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Abstract 

Background Growth studies rely on longitudinal measurements, typically represented as trajectories. However, 
anthropometry is prone to errors that can generate outliers. While various methods are available for detecting outlier 
measurements, a gold standard has yet to be identified, and there is no established method for outlying trajecto‑
ries. Thus, outlier types and their effects on growth pattern detection still need to be investigated. This work aimed 
to assess the performance of six methods at detecting different types of outliers, propose two novel methods for out‑
lier trajectory detection and evaluate how outliers affect growth pattern detection.

Methods We included 393 healthy infants from The Applied Research Group for Kids (TARGet Kids!) cohort and 1651 
children with severe malnutrition from the co‑trimoxazole prophylaxis clinical trial. We injected outliers of three types 
and six intensities and applied four outlier detection methods for measurements (model‑based and World Health 
Organization cut‑offs‑based) and two for trajectories. We also assessed growth pattern detection before and after out‑
lier injection using time series clustering and latent class mixed models. Error type, intensity, and population affected 
method performance.

Results Model‑based outlier detection methods performed best for measurements with precision between 5.72‑
99.89%, especially for low and moderate error intensities. The clustering‑based outlier trajectory method had high 
precision of 14.93‑99.12%. Combining methods improved the detection rate to 21.82% in outlier measurements. 
Finally, when comparing growth groups with and without outliers, the outliers were shown to alter group  
membership by 57.9 ‑79.04%.

Conclusions World Health Organization cut‑off‑based techniques were shown to perform well in few very particular 
cases (extreme errors of high intensity), while model‑based techniques performed well, especially for moderate errors 
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Introduction
Postnatal growth is a continuous and dynamic process 
that extends from birth until early adulthood [1–3]. Lon-
gitudinally growth monitoring aims to evaluate children’s 
nutritional and health status, with growth-monitoring 
programs being a critical part of pediatric health care and 
public health programs [4–8]. While utilization of longi-
tudinal measurements is crucial, it entails data-cleaning 
challenges related to the temporality and the unique 
nature of child growth. First, outliers in growth data have 
natural relations with previous and subsequent measure-
ments [9]. Moreover, the natural variations in body fat 
and lean mass proportion during physical development 
and various clinical conditions, such as edema, can affect 
measurements. These anomalies can create extreme out-
liers (potentially biologically implausible values or BIVs) 
or “milder” outliers that deviate from the main core of 
measurements while being potentially plausible [10, 11]. 
While BIVs can be detected using standard thresholds 
such as those provided by the World Health Organiza-
tion (WHO) [12], “milder” outliers are more challenging 
because of their unclear definition and effects on the sta-
tistical analyses [13, 14].

Various methods exist for detecting outliers in growth 
measurements. The WHO growth standards cut-offs 
(i.e. +5/-5 for body mass index-for-age z-scores) detect 
BIVs in static measurements [12]. However, the growth 
standards aim to describe how children ‘should’ grow, 
not how they ‘do’ grow under non-optimal settings [15], 
and they do not account for the growth points before or 
after the potential outlier measurement. Other outlier 
detection methods consider the longitudinal nature of 
growth. Residuals post-model-fit and influential obser-
vations in a model assessment can be used for outlier 
detection. Other methods include the representation 
of trajectories within the context of a whole dataset for 
outlier visual assessment [16, 17], and future growth 
prediction approaches that detect outliers by comparing 
them against predicted values derived from children’s 
previously collected data [9, 18–21]. Limitations of these 
approaches include low sensitivity (i.e., the proportion of 
true outlier measurements correctly identified as outli-
ers), specific requirements for a minimum number of 
measurements per-subject trajectory to be available and 
the focus on detecting outlier measurements instead of 

entire trajectories. Even though visual assessment [16, 
17] can be used to detect entire outlier trajectories, this 
approach is impractical when analyzing larger epide-
miological datasets. A more practical approach to detect 
outlier trajectories is crucial because trajectories are 
essential tools for growth monitoring.

Clustering-based techniques are an important category 
of outlier detection methods [22–27], under the hypothe-
sis that extreme or irrelevant cases are further away from 
the main core of data and thus more isolated. However, 
the use of clustering for detecting outliers in the domain 
of human growth still needs to be explored. We previ-
ously [28] tested the performance of the clustering-based 
Multi-Model Outlier Measurement Detection method 
(MMOM) versus the modified method for biologically 
implausible values detection (mBIV), which is adapted 
for longitudinal measurements and is based on the WHO 
fixed cut-offs [29]. While both methods accounted for the 
longitudinal nature of growth measurements, MMOM 
performed better at identifying three different types of 
synthetic outliers [28]. This previous work focused only 
on two outlier measurement detection methods, one 
population, and one error intensity for the three types 
of injected outliers. Here we studied two child popula-
tions with different nutritional statuses (malnutrition vs 
normal or accelerating growth) to evaluate the applicabil-
ity of outlier detection methods, not only on a measure-
ment level but also on a trajectory level, focusing mainly 
on clustering-based techniques. Further, we assessed the 
effect of different outlier intensities on the performance 
of outlier detection methods and determined the impact 
of outliers on growth pattern detection.

Methods
Datasets
Two datasets, corresponding to two child populations, 
were studied. The first included 2,354 infants from 
The Applied Research Group for Kids (TARGet Kids!) 
cohort (www. clini caltr ials. gov, NCT01869530) [30]. 
TARGet Kids! is the largest ongoing primary health-
care-based network in Canada that recruits children 
from birth to 5 years from the Greater Toronto Area 
(Ontario, Canada). According to the provincial immu-
nization and developmental screening schedule, chil-
dren visit the pediatrician at ages 2, 4, 6, 9, 12, 18 and 24 

of low intensity. Clustering‑based outlier trajectory detection performed exceptionally well across all types and inten‑
sities of errors, indicating a potential strategic change in how outliers in growth data are viewed. Finally, the impor‑
tance of detecting outliers was shown, given its impact on children growth studies, as demonstrated by comparing 
results of growth group detection.

Keywords Growth outliers, Clustering, Growth measurements, Trajectories
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months, with an additional post-partum screening visit 
scheduled within the first 30 days of life [30]. During 
these visits, weight and length are measured following 
established procedures [31]. Age- and sex-standardized 
weight-for-length values (zWFL) were generated using 
the WHO Child Growth Standards (2016) [12].

The second dataset included 1,955 children from the 
co-trimoxazole (CTX) prophylaxis trial (www. clini caltr 
ials. gov, NCT00934492) [32]. CTX was a randomized, 
double-blind, placebo-controlled trial that recruited 
children aged between 60 days and 59 months with 
severe malnutrition from four hospitals in Kenya. 
Anthropometry was conducted at enrolment, once 
per month for up to 6 months, and then twice a month 
from 6 to 12 months [32]. Age- and sex-standardized 
values for weight, and mid-upper arm circumference 
(MUAC) measures (zWA, zMUAC, respectively) were 
generated using the WHO Child Growth Standards 
(2016) [12]. Data included in both datasets were doubly 
entered, checked, and previously cleaned. In this per-
spective, detection accuracy was assessed only based 
on the artificially entered (injected synthetic) outliers 
and not on any previously existing outliers, as these 
were removed as part of the data cleaning process. This 
was done to create a controlled dataset and ensure cer-
tainty about the outlier detection.

Experimental design
As shown in Fig. 1, we applied six outlier detection meth-
ods, four for single time-point outliers and two for tra-
jectory outliers (Supplementary section  1), which were 
compared based on their ability to detect the respective 
kind of outliers for both child population and growth 
measures. For single time-point outliers, we used: 1) a 
static BIV detection method based on the fixed WHO 
cut-off values (sBIV) [12], 2) a modified BIV detection 
method for longitudinal measurements using the WHO 
cut-off values (mBIV), 3) a multi-model outlier measure-
ment detection method based on clustering (MMOM) 
[12], and 4) a single-model outlier measurement detec-
tion method (SMOM). For trajectory outliers, we used: 
1) a clustering outlier trajectory detection method based 
on hierarchical clustering (HC) (COT) and 2) a multi-
model outlier trajectory detection method designed to 
consider sub-groups of growth trajectories (MMOT). 
Next, we generated three types of synthetic errors ran-
domly in both datasets to create global (exceed the WHO 
standards) and contextual (within the context of an indi-
vidual child) [33] outliers: moderate to extreme (Type a), 
extreme (Type b), local (Type c), and all types combined 
(ALL) [20]. This comparison was conducted for four dif-
ferent scenarios: (i) a dataset with type a errors only, (ii) 
a dataset with type b errors only, (iii) a dataset with type 

Fig. 1 Study experimental design. The study involves 3 steps: a) the injection of synthetic outliers of different types and different intensities, 
b) the application of the outlier detection methods for outlier measurements and outlier trajectories, and c) the evaluation of the impact 
of outliers on growth pattern detection. Abbreviations: TARGet Kids!, the applied research group for kids; zWFL ; weight‑for‑length z‑scores ; zWA, 
weight‑for‑age z‑scores; CTX, the co‑trimoxazole prophylaxis trial; zMUAC, mid‑upper arm circumference‑for‑age z‑scores; SD, standard deviation; 
mBIV, modified method for biologically implausible values detection; sBIV, static detection method for biologically implausible values based 
on fixed WHO cut‑off values ; MMOM, multi‑model outlier measurement detection method; SMOM, single‑model outlier measurement detection 
method; COT, clustering‑based outlier trajectory detection method; MMOT, multi‑model outlier trajectory detection method

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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c errors only, and (iv) a dataset with types a, b and c. If 
a measurement was previously altered, another measure-
ment was chosen at random. We also generated 6 differ-
ent intensities, between 0.5 and 5 standard deviations 
(SDs), for each type: Type a was created by adding a posi-
tive (+) or negative (-) error of a standard normal distri-
bution (μ=0, σ=1) to random measurements; Type b was 
created by adding a positive (+) error between 0.5 SD 
and 5 SD of a standard normal distribution (μ=0, σ=1) 
to the absolute value of random measurements (result-
ing in measurements greater than 3 or 4 z-scores); Type 
c was created by adding ± times the SD of an individual’s 
trajectory to random measurements of that specific indi-
vidual (Supplementary Section 1). Outliers were injected 
in 5% of the dataset measurements for each type of error, 
resulting in 15% outliers for ALL types which were gen-
erated by adding up type of errors a, b, c (more details 
in Supplementary Section 1). The synthetic outliers were 
flagged and used as the “gold standard” for each of the 
six evaluation methods . The simulation experiments 
were conducted for each dataset for the different types of 
errors and different error intensities The outlier simula-
tions were repeated 100 times.

Outlier detection methods (Table 1)
Details for the sBIV, mBIV and MMOM methods were 
provided previously [28] and only key information is 
given here, for clarity.

• Static BIV detection based on fixed outlier removal 
WHO cut-off values – sBIV: This method is based on 
the static cut-offs established by the WHO for child 
growth [29]. Accordingly, cut-off values are estab-
lished to categorize growth for various growth met-
rics including BMI, weight, and height/length for 
age z-scores. For example, zWFL growth <-5 SD or 

>5 SD is considered biologically implausible. In the 
context of this work, the sBIV method is applied in 
a cross-sectional manner, meaning per time-point of 
anthropometric measurement.

• Modified BIV detection method - mBIV: This method 
is a modified version of sBIV, described previously, as 
used within the TARGet Kids! cohort [12]. Accord-
ing to this method, a time-point measurement is 
flagged as a potential outlier according to the previ-
ous thresholds used in sBIV. However, in this case, 
prior and subsequent measurements of the subject to 
which the flagged measurement belongs are checked 
within 2 years. If no other measurement close to the 
flagged measurement, within 2 SD units, exists, then 
the flagged measurement is confirmed as an outlier. 
If such measurement exists, then this implies that the 
individual measurement is not an outlier but belongs 
to a particular subject/trajectory overall. The detailed 
process of mBIV is depicted in Supplementary Fig-
ure 1. More details on mBIV method and a compari-
son with sBIV are provided in Supplementary Sec-
tion 2.

• Single-model outlier measurement – SMOM: The 
premise of the method, as it was outlined in mBIV, is 
that it may make more sense to seek outliers, not with 
respect to the individual according to fixed global 
thresholds, but with respect to the population that 
theindividual belongs in. To this end, we extracted 
an average trajectory from the entire studied popu-
lation by calculating the average measurement per 
time-point. An individual’s measurements beyond 
±2 SDs of the population mean for that time-point, 
were considered outliers. The ±2 SDs threshold is 
derived from a normal distribution, where 4.55% of 
the observations in a normally distributed dataset 
are expected to lie outside this range. This method is 

Table 1 Key characteristics of the employed outlier detection methods

a Combination of fixed thresholds (i.e. WHO) and dynamic thresholds or values derived from the dataset (including averages, number of clusters and so on)

Method Key characteristics

Type of detection method Types of outliers Input parameters Advantages

Static BIV (sBIV) Standardized Measurements Fixed cut‑offs Simple

Modified BIV (mBIV) Empirical Measurements Fixed cut‑offs Time consensus, simple

Single‑model outlier measurement 
detection (SMOM)

Statistical based Measurements Semi‑dynamica, based  
on the dataset

Population adjusted

Multi‑model outlier measurement 
detection (MMOM)

Statistical and clustering based Measurements Semi‑dynamic, based  
on the dataset

Group‑adjusted

Clustering‑based outlier trajectory 
(COT)

Clustering based Trajectory Dynamic, based on data size Population adjusted

Multi‑model outlier trajectory 
(MMOT)

Statistical and clustering based Trajectory Semi‑dynamic, based  
on the dataset

Group‑adjusted
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used as the second baseline for the time-point outlier 
detection.

• Multi-model outlier measurement detection - 
MMOM: The motivation behind this method is that 
prior research has shown that more than one distinct 
group might be present in growth data [34]. Under 
this assumption, we searched for outliers in the con-
text of groups (or clusters) instead of considering the 
dataset as a single population or conserning specific 
individuals. For this method, we employed partition-
ing clustering (K-means) with Euclidean distance 
to detect clusters of growth trajectories [35]. The 
obtained clusters were then evaluated using a visual 
assessment of the clustering tendency (VAT), a tool 
that facilitates the visual assessment of cluster ten-
dency in an unsupervised manner [36]. An average 
trajectory was derived per identified cluster and was 
based on the average measurement per time-point of 
all the trajectories in the same cluster. Outliers were 
flagged as follows: 1) the measurement of partici-
pants was averaged across each time-point separately 
for each cluster; 2) Using the average as a reference, 
we detected outliers that lay beyond ±2 SDs of the 
individual’s assigned cluster. The reason for choosing 
K-means is that partitioning algorithms tend to pro-
duce uniformly sized groups. For outlier detection, 
this is important because it avoids the creation of 
clusters that are too small or too large, where outliers 
do not have a significant impact.

• Multi-model outlier trajectory detection – MMOT: 
We employed the same multi-model principle as 
described above to detect outlier trajectories. Once 
again, we used K-means clustering with Euclidean 
distance to identify clusters and generated average 
models per cluster. Based on these, we calculated the 
mean and standard deviation of the residual sum-of-
square (RSS) errors of all trajectories within a par-
ticular cluster. Finally, we considered as outliers the 
trajectories that had a greater than 2 SDs RSS error 
from the average model of their cluster. In practice, 
this method aims at finding trajectories that do not 
“fit” well in the cluster model, as represented by the 
average trajectory. Average representative trajectories 
were calculated for each cluster as described in the 
MMOM method, i.e., the trajectory with the average 
measurements per time-point of all subjects belong-
ing to the same cluster.

• Clustering-based outlier trajectory detection – COT: 
A different approach to detecting outlier trajectories 
is evaluated based on hierarchical clustering (HC). 
Unlike partitioning algorithms, like K-means, HC 
tends to create unbalanced clusters with the potential 
of detecting some small clusters. In principle, these 

clusters should be further away from the population’s 
main core, indicating potential outliers. This premise 
is further supported using the complete linkage cri-
terion [34]. This linkage criterion uses an algorithm 
that classifies trajectories into clusters based on the 
shortest distance between their furthest data points. 
This linkage favours clusters of smaller diameter and 
higher in-cluster cohesion but does not necessarily 
optimise separation between clusters [35]. Thus, out-
liers should be isolated within small clusters, which 
was evaluated by determining the number of clusters 
(nc) using formula (1) and the total number of partic-
ipants (n) as specified in [23]. This formula generates 
enough clusters so that the more unrelated clusters 
are kept disconnected and further away from the rest 
of the dataset.

Evaluation of detection methods on synthetic outliers
The first evaluation was based on the injected simu-
lated outliers described previously. Injection created a 
controlled dataset and a set of known “true” outliers to 
compare against, providing an objective method to assess 
the performance of a detection method, given the per-
fect knowledge regarding the location of outliers. For 
per time-point detection, a true positive occurs when 
a method detects an outlier at the same time-point as 
the simulation approach injected it. A true positive for 
outlier trajectories occurs if a method detects an out-
lier trajectory that contains at least one injected outlier 
measurement. We also evaluated the performance when 
combined to assess the full potential of the proposed out-
lier detection methods. We performed pair-wise combi-
nations for both per time-point and trajectory methods 
(i.e., mBIV-sBIV, mBIV-MMOM, MMOM-SMOM, and 
COT-MMOT). We examined if the applied combination 
improved the results of the individual methods.

Impact of outlier detection methods on growth pattern 
analysis
To assess the impact of the outlier detection methods on 
the analysis of growth patterns, we conducted trajectory 
clustering upon two versions of the TARGet Kids! and 
CTX datasets: 1) original dataset, 2) original dataset with 
the addition of all synthetic outliers (type ALL) for each 
error density (Fig.  1). Growth patterns were detected 
using two clustering methods to take into account the 
effect of the method on cluster membership [34]: time 
series clustering (TSC) with HC, Euclidean distance 
and complete linkage [37], and latent class mixed mod-
els (LCMM) [38]. The natural cluster tendency of our 

nc = max(2,
n

10
)
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datasets was assessed using the VAT tool [36] for TSC. 
For LCMM, the Bayesian Information Criterion was used 
to determine the optimal number of clusters and the tra-
jectory shape. Group trajectories of obtained clusters 
were represented as smooth trending lines within each 
cluster using a locally estimated scatterplot smooth-
ing (LOESS) method [39]. The clustering configurations 
obtained were compared based on their agreement, the 
percentage of subjects consistently grouped in the same 
clusters between clustering methods.

Sensitivity analysis
We conducted two different sensitivity analyses; the first 
aimed to assess the impact of a different density of outli-
ers. In our original experiments, synthetic outliers were 
randomly injected in 15% of the measurements, replacing 
the original measurements and resulting in one to two 
outlier data points for each child. For the first sensitivity 
analysis, we injected outliers in 30% of the children with 
four outliers each. This way we kept the same number of 
injected outliers but concentrated in fewer children. For 
the second sensitivity analysis, we modeled the popula-
tion average trajectory using linear mixed effects models 
and examined whether the model fit is affected by outli-
ers using root-mean-square error as a measure of model 
performance.

Statistical analysis
For each method (sBIV, mBIV, SMOM, MMOM, COT, 
MMOT) and their combinations, performance was 
evaluated using sensitivity, specificity and precision in 
detecting the flagged outliers (sensitivity and specific-
ity formulas available in Supplementary Section  3), and 
Cohen’s kappa statistic to test the agreement between the 
results of a method and the set of “true” injected outli-
ers [40]. Independent samples t-test and analysis of vari-
ance (ANOVA) with Tukey’s test were used to compare 
the performance between methods adjusted for multiple 
comparisons. Analyses were conducted using R version 
4.1.2 [41] and Stata 17 (StataCorp LP, College Station, TX, 
USA). The code artifacts can be found at https:// github. 
com/ Comel li- lab/ detec ting- outli er- measu remen ts- and- 
traje ctori es- in- longi tudin al- child ren- growth- data.

Results
Datasets characteristics and outlier injection
From the 2,342 infants originally considered from the 
TARGet Kids! dataset, 1,961 were excluded because a) 
they were born preterm (<=37 weeks) or very low birth 
weight (<1,500 g) (clinical criteria, n=1,127) and b) had 
at least one missing weight or length measurement (data 
quality criteria, n=734). Ultimately, we included 393 chil-
dren with 3,144 measurements from the TARGet Kids! 

dataset. For the CTX dataset, from the 1,778 children 
considered initially, 221 were excluded because of the 
same clinical criteria, while 929 and 976 for zWA and 
zMUAC respectively, because of data quality criteria. 
Finally, we included 849 children with 7,641 measure-
ments for zWA and 802 children with 7,218 measure-
ments for zMUAC from the CTX dataset (Supplementary 
Table 1).

For the TARGet Kids! dataset, we generated 471 syn-
thetic outlier measurements (157 for each of the three 
errors Type a, b, and c). A manual inspection before out-
lier injection revealed one additional BIV zWFL, which 
according to the synthetic outlier definition previously 
described, was included as a Type a error. In the end, for 
each error intensity, we created 4 outlier datasets con-
taining outliers of Type a (n=158), Type b (n=157), Type c 
(n=157) or all combined error types (ALL, n=472). These 
outliers were considered “true” outliers and expected to 
be identified by the various detection methods. For out-
lier trajectories, we considered only the dataset with all 
types of errors (ALL) injected. For the subjects that had 
at least one outlier in this dataset when considering all 
types of errors (ALL), we injected outliers in 279 subjects 
with 1.6 outliers per subject on average.

For the CTX dataset and the zWA measurements, we 
generated 1,146 synthetic outliers (382 for each of the 
three errors Type a, b and c). For the subjects that had at 
least one injected outlier in this dataset, when consider-
ing all types of errors (ALL), we injected outliers in 648 
subjects with a mean of 1.76 outliers per subject. For the 
zMUAC measurements, 1,083 synthetic outliers were 
generated (approximately 361 for each of the three types). 
For the subjects that had at least one outlier in this when 
considering all types of errors (ALL), we injected outliers 
in 615 subjects with 1.76 outliers per subject on average.

Method performance evaluation for each outlier detection 
method
Method performance per error types and densities are 
shown in detail in Fig. 2, Supplementary Tables 2, 3a, b 
and summarized below. Tables 2 and 3 show summaries 
of method performance. Since specificity levels were 
relatively high for all methods, due to the relatively low 
proportion of true outlier measurements, and sensitivity, 
precision and kappa follow similar trends, only sensitivity 
will be discussed here.

sBIV
Sensitivity to detect outliers ranged between 0.2-99.62%, 
precision 2.46-98.5%, kappa <0.01-0.96 and specificity 
between 98.8-99.86% in multiple combinations of data 
and injected outliers. The lowest values were observed at 
the lowest error intensity (0.5 SD), and vice versa for the 

https://github.com/Comelli-lab/detecting-outlier-measurements-and-trajectories-in-longitudinal-children-growth-data
https://github.com/Comelli-lab/detecting-outlier-measurements-and-trajectories-in-longitudinal-children-growth-data
https://github.com/Comelli-lab/detecting-outlier-measurements-and-trajectories-in-longitudinal-children-growth-data
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highest error intensity (5 SD). Lower values for sensitiv-
ity, precision and Kappa were observed for Type a errors 
(because these errors may not always correspond to a 
BIV, especially for low error intensities). Higher values 
of sensitivity and Kappa were observed for Type b errors 
(the most extreme of the three types). Similarly, for preci-
sion in all (ALL) type of errors.

mBIV
Sensitivity ranged between 0.06-98.42%, precision 
between 3.50-99.58%, kappa between <0.01-0.96 and 
specificity between 99.71%-99.99% in multiple combina-
tions. The observations regarding the types and intensi-
ties of errors were identical to those for sBIV, which is 
expected as the two methods share the same conceptual 
basis.

SMOM
Sensitivity ranged between 5.68-99.68%, precision 
between 2.46-99.40%, kappa between <0.01-0.93, and 
specificity between 94.95-99.94%. As in sBIV and mBIV, 
all metrics values varied in an error-intensity man-
ner. However, low values for SMOM were observed for 
Type c (sensitivity, precision and Kappa) errors, which 
is expected as population-level models cannot capture 
deviations at the individual’s level. High values were 

observed for Type b (sensitivity, Kappa) and ALL types 
(precision) of errors.

MMOM
Sensitivity ranged between 5.72-99.08%, precision 
between 2.41-98.76%, kappa between <0.01-0.71, and 
specificity between 95.2-99.89%. Similarly to SMOM, 
the lowest values of MMOM were observed for the low-
est error intensity and Type c errors, while unlike SMOM 
the highest values were observed for the highest error 
intensity, Type a (sensitivity, Kappa) and ALL types (pre-
cision) of errors. Type a errors may result in trajectory 
shape deviations, which may be easier to detect with 
group-based methods.

COT
Sensitivity ranged between 25.83-99.83% (CTX-zWA), 
precision between 14.93-99.12%, kappa ranged between 
<0-0.90, specificity between 73.82-98.93%. Concerning 
types of errors, while high values were fairly consistent 
between Type a (sensitivity, Kappa) and ALL types (spec-
ificity, precision), low values were observed for errors: 
Type a for sensitivity, Type b for specificity, Type c for 
precision and Kappa.

Fig. 2 Sensitivity to detect outliers by detection method for each growth measure, error type and intensity. Abbreviations: TARGet Kids!, the applied 
research group for kids; CTX, the co‑trimoxazole prophylaxis trial; zMUAC, mid‑upper arm circumference‑for‑age z‑scores; SD, error intensity 
as number of standard deviations injected to measurements; mBIV, modified method for biologically implausible values detection; sBIV; sBIV, static 
detection method for biologically implausible values based on fixed WHO cut‑off values; MMOM, multi‑model outlier measurement detection 
method; SMOM, single‑model outlier measurement detection method; COT, clustering‑based outlier trajectory detection method; MMOT, 
multi‑model outlier trajectory detection method
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MMOT
Sensitivity ranged between 2.33-24.95%, precision 
between 13.18-99.88%, kappa ranged between <0-0.32, 
and specificity ranged between 93.99-99.99%. MMOT 
was the only method with a low value (sensitivity) to be 
observed for an error intensity other than 0.5 SD, which 
was 4 SD in this case. Type b error was the most observed 
one for low values (specificity, precision and Kappa), 
while Type a (sensitivity and Kappa) and ALL types 
(specificity, precision) were observed for high values.

Our analyses showed that mBIV and sBIV had gen-
erally similar performance across populations, growth 
measures, error types and intensities with their per-
formance tending to increase for extreme errors and 
higher intensities (Fig.  2 and Supplementary Figure  2). 
Moreover, COT, MMOM and SMOM were constantly 
the best-performing methods by all three measures for 
all configurations. While MMOM was the best method 
for measurement outliers for CTX zWA error Type 
a,and b, c, for the rest of the configurations showed the 
best performance for error intensities below 2 or 3 SDs. 

For higher intensities, SMOM outperformed MMOM. 
MMOT was the worst method. Overall, all methods were 
affected by error type and intensity. More specifically, it 
can be observed in Fig. 2, all methods for all error types 
had sensitivity below 50% for low intensities (< 2 SDs). In 
addition, errors of Type c and ALL show low sensitivity 
across all methods and the two populations in compari-
son to Types a and b, which are more at the extreme end 
of spectrum of errors.

Agreement between outlier detection methods
We next studied the agreement between outlier detec-
tion approaches for measurements and trajectories. We 
randomly selected one of the outlier simulations for 
ALL types of errors for both datasets and measurements 
(TARGet Kids!-zWA, CTX-zWA, CTX-zMUAC) and 
we evaluated the overlap between the outlier detection 
methods. When studying the agreement between two 
methods, we considered the intersection of true posi-
tives, how many of those were contributed by each of the 
combined methods, and the uniquely identified outliers 

Table 3 Best method with respect to sensitivity, precision and kappa for each combination of intensity and type of error

Abbreviations: SD Standard deviation, mBIV Modified method for biologically implausible values detection, sBIV Static WHO cut-off values for biologically implausible 
values detection method, MMOM Multi-model outlier measurement detection method, SMOM Single-model outlier measurement detection method

Sensitivity

Type a Type b Type c ALL

SD Method Sensitivity Method Sensitivity Method Sensitivity Method Sensitivity

0.5 MMOM 7.66% MMOM 11.22% MMOM 11.17% MMOM 8.87%

1 MMOM 16.46% MMOM 22.41% MMOM 21.88% MMOM 15.02%

2 MMOM 53.78% MMOM 56.84% SMOM 44.89% MMOM 39.83%

3 MMOM 85.08% SMOM 84.24% SMOM 62.27% MMOM 62.77%

4 MMOM 97.49% SMOM 95.64% SMOM 71.58% MMOM 70.08%

5 MMOM 99.08% SMOM 99.68% SMOM 79.22% SMOM 78.09%

Precision

Type a Type b Type c ALL

SD Method Precision Method Precision Method Precision Method Precision

0.5 mBIV 17.29% mBIV 25.13% mBIV 18.15% sBIV 35.00%

1 mBIV 32.21% mBIV 52.02% mBIV 75.18% mBIV 85.77%

2 mBIV 86.19% mBIV 93.42% mBIV 94.10% mBIV 96.78%

3 mBIV 95.71% mBIV 97.83% mBIV 97.26% mBIV 98.52%

4 mBIV 97.89% mBIV 99.00% mBIV 98.49% mBIV 99.29%

5 mBIV 98.94% mBIV 99.44% mBIV 99.05% mBIV 99.58%

Kappa

Type a Type b Type c ALL

SD Method Kappa Method Kappa Method Kappa Method Kappa

0.5 MMOM 0.032371 MMOM 0.077747 MMOM 0.077343 MMOM 0.00075066

1 MMOM 0.110746 MMOM 0.199737 MMOM 0.193746 MMOM 0.17241

2 MMOM 0.406851 MMOM 0.530886 SMOM 0.43264 MMOM 0.391957

3 MMOM 0.676109 SMOM 0.767761 SMOM 0.621228 SMOM 0.550216

4 SMOM 0.751824 SMOM 0.879063 SMOM 0.728476 SMOM 0.659092

5 SMOM 0.866256 sBIV 0.967156 SMOM 0.810343 sBIV 0.767412
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by each of the combined methods. This analysis aimed 
to see if the combination can improve sensitivity and 
how much each combined method contributes to this 
improvement. We did the same analysis for false positives 
to study how much the combined methods contribute to 
the specificity.

Compared with all other outlier measurement detec-
tion methods (sBIV, MMOM and SMOM), mBIV did 
not contribute more true positives than its counterparts, 
except for within high-intensity errors (+/-5 SD). In this 
case, mBIV also contributed more false positives but few 
overall. However, sBIV always identified more true posi-
tives than mBIV, even for +/-5 SD errors. When com-
paring sBIV with MMOM and SMOM, this method also 
identified more true positives, for errors greater than 
+/-4 SD. However, the number of detected true positives 
was similar between sBIV and the other two methods 
for 4 SD as it was for 5 SD errors. When sBIV contrib-
uted more true positives, it also contributed more false 
positives when compared to any other method. When 
comparing MMOM and SMOM, the former contributed 
consistently more true positives than the latter for lower 
intensity errors (< 4 SD), but rarely more false positives. 
When comparing COT with MMOT to detect of out-
lier trajectories, COT detected more unique true posi-
tives than MMOT across all datasets, measures and error 
intensities, but it also contributed more unique false 
positives. The results of the agreement analysis were con-
firmed in two additional outlier simulations providing 
the same findings (data not shown).

Performance of combinations of outlier detection methods
We next tested the performance of combining outlier 
detection methods in three random simulations that 
included ALL errors. Using the results of the agreement 

between the various methods, we focused on the pairs 
mBIV-MMOM, mBIV-SMOM, sBIV-MMOM, sBIV-
SMOM, and MMOM-SMOM. These pairs were selected 
because both methods contributed similar amounts of 
true positives, thus their combination should increase 
their performance against the results of each method. 
Indeed, when studying sensitivity, the performance of the 
combination was always better or at least equal to one of 
the two combined methods. In fact, sensitivity increased 
up to 21.82% for the mBIV-MMOM pair. On the other 
hand, precision and specificity mostly decreased, since 
inevitably the combination also added false positives. 
However, the impact on specificity is minimal compared 
to the individual methods (Supplementary Table  4). 
Concerning outlier trajectory, we did not study the com-
bination between COT and MMOT, because COT out-
performed MMOT.

Effect of outliers on clustering and growth pattern 
detection
Supplementary Figure  3  presents clustering results 
obtained from the original TARGet Kids! and CTX data-
sets for all growth measures. Two distinct clusters were 
identified: TARGet Kids!-zWFL (cluster 1 (n=199) low 
normal, rapid increase and cluster 2 (n=194), normal, 
modest steady increase), CTX-zWA (cluster 1 (n=490), 
severe wasting, increase within abnormal levels, and 
cluster 2 (n=359), wasting, increase to normal levels) 
and CTX-zMUAC (cluster 1 (n=634), increase to normal 
levels, and cluster 2 (n=168), increase but within wast-
ing). The same growth patterns were also identified with 
LCMM. Clustering overlap (agreement) varied between 
57.9 -79.0% for all configurations (Fig.  3) showing that 
the presence of outliers caused cluster, and thus growth 

Fig. 3 Clustering agreement for the 5 different error intensities using time series clustering (hierarchical clustering) and latent class mixed models 
(LCMM). Abbreviations: SD; standard deviation, LCMM; latent class mixed models
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pattern misclassification, which increased with the 
increasing levels of error intensity Table 4.

Sensitivity analyses
Our sensitivity analyses results are shown in Supplemen-
tary Tables 5 and 6. Studying the population average we 
found that the model accuracy was reduced, according to 
root mean square error, after the injection of the outliers 
in both populations in an error-intensity manner. Finally 
for the second part of our sensitivity analysis, the sensi-
tivity of COT was considerably improved when outliers 
were in higher concentration in trajectories. On the con-
trary, COT performed worse at identifying trajectories 
with fewer outliers, potentially not outliers themselves. 
On the other hand, the sensitivity of mBIV was reduced, 
which is consistent with the mBIV design in which meas-
urements within two years are not considered outliers. 
MMOM performed better detecting milder outliers, and 
MMOT showed low performance again. Error density 
affected method performance in a similar manner as in 
the main analysis.

Discussion
Growth outliers need special considerations to be 
detected, eliminated, or otherwise addressed to minimize 
their impact on growth studies. We conducted a compre-
hensive assessment of types and intensities of outliers, 
detection methods, including detection of outlier trajec-
tories, to crystallize these challenges. We conducted 432 
different configurations to evaluate the performance of 6 
different approaches to detect outliers of different types 
and intensities within growth measurements or trajec-
tories in two different pediatric populations. We also 
assessed the impact of outliers on growth pattern detec-
tion and cluster assignment. We found that MMOM and 
SMOM were consistently better than mBIV and sBIV 
in terms of sensitivity across populations, error types 
and levels. This confirms that methods need to be sen-
sitive enough to detect both mild and extreme outliers. 
This is in agreement with our preliminary work in which 
MMOM outperformed both sBIV and mBIV and had a 
similar performance to SMOM, although error intensity 
was not investigated [28].

Our results showed that the model-based approaches 
constantly showed relatively high performance, even for 
low error intensity levels (<3 SDs), and were at least as 
accurate as BIV methods, if not better. This may indicate 
the model-based approaches are superior to BIV-based 
approaches. Both types of detection methods improved 
their accuracy as the error intensity increased, but the 
increase for model-based approaches was less prominent 
when the error intensity increased (>3 SDs). Between 
SMOM and MMOM, the former was consistently bet-
ter than the latter except for zWFL measures in the CTX 
dataset. MMOM performed better when the error inten-
sity was low (<2 SDs), but SMOM became more accurate 
for higher error intensities (>3 SDs). One possible justifi-
cation for the difference between SMOM and MMOM is 
that clustering-based approaches, especially those using 
partitioning, are more sensitive to outliers, because they 
affect the identified clusters, as our sensitivity analy-
sis showed. Overall, we can argue that SMOM remains 
a reliable outlier detection method for measurements, 
and also has simplicity. While mBIV succeeded in find-
ing BIVs represented by Type b (extreme) errors, this 
was also the case for the MMOM method, which may 
indicate that the latter can be used to detect a broader 
spectrum of outliers, including all of those identified by 
mBIV. Thus, MMOM may be considered a more holis-
tic approach to identifying a broader spectrum of single 
outliers.

We also compared our method’s sensitivity to the con-
ditional growth percentiles [19] outlier detection method.

In addition, our experimentation on the performance 
of combinations of outlier detection methods showed 
that no combination outperformed MMOM when 
applied alone, suggesting that MMOM may be sufficient 
in detecting all types of synthetic outliers. Similarly, COT 
outperforms the combination approach of MMOT and 
COT, suggesting that it is also sufficient in detecting all 
types of synthetic outliers within trajectories. Our anal-
yses also showed that the performance of outlier detec-
tion methods differed where most could detect Type 
b errors (extreme outliers) but varied in their capacity 
to flag more subtle (mild) or complex trajectory cases. 
COT effectively detected both Type a and b errors and 
had the highest sensitivity in detecting trajectories with 

Table 4 Key findings

1. Clustering‑based outlier trajectory detection (COT) is a reliable method for outlier trajectory detection.

2. Combined detection methods for outlier measurements are preferred.

3. Some methods achieved >80% sensitivity for errors above 3 standard deviations

4. Model‑based methods are reliable for errors of lower intensity.

5. Higher density favours outlier trajectory detection and model‑based methods, but not time‑sensitive methods.

6. Clustering and pattern analyses can be considerably affected by the presence of outliers.
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frequent or a series of odd measurements. These trajec-
tories can indicate a unique subgroup within the dataset 
(e.g., children with specific diseases or from a particular 
ethnicity or low-resource setting). Cluster-based clean-
ing approach depends on selecting a suitable number 
of groups to model, and this decision should take into 
account the well-known principle: “The more and smaller 
clusters we have, the more cohesive they are (smaller 
diameter) and the farther apart from each other they are 
[22].”

We also showed the effect of outliers in growth pattern 
detection using two different clustering approaches, time 
series clustering and LCMM. Regardless of the grouping 
method, we can confirm that outliers affect grouping by 
at least 57%. This means that a big part of the population 
will be assigned to the wrong growth pattern, which can 
affect associations with health outcomes. Furthermore, 
we found that not only subjects had outliers injected in 
them but also “clean” subjects that moved between pat-
terns. This shows that any outlier detection should be 
performed before the analysis because outliers affect not 
only the results but the process as a whole. This obser-
vation is aligned with data analyses models, such as the 
cross-industry process for data mining model, which 
serves as the base for a data science process, and propose 
data cleaning as part of a more extensive "Data Prepara-
tion" phase which proceeds modelling [42]. Finally, our 
sensitivity analyses showed that the SD threshold could 
also impact outlier method performance. This finding is 
logical for two reasons. First, the lower the threshold is, 
the more outliers will be detected by the method, as fewer 
measurements or trajectories will remain close enough to 
the average to avoid detection. Second, the fewer outli-
ers found beyond a high SD threshold, the higher the 
chances that they will be outliers (true positives), imply-
ing increased precision. While the finding is reasonable, 
the variation remains, which can be a potential design 
problem for studies that involve outlier detection. In this 
case, if a threshold is not intuitive or cannot be supported 
clinically, one may instead rely on other methods that do 
not require an SD threshold, like some of those proposed 
within this work (i.e. mBIV and COT).

Although SMOM, MMOM and COT performance 
varied per configuration, their sensitivity is among the 
highest in the literature for outlier detection in pediatric 
growth data. In the work of Shi et al, 2018, [18] sensitiv-
ity varied between 10.7-14.1% for the Jackknife residuals 
method and between 0.1-0.2% for the conditional growth 
percentile method in the same population [19]. Other 
methods, including exponentially weighted moving 
average standard deviation scores and regression-based 
weight change models also showed low sensitivity (<19%) 
[43]. Our work showed that model-based approaches 

have the best performance for detecting outlier meas-
urements. This is in agreement with the work of Woolley 
et al. [44], where the non-linear mixed-effects model cut-
off had the highest sensitivity, which was also improved 
with a decision-making algorithm. This decision-making 
algorithm modified or deleted flagged measurements, 
which however was not applicable in this study. Finally, 
our study agrees with our previous findings that the static 
and modified for longitudinal measurements WHO cut-
offs have low performance [18]. In fact, the WHO growth 
standards were intentionally developed using popula-
tions with community children whose growth is not rep-
resentative of disadvantaged children, including those 
with severe malnutrition [15, 45, 46].

To the best of our knowledge, this is the first work that 
applies a clustering-based approach to flag growth out-
liers of different types and intensities and at the same 
time to propose a method for detecting outlier trajec-
tories, one of the most popular tools for studying and 
representing growth. The study comprehensively com-
pares several outlier detection methods and their con-
figurations on two real-world datasets, outlining their 
strengths and limitations and discussing the challenges 
of outlier detection for children’s growth data. We con-
ducted extensive experimentation focusing on outliers’ 
characteristics, error types and intensities in two dif-
ferent populations with CTX, including a unique popu-
lation rarely studied in such a context. This work has 
also limitations. First, we used synthetic outliers, while 
future works could use “wild” outliers that are identi-
fied and corrected in clinical settings. Second, the ALL 
type of error amounts to 15% of the total measurements 
as it includes all the other types of errors. To alleviate 
this limitation we compared the algorithms under the 
same conditions. We also tried to secure compatibility 
between methods by excluding children with missing 
measurements in both datasets which, however, reduced 
the number of eligible participants in this study. Our 
work aims to construct a framework for detecting outli-
ers in longitudinal growth data, allowing our methods to 
be extended, adapted and applied to datasets with differ-
ent properties, such as missing measurements or trajec-
tories of varying lengths. By using distance metrics that 
allow for missing data, like Fréchet’s distance [47], clus-
tering configurations can be adapted and therefore study 
all participants in cohorts.

Conclusion
In conclusion, model-based approaches that detect 
outliers assuming multiple groups in the sample show 
the best performance. Using clustering to detect outli-
ers is a reliable method. Finally, the type of the outlier 
can affect performance and have an important impact 
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on growth pattern detection. Since outlier detection is 
a process that needs to precede modelling along with 
treating missing values and correcting data input errors 
[42], we believe that our methods can have practical 
applications for children growth analyses studies
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