk

i=1 exp
(

β1
∑Ji:k

j=1 tij:kxij:k

)

Yi ∼ Poisson



exp



β1

Ji
�

j=1

tijxij









E(Yi|β1, x) = exp



β1

Ji
�

j=1

tijxij



.

E(Yi|β1, r, �) =

∞
∫∫∫

0

E(Yi|β1, x)

Ji
∏

j=1

fXij

(

xij
)

dxij

=

∞
���

0

exp



β1

Ji
�

j=1

tijxij





Ji
�

j=1

fXij

�

xij
�

dxij

=

Ji
∏

j=1

∞
∫

0

exp
(

β1tijxij
)

fXij

(

xij
)

dxij =
1

∏Ji
j=1

(

1−
β1tijSD

2
j

AMj

)

AM2
j

SD2j

which exists when β1tij < AMj/SD
2
j .

Remark Modeling exposure with other probability dis-
tributions with moment generating function MX (t) (if 
it exists) will only affect the results of the last equation. 

That is,

and

In the following, we investigate adjusting for Berkson 
error in conditional logistic regression through the con-
ditional Poisson likelihood and using

for i = 0, 1, 2, . . . ,Nk (case and control subjects) and  
k = 1, 2, . . . , S, that are independent for all i and k and 
when β1tij:k < AMj/SD

2
j  for all j . Thus, the adjusted con-

ditional logistic likelihood is

The gradient and Hessian of the log likelihood of the 
conditional logistic function are given in Appendix 
III. In that case, the following lemma gives a condi-
tion for when the AM could be used as a surrogate.

Proposition 5 For a gamma exposure model, if AM/SD 
is sufficiently large for all jobs, then the AM is the closest 
surrogate to the Berkson error adjustment.

Proof of proposition 5 When AM/SD is large, we 
have

∞
∫

0

exp
(

β1tijxij
)

fXij

(

xij
)

dxij = MXij

(

β1tij
)

E(Yi|β1) =

Ji
∏

j=1

MXij

(

β1tij
)

.

Yi:k ∼ Poisson









Ji:k
�

j=1

�

1−
β1tij:kSD

2
j

AMj

�−
AM2

j

SD2j









(6)

LC ,A(β1) =
∏S

k=1

∏J0:k
j=1

(

1−
β1t0j:kSD

2
j

AMj

)−
AM2

j

SD2j

∏J0:k
j=1

(

1−
β1t0j:kSD

2
j

AMj

)−
AM2

j

SD2j +
∑Nk

i=1

∏Ji:k
j=1

(

1−
β1tij:kSD

2
j

AMj

)−
AM2

j

SD2j

.
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Thus, using the conditional Poisson likelihood with

ensures that the AM is the closest surrogate to the sug-
gested Berkson adjustment in conditional logistic regres-
sion through conditional Poisson regression under the 
assumption of gamma exposure model.

Simulation of non‑stratified and stratified analyses
Figure 1 gives an overview of the simulation study based 
on the 813 subjects in the Canadian component of the 
INTEROCC study with continuous exposure. In the non-
stratified analysis, we use M = 10 as the approximation 
degree for the Berkson error adjustment which showed 
quick convergence. The following calculations were per-
formed in each simulation.

E(Yi|β1, r, �) =
1

�Ji
j=1

�

1−
β1tijSD

2
j

AMj

�

AM2
j

SD2j

≈
1

�Ji
j=1 exp

�

−β1tijAMj

�
= exp



β1

Ji
�

j=1

tijAMj



.

Yi:k ∼ Poisson



exp



β1

Ji:k
�

j=1

tij:kAMj









1. Occupational exposure for each subject is generated 
randomly according to Xij ∼ Gamma

(

(

AMj

SDj

)2

,
(SDj)

2

AMj

)

 for 

each job j held by subject i . Here, for each j ,  AMj 
and SDj are provided by the JEM. The cumulative 
exposure, CumMFj is then calculated for each j.

2. Using a pre-determined intercept β0 = 1 and allow-
ing a range of 0 to 0.4 for  β1 (with step-length = 0.01), 
the probability of developing a brain tumour is calcu-
lated as follows.

(a) For the non-stratified analysis, the probability pi 
that subject i develops a brain tumor is calculated as:

for i = 1, ...,N .

(b) For the stratified analysis, the probability pu:k that sub-
ject u in stratum k develops a brain tumor is calculated as:

pi =
1

1− exp(−β0 − β1CumMFi)

Fig. 1 Schematic representation of the simulation study of odds ratio estimation using each of the following continuous exposure metrics: 
GM = geometric mean; AM = arithmetic mean; MGM = modified geometric mean; and BA = Berkson error adjustment using numerical integration 
with approximation degree M = 10
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for u = 1, ..., Nk and k = 1, ..., S.
In both analyses, the range of slopes correspond to 

the range 1 to 1.5 for the odds ratios.

3. Simulation of cases and controls for the non-strati-
fied and stratified designs was done as follows.

(a) For the non-stratified analysis, we use a Ber-
noulli distribution with probability pi to ran-
domly generate the case status of subject i.

(b) For the stratified analysis, for each stratum k , 
we use a multinomial distribution with num-
ber of trials equal to one and probabilities 
( pu:k ; u = 1, ..., Nk ) to generate one case and 
set the rest of the subjects in the stratum to be 
controls.

4. Using each of the statistics AM , GM , MGM as a 
proxy for the actual exposure, the slope of the expo-
sure–response curve (the logarithm of the odds 
ratio) is then estimated. We then apply a Berkson 
error adjustment based on Proposition 1 for the non-
stratified analysis and Proposition 5 for the stratified 
analysis to estimate brain tumour risk.

5. We repeat steps 3 and 4 for 100 times and calculate 
the median estimate for the 100 estimates of the pre-
determined slope. (The median estimate is chosen as 
the measure of central tendency as the distribution 
is right skewed for each of the pre-determined slope 
values.)

6. Next, we repeat steps 1 through 5 for 100 times and 
calculate the mean, the 2.5% percentile, and the 97.5% 
percentile from the distribution of slope estimates.

For comparing the five different approaches to risk esti-
mation based on different exposure surrogates with one 
another, the bias defined by the average (over all simula-
tion runs) risk estimate minus the pre-determined target 
parameter was calculated. The root mean-square error, 
given by the square root of the sum of the variance esti-
mates and the square of the bias were also calculated. The 
variance here is the total variance calculated as the sum 
of the following two terms: one is the mean or average 
of the conditional variances, and the other is the variance 
of the conditional means with the simulated inputs being 
the condition in both these terms.

We did not perform a simulation study for Poisson 
regression as we expect the results to be essentially the 
same as those for ordinary logistic regression.

pu:k =

exp
(

β1
∑J0:k

j=1 tuj:kx0j:k

)

exp
(

β1
∑J0:k

j=1 tuj:kx0j:k

)

+
∑Nk

i=1 exp
(

β1
∑Ji:k

j=1 tij:kxij:k

)

Results of the simulation study
Using ordinary logistic regression and the approach 
described in Proposition 1, we observe that the Berkson 
adjusted surrogate shows the minimum bias (as depicted 
in Fig. 2a). It has, moreover, a negligible bias, see Fig. 2b. 
The AM and Berkson adjusted surrogate perform simi-
larly with respect to standard error, with the AM being the 
slightly better surrogate (see Proposition 2). Yet, the root 
mean squared error of the Berkson error adjustment com-
pensates for that slight better precision, see Fig. 2d.

Proposition 5 ensures that the AM to be the closest 
surrogate to using the suggested Berkson adjustment in 
conditional logistic regression under the assumption of 
gamma exposure model. That idea is observed in the sim-
ulation results by both showing very close degrees of bias 
in estimates of the logarithms of the odd-ratios. Yet, nei-
ther one of them shows any improvement in estimating 
the logarithms of the odd-ratios (see Fig.  3). Moreover, 
the GM gives very close estimates to theirs. That would 
indicate that using AM or GM as surrogates in stratified 
analyses are not leading to unbiased estimates.

Discussion
Many retrospective cohort studies face the challenge of 
ascertaining exposures prior to diagnosis of the disease of 
interest. In the absence of direct measurement of occu-
pational exposures, exposure models are often assumed 
by researchers to compensate for data unavailability. A 
Berkson error model combined with job exposure matri-
ces represents one such exposure model, with a Berkson 
error adjustment used to correct for the ensuing bias and 
increase in variability.

In this paper, we used numerical integration in Berk-
son error models for both ordinary and conditional logis-
tic regression to adjust for Berkson error in occupational 
exposure estimates derived from JEMs. We also consid-
ered Poisson regression as another statistical model. We 
also carried out simulation studies were guided by data 
from the Canadian component of the INTEROCC study 
of the association between EMF and brain cancer. In all 
cases considered, we assumed that the amount of ELF 
exposure follows a gamma distribution. In the ordinary 
logistic analysis approach the Berkson error adjustment 
was successful in generating estimates with the lowest 
bias and mean-squared error (MSE).

In previous work, Oraby et  al. (2018) [1] considered 
the distribution of the exposure during each job to be 
lognormal instead of gamma. For the bias comparisons 
with ordinary logistic regression in the lognormal sce-
nario, both GM and Berkson adjusted surrogates per-
formed equally well, whereas in the current gamma 
scenario, the Berkson adjusted surrogate outperforms all 
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other surrogates. For the root mean squared error com-
parisons, the GM and the Berkson adjusted surrogate 
are jointly best in the lognormal case, but the Berkson 
adjusted surrogate uniquely outperforms other exposure 
surrogates, except for some small values of the log likeli-
hood function in which the AM is better. With regards 
to standard error comparisons, these two are once again 
the best in the lognormal case, with the GM slightly out-
performing the Berkson adjusted surrogate; the AM and 
the Berkson adjusted surrogate are the two best surro-
gates in the gamma case with the AM slightly outper-
forming (only for smaller values) the Berkson adjusted 
surrogate. The case of GM for lognormal distribution and 
AM for gamma distribution might be due to that they 

are sufficient statistics for some of their parameters. Epi-
demiologists must consult the literature of the exposure 
type and decide upon the appropriate exposure model 
or use an external exposure study. If there is not enough 
information about the exposure, then both AM and GM 
must be used since each one of them can give a different 
conclusion.

Some epidemiological stratified analyses use the arith-
metic mean and the geometric mean as surrogates in 
retrospective cohort studies. In those studies, research-
ers use conditional logistic regression as described in 
this paper. We have shown that in that case Berkson 
adjustment as well as using the arithmetic mean and the 
geometric mean as surrogates do not provide accurate 

Fig. 2 Bias in the estimates of (a) the log odds ratios using the four-exposure metrics: GM = geometric mean, AM = arithmetic mean, 
MGM = log-normal mean, and Berkson error adjustment using numerical integration. b The same outputs are shown only for the best approach: 
Berkson error adjustment using numerical integration for (c) the standard error (d) the root mean square error
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estimates of the logarithms of the odds-ratios. That must 
shed some light on the challenge in finding models of 
exposures for stratified analyses in those cohort studies.

We have shown that using Berkson error adjustment 
and surrogates when the statistical analyses are done using 
conditional logistic regression lead to inaccurate estimates. 
Hence, there remains a need to find accurate and precise 
exposure surrogates that can be reliably used in conditional 
logistic regression. Berkson error adjustment for other 
regression models, such as the Cox proportional hazard 
model, and other models of exposure, such as power law 
models, are also important open research topics.

Conclusions
The results presented in this paper show that in case of 
gamma exposure models, using methods of Berkson error 
adjustment are far better than using surrogates. That 
conclusion along with our earlier results about the case 
of log-normal exposure model [1] support the conclusion 
that the presented Berkson error adjustment methods are 
more accurate, and show be directly used. The conclu-
sions in this paper raise doubts about the results of epide-
miological studies based on stratified and non-stratified 
analyses that use surrogates from job exposure matrices 
without validating the assumptions discussed here and in 
our earlier paper. They also provide a solution to them in 
case of non-stratified analyses, whereas the case of strati-
fied analyses remains an open problem.
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