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Abstract 

Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, 
and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance 
across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached 
from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction 
of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves design-
ing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing 
the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been 
made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and com-
pare their performance. The generalized linear model (GLM) family has undergone various advancements in com-
parison to other statistical methods and models. This study aims to present and describe GLM-based methods, 
providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms 
based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles 
and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers 
in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves 
with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited math-
ematical expertise.

Keywords Early aberration, GLMs with negative binomial, GLMs with Poisson, Outbreak algorithm, Statistical 
surveillance

Background
The process of ongoing, systematic collection, analy-
sis, interpretation, and dissemination of data for public 
health purposes, aiming to reduce the morbidity and 

mortality of health-related events and promote public 
health, is referred to as surveillance [1]. One of the main 
goals of surveillance is timely outbreak detection, which 
enables prompt investigations and implementation of 
control measures. In recent years, the surveillance sys-
tem in pursuit of this goal has experienced significant 
and rapid growth. This growth can be attributed to two 
underlying factors: increased concerns regarding large-
scale bioterrorism attacks and heightened public aware-
ness of emerging and re-emerging infections. These 
advances have led to the introduction of syndromic sur-
veillance systems, increased databases, and the creation 
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of automated outbreak detection systems to process 
data for large numbers of infections [2]. The effective-
ness of syndromic surveillance or automated systems 
in early outbreak detection relies, to a certain extent, 
on the detection of statistical aberrations. A substantial 
increase in the number of suspected cases recorded by 
the surveillance system beyond the expected values and 
threshold levels established through statistical methods 
may indicate a statistically significant aberration. Such 
an aberration necessitates epidemiological investigation 
to determine whether it represents a potential outbreak 
or a spurious signal originating from the surveillance 
system [3]. The fundamental principles underlying all 
statistical methods employed to identify outbreaks, 
known as outbreak detection algorithms, involve iden-
tifying the time interval during which the number of 
recorded infection reports under surveillance exceeds 
the expected values. This identification process consists 
of two steps: calculating the expected number on the 
unit time (daily or weekly) and comparing the expected 
value with the observed value using a statistical test. 
Outbreak detection algorithms differ in their approaches 
to estimating the expected value, and they can be 
broadly categorized into two groups based on the type of 
expected value they utilize: algorithms that calculate the 
mean over a selected baseline period and algorithms that 
employ sample estimation [2].

The desire to improve outbreak detection algorithms 
for early detection of outbreaks has led to an increased 
development of statistical methods. Various classifica-
tion methods are proposed for detection methods. For 
example, Unkel et  al. (2012) classified these algorithms 
based on their approach (e.g., time series, statistical pro-
cess control, and the GLM family) and their methods for 
obtaining thresholds (e.g., parametric, semi-parametric, 
non-parametric, and non-thresholding methods) [2]. 
Some articles categorize outbreak detection algorithms 
based on different and more general frameworks. Buck-
eridge et  al. (2003) introduced a space–time analytical 
framework, and Faverjon and Berezowski (2018) catego-
rized a conceptual framework for temporal algorithms in 
the syndromic surveillance system [4, 5]. Applying differ-
ent outbreak detection algorithms and comparing these 
methods with one another has been done in several arti-
cles based on simulated and real data. Among these, we 
can refer to Bédubourget al. (2017) [6].

This paper reviews outbreak detection algorithms 
based on the GLM family. The rationale behind review-
ing the GLM family is explained as the following. Gen-
eralized Linear Models are a class of statistical models 
that allow modeling the relationship between a response 
variable (such as the number of cases of a particular dis-
ease) and one or more predictor variables (such as age, 

gender, location, and time). GLMs extend linear regres-
sion models to handle non-normal distributions of the 
response variable, such as binary, count, or continuous 
data with non-constant variance. GLMs achieve this by 
specifying a link function that relates the expected value 
of the response variable to the linear combination of the 
predictor variables, such as a log-link function for count 
data. The selection of the link function depends on the 
characteristics of the response variable and the research 
question being addressed. GLMs also allow modeling 
the dispersion of the response variable using a variance 
function, which can be specified to accommodate dif-
ferent types of data. In summary, GLMs offer a flexible 
and robust framework for modeling disease incidence 
data and detecting potential outbreaks. GLM-based out-
break detection algorithms offer several advantages over 
other methods, which contribute to their emergence, 
development, and widespread use. GLM algorithms do 
not require parameter resetting, unlike time series and 
Cumulative Sum Control Chart (CUSUM) methods. 
Additionally, GLM models can be adjusted to account for 
overdispersion1 and seasonal trends, which are common 
in epidemiological data. These models can also utilize 
information on past outbreaks to estimate parameters 
and account for random effects. while GLM-based meth-
ods were used by Stroup et  al. and Serfling et  al. years 
ago, these methods have gained much more attention 
after the publication of Farrington’s article in 1997 [7–9]. 
The main purpose of introducing the regression models 
is to provide flexible algorithms. These algorithms can 
account for main trends and noise in the data, adjust 
for these trends, and identify practical anomalies across 
a wide range of diseases and syndromes under surveil-
lance. One of the notable characteristics of surveillance 
system data is the significant variation in the frequency 
distribution of cases per week or day. GLM models offer 
a viable solution for effectively addressing a broad range 
of diseases with varying frequency distributions, which 
are monitored by the surveillance system and reported 
to health organizations such as the Ministry of Health. 
For example, based on Farrington’s idea, an outbreak 
detection algorithm should be robust enough to handle 
diseases with low and high prevalence. Salmonella, spe-
cifically the Typhimurium DT104 strain with a weekly 
frequency of less than 100, and rotavirus, with a weekly 

1 Overdispersion is a situation where the observed data show more varia-
tion than what would be expected under the statistical models. It can lead 
to biased estimates and less reliable significance tests, and can be caused by 
various factors such as unobserved heterogeneity or measurement error. 
Some models such as quasi-Poisson, mixed Poisson, or zero-inflated Pois-
son regression can be used to account for overdispersion.
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frequency of several hundred, are good examples of such 
diseases [9].

The increasing development of outbreak detection 
algorithms has led to their growing diversity, especially 
in algorithms based on the GLM family. Alongside the 
advantages of GLM-based methods, the diversity of these 
methods is another important reason for writing this 
review. Such diversity is not as common in other meth-
ods, and it can sometimes cause confusion among those 
interested in this field. The slight differences between 
these methods in statistical theory can sometimes lead to 
errors in practice. Another reason for choosing the GLM 
family of methods is its familiarity among researchers in 
public health and epidemiology. The GLM family is com-
monly used in the methodology of various studies. This 
familiarity makes researchers who want to work in the 
field of disease surveillance and outbreak detection algo-
rithms more likely to learn and utilize these methods. As 
a point, generalized additive models (GAMs) are a semi-
parametric extension of the GLMs that are also used in 
outbreak detection algorithms [10]. For more informa-
tion on this topic, refer to [11] and [12]. The use of out-
break detection algorithms based on GAMs could offer 
unique benefits. However, since the studies in this field 
have not expanded enough, we focus on the GLM family 
in this paper. Additionally, the surveillance package in the 
R program is the most important tool in the implementa-
tion of outbreak detection algorithms, and various GLM-
based methods are available in this package. A review 
paper on GLM-based algorithms can help researchers 
make better use of this useful application. Since the GLM 
family includes a large family of outbreak detection algo-
rithms, our goal in this study is to provide an overview of 
the history and development of GLM-based methods, to 
help researchers use these methods and available statisti-
cal packages properly, and to give them a general under-
standing of these techniques. Despite progress in the 
field of outbreak detection methods, these methods are 
not yet widely used in many countries and are not famil-
iar to public health authorities. An educational review 
that highlights differences or introduces frameworks can 
assist researchers in developing countries.

Main text
History
Outbreak detection algorithms based on the GLM fam-
ily were introduced, inspired by Shewhart control charts 
(1931) [13]. Suppose that the variable Yt indicates the 
frequency of a disease under surveillance system at 
time t, with a normal distribution N

(

µ,σ 2
)

 . According 
to Shewhart control charts, an alarm will be declared at 
time t, when yt − µ > κσ , for a predetermined value of 
k. It should be noted that in the surveillance system, only 

the increased rates are considered, so κ ≥ 0 is assumed. 
The reason for such an increase can be the presence of a 
point source, such as contaminated food, which increases 
the number of cases. GLM-based outbreak detection 
methods were introduced to make three major changes 
to Shewhart control charts. These methods can accom-
modate non-normal distributions of the random vari-
able. Mean and variance in the control of µ and σ 2 are 
dynamic parameters, and these parameters can be esti-
mated from the historical baseline data [2]. One of the 
first studies on outbreak detection algorithms based on 
GLM dates back to Serfling et al. (1963), who proposed 
a parametric regression-based method known as the 
Serfling method to analyze the weekly mortality data 
of pneumonia and influenza in 108 cities in the United 
States. In this method, the errors were assumed to have a 
normal distribution with constant variance, and the data 
were modeled using a trigonometric function with a lin-
ear trend by

where yt is the number of cases in week/month t, and the 
sine and cosine terms describe the seasonal change. Cos-
tagliola’s study in 1991 was based on the Serfling method 
and aimed to diagnose outbreaks of influenza-like syn-
dromes and forecast the non-epidemic level for the next 
winter retrospectively from 1984 to 1988 in a surveillance 
system [14]. In this method, first, a subset of the entire 
data should be selected as the "training period". Then, 
data related to past outbreaks should be excluded from 
the training period. For example, 15% of the highest val-
ues can be removed. Finally, a regression equation based 
on the Serfling method should be fitted to predict the 
expected non-epidemic level. An upper threshold should 
also be considered to declare warnings of an outbreak 
detection algorithm based on this method by choos-
ing the upper percentile of the predicted values. In this 
method, the parameters will be estimated using the mean 
square error method [8, 14]. One major drawback of this 
approach is determining epidemic periods or how much 
of the data observed in past outbreaks should be excluded 
when fitting the model. Another limitation is that fitting 
the regression model assuming a normal distribution of 
errors may be inappropriate if the data are overdispersed. 
In short, this method cannot be easily applied to a wide 
range of time series that show different characteristics, 
such as seasonal trends or the number of disease cases. 
However, this method is a simple and powerful approach 
for some well-known diseases. For example, Flahault 
et  al. (1995) used this method to diagnose outbreaks of 
influenza-like syndrome or gastroenteritis [3, 15].

E yt = µ+ αt +

r

i=1

{βisin(ωit)+ γicos(ωit)},
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Original farrington
Many surveillance system data are overdispersed, so a 
quasi-Poisson regression model was introduced by Far-
rington et al. (1996) and applied for early detection of out-
breaks based on reports received at the Communicable 
Disease Surveillance Center (CDSC).

Let yi be the baseline count of a disease under the sur-
veillance system corresponding to the baseline week ti , 
independently distributed with mean µi and variance ϕµi . 
Considering a linear time trend in reporting disease fre-
quency, the regression model is defined as

where g(.) denotes a link function, and all estimates are 
obtained using the quasi-likelihood method. For the fol-
lowing models, the link function that relates the mean 
response variable to the linear combination is assumed to 
be the logarithm function, except for the Jackson model 
where the link function is assumed to be the linear func-
tion ( g(x) = x ). It should be noted that the time unit 
used is weeks. In surveillance systems where early case 
detection is one of the objectives, the use of the monthly 
time unit is not recommended.

Trends are included in the regression model by fitting 
a linear time variable. This adjusted log-linear regression 
is very sensitive to overdispersion, as it can detect small 
increases in reporting of diseases with low incidence, as 
well as large increases in reporting of diseases with high 
incidence. There are several points in Farrington’s (1996) 
study that we briefly mention here without going into 
detail. By plotting the average count of microorganisms 
per week against the variance, Farrington et  al. (1996) 
showed that the Poisson distribution assumption is not 
valid in  situations where the means are less than one. 
When means are greater than 10, the distribution will be 
asymptotically normal. Furthermore, Organisms with low 
incidence have a highly skewed distribution. Correction of 
skewness in  situations where we have overdispersion, by 
transforming the data through changing the threshold, will 
lead to a reduction in false positive alarms.

For Poisson and negative binomial distributions, skew-
ness correction by applying the power of 2/3 yields

and for large means, the Taylor series leads to a confi-
dence interval (L,U) with

g(µi) = α + βti,

F
(

y0
)

= O(µ0).

L = µ̂0max

{

{

1− 2
3zα

(

τ̂
µ̂0

)1/2
}3/2

,0

}

,

U = µ̂0

{

1+ 2
3zα

(

τ̂
µ̂0

)1/2
}2/3

,

where zα is the 100(1- α)-percentile of the normal distri-
bution and τ is

Values greater than the upper threshold of U are flagged 
as a possible outbreak. For the Poisson distribution, the 
2/3 transformation can lead to a symmetric distribu-
tion. Therefore, it provides more accurate thresholds. 
Another point in the Farrington method is that includ-
ing all the data in the threshold calculation will lead to 
larger thresholds and reduce the sensitivity of alarms. 
Because the baseline data contains large values related to 
past outbreaks. Manual monitoring of the baseline data 
to identify outliers and remove them from calculations 
is impractical. Instead, a weighting method is used to 
reduce the effect of large values in the data. The weight-
ing function is chosen based on assigning very small 
weights to values with large residuals. Note that weight-
ing significantly reduces the effect of past outbreaks, but 
does not eliminate it. If the number of baseline outbreaks 
are higher, the effect remains larger after weighting (9). 
The Farrington method is implemented in R software and 
the "surveillance" package by Höhle in the following nine 
steps (16):

1. Fitting the initial model and initial estimation of 
mean and overdispersion.

2. Calculation of the weights omega (correction for past 
outbreaks)

3. Refitting of the model
4. Revised estimation of overdispersion
5. Rescaled model
6. Omitting the trend, if it is not significant
7. Repeating the whole procedure
8. Calculating the threshold value
9. Computing exceedance score

The presented diagram is tailored to the nine steps out-
lined in the study. The Fig. 1, has been carefully designed 
to accurately represent each step and provide a clear vis-
ual aid to readers (Fig. 1).

Farrington flexible
The improved method based on quasi-Poisson regres-
sion, developed by Noufaily et al. (2013), is described in 
this paper under the title Farrington Flexible. Another 
term used for the Farrington Flexible algorithm in some 
papers is "Improved Farrington". One of the limitations 
of the Farrington algorithm is the small number of base-
line weeks used in the model formulation.

τ = φ + var
(

µ̂0

)

/µ0.
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Fig. 1 Farrington algorithm is implemented in R software, “Surveillance” package
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Due to the long-term changes in data collection and 
reporting in the system of surveillance, increasing the 
number of years to include more baseline data is not 
recommended. An alternative is to use more recent 
data and add seasonal variation to the Farrington 
model formulation. This model estimates the number 
of disease cases in the last week and includes a linear 
trend and a ten-level annual factor whose reference 
period includes comparable weeks in previous years. 
The corresponding linear log model is:

where j(ti) is the seasonal factor corresponding to week 
ti . Assuming that j(t0) = 0 and δ0 = 0 , In this model, a 
trend is always included, regardless of its statistical signif-
icance, except when the data are highly sparse. The effect 
of past outbreaks is reduced through the Anscombe 
residuals, which are greater than 2.58.

This model is used to estimate excess deaths. The 
excess death approach evaluates the mortality bur-
den of an epidemic. Various methods, including the 
Farrington algorithm, have been proposed to esti-
mate excess deaths in heavily affected countries, such 
as during the COVID-19 pandemic [16, 17]. How-
ever, one of the main challenges in implementing this 
algorithm is when a small amount of data is available, 
especially for emerging diseases. Without sufficient 
data, the accuracy of estimates and forecasts can lead 
to inaccurate outbreak predictions [18]. Höhle has 
coded this method in the “surveillance” package, under 
the title Farrington Flexible. The implementation is 
illustrated in Salmon et al. (2016) [19, 20]. Farrington 
Flexible’s algorithm is one of the algorithms used to 
monitor weekly data in Public Health England, such 
as Early Aberration Reporting System (EARS) which 
is a standard system at the United States CDC for 
conducting weekly syndromic surveillance [21]. The 
importance of early detection of outbreaks and ensur-
ing the absence of incidents during mass gatherings 
are the main reasons why researchers are interested in 
using a daily monitoring surveillance system instead 
of weekly data, which has led to recent comparisons 
between algorithms for daily data [22–24]. It is impor-
tant to specify the characteristics of each algorithm in 
these comparisons based on different criteria such as 
sensitivity, specificity, timeliness, etc. Noufaily et  al. 
(2019) showed that Farrington Flexible algorithm has 
higher sensitivity and specificity in daily syndromic 
surveillance compared to methods such as EARS and 
the Rising Activity, Multilevel Mixed Effects, Indicator 
Emphasis (RAMMIE), which are used at Public Health 
England for syndromic daily surveillance [25].

logµi = θ + βti + δj(ti),

Some regression models mentioned in the articles
Jackson model
Jackson et al. (2007) developed a GLM model based on the 
Poisson distribution, using a three-year baseline data and 
Poisson errors. The effect of days of the week, month, lin-
ear time trend, and holiday variables are considered in this 
model. The model for the expected frequency on day t is:

If population data are available, binomial logistic 
models can be fitted in the same way as the Poisson dis-
tribution. The flexibility of the GLM approach allows 
more variables to be included in the model based on the 
researcher’s opinion, such as random effects [26]. As we 
mentioned in the introduction, regression models can be 
tailored to different types of data and customized to meet 
the specific requirements of a given population or dis-
ease. However, using least-squares regression alone is not 
enough to eliminate systematic effects in epidemiological 
data. This is due to the fact that least-squares regression 
assumes residuals are independent and identically dis-
tributed with a normal distribution. In many cases, this 
assumption is violated in epidemiological data, where 
residuals are not independent or do not conform to a nor-
mal distribution. To address these issues, more advanced 
regression techniques are required. These techniques can 
account for the non-normality and non-independence of 
residuals and are essential for removing systematic effects 
from the data. Therefore, it is important to select the 
appropriate regression technique based on the nature of 
the data and the research question of interest [27, 28].

Periodic poisson GLM method
Based on the simulated data, Bédubourg et  al. (2017) 
fitted a Poisson and negative binomial regression 
model, where µt is defined as:

According to this model, the mean is equal to the 
predicted value at week t and the variance will be esti-
mated in the negative binomial distribution through the 
model [6]. We have mentioned this method in Table 2 
under the title of “Periodic Poisson GLM method”.

Poisson regression charts based on generalized likelihood 
ratio (GLR)
The last method we explain in this article is the out-
break detection algorithm by Poisson regression charts 

E(Yt) = β0+ β1 (Sunday) + · · · + β6 (Friday) + β7 (January)

+ · · · + β17(November)+ β18(Holiday)+ β19(timetrend).

log(µt) = θ + βt +

m
∑

j=1

(

γ1cos

(

2π jt

52

)

+ γ2sin

(

2π jt

52

))

.
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based on generalized likelihood ratio (GLR). Höhle 
(2006) presented a seasonal Poisson regression chart 
and used time-varying and linear in-control mean. The 
new technique in Höhle’s article was that the magni-
tude of the changes was not necessarily predetermined.

Let observations y1,y2,y3, · · · follow a parametric dis-
tribution with density fθ . For the change point τ, the 
conditional density of yt |xt ,τ define as follows

where Xt represents the covariates known at time t, and 
fθ0 and fθ1 are Poisson probability density functions with 
means µ0,t and µ1,t . The desired goal of the researcher 
is to determine τ in the shortest time; That is, new data 
will be collected until the researcher notices a change 
in the reported data. The stopping rule in sampling (in 
conditions other than the surveillance system) is when 
enough evidence is collected against the null hypoth-
esis; H0 : µt = µ0,t . So, in the continuation of explaining 
mathematical calculations, don’t forget that in order to 
determine τ from now on we should follow the calcula-
tions based on the stopping rule. The seasonal Poisson 
model for the in-control situation is considered as:

In the above, ω = 2πT and T is a time period, for exam-
ple for weekly data T = 52. The out-of-control state is also 
defined by an increase in the mean on a logarithmic scale as

Hawkins et  al. (2003) considered three different types 
of models in Eq. (1) based on whether or not the param-
eters are known, as follows:

1- All parameters of the model, i.e., (β, κ), are known.
2- The in-control parameters β are known, while θ = κ is 

unknown and has to be estimated during the surveil-
lance system.

3- All parameters of the model, i.e., θ = (β, κ), are 
unknown and have to be estimated.

In the first approach, the uncertainty due to param-
eter estimation is ignored. The stopping rule based on 
the CUSUM method and the likelihood ratio in this 
approach is

yt | xt ,τ ∼

{

fθ0 (· | xt) for t = 1, . . . ,τ − 1(in-control)

fθ1 (· | xt) for t = τ ,τ + 1, . . . (out-of-control),

(1)

logµ0,t = β0 +

S
∑

s=1

(β2s−1cos(ωst)+ β2ssin(ωst)).

(2)µ1.t = µ0.t · exp(κ).

(3)N = inf

{

n ≥ 1 : max
1≤k≤n

[

n
∑

t=k

log

{

fθ1
(

yt | xt
)

fθ0
(

yt | xt
)

}]

≥ cγ

}

By not considering the covariate variables and with the 
minimum delay time and the average run length (ARL), 
γ, such that E(N ) = γ when τ = ∞ , and knowing the 
parameters θ0 and θ1 , the stopping rule [3] can be rewrit-
ten as

where

Shu et  al. (2004) showed how the uncertainty due to 
parameter estimation affects the ARL in different meth-
ods of outbreak detection algorithms, such as Shewhart 
control charts and the exponentially weighted moving 
average (EWMA) method. Therefore, there are short-
comings in using the first type. The third type is more 
realistic due to the characteristics of the surveillance or 
monitoring system. However, the theoretical and math-
ematical features of this type make modeling and param-
eter estimation more difficult. Lai (1995) showed that 
by considering the second approach and using the GLR 
method, Eq. (3) can be written as

Höhle (2006) showed that by considering Eqs. (1) and 
(2) for the seasonal Poisson chart based on the GLR 
method in a recursive relationship, the ARL can be 
obtained. For more details, refer to Höhle’s paper (2006) 
[29–31]. This algorithm is available in the surveillance 
package in the R software under the titles “GLR Negative 
Binomial” and “GLR Poisson” [19].

Comparing farrington, farrington flexible, jackson, periodic 
poisson GLM, and GLR algorithms for disease outbreak 
detection
Different outbreak detection algorithms have been evalu-
ated and compared by a real or simulated dataset based 
on different measures [6, 32, 33]. The selection of meas-
ures for evaluating algorithm performance depends on 
the specific goals pursued by each surveillance system. 
In short, surveillance systems need to be optimized. This 
means that designers and users of monitoring systems 
should know which performance measures to consider 
and which algorithms perform well or poorly in different 
settings based on those measures. Using multiple data-
sets, including real data and simulated data, along with 
determining details related to past outbreaks such as 

N = inf
{

n : ln > cγ
}

,

l0 = 0, ln = max

(

0, ln−1 + log

{

fθ1
(

yn
)

fθ0
(

yn
)

})

, n ≥ 1.

(4)

NG = inf

{

n ≥ 1 : max
1≤k≤n

sup
θ∈�

[

n
∑

t=k

log

{

fθ
(

yt | xt
)

fθ0
(

yt | xt
)

}]

≥ cγ

}
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outbreak size, is effective in facilitating better compari-
sons of algorithms [26].

We present the results of three studies that compare 
GLM-based algorithms with different settings. The study 
characteristics and comparison results are summarized 
in Table  1 [6, 25, 26], based on nine criteria which are 
introduced below.

• Specificity: The probability of no alarm given that an 
outbreak does not occur.

• Sensitivity: The probability of alarm given that an 
outbreak occurs.

• False Positive Rate (FPR): defined as the proportion 
of weeks corresponding to an alarm in the absence of 
an outbreak.

• Probability of Detection (POD): For each scenario 
and for each current week period, if an alarm is gen-
erated at least once between the start and the end 
of an outbreak, the outbreak is considered to be 
detected.

• Probability of Detection during the first week (POD-
1week): which makes it possible to evaluate the 
methods’ ability to enable early control measures.

• Positive Predictive Value (PPV): The probability that 
an alarm is truly an outbreak; True Positive/ (True 
Positive + False Positive).

• Negative Predictive Value (NPV): The probability of 
no outbreak given that no alarm is generated.; True 
Negative/ (True Negative + False Negative).

• F1: This measure defined as the harmonic mean of the 
sensitivity and the PPV: F1 = 2 × (Sensitivity × PPV)/( 
Sensitivity + PPV) [34].

• Timeliness: It is the proportion of days elapsed to 
detect an outbreak since its start.

In general, algorithms for detecting outbreaks, which 
belong to the same family of statistical methods, share 
similar functions. For example, both the Farrington 
and Farrington flexible algorithms detect outbreaks 
based on the deviation from the expected counts, tak-
ing into account seasonal and time trends in the data, 
and using a weighting scheme to downplay the effect 
of past outbreaks. The Farrington algorithm has less 
flexibility in choosing the baseline period and weight-
ing, but requires fewer parameters for implementation. 
In contrast, the Farrington Flexible algorithm is more 
flexible in selecting the baseline period and weighting 
scheme and includes additional covariates to enhance 
its ability to detect outbreaks. These methods are 
used in various surveillance systems. For instance, 
the Farrington algorithm is integrated into the Sec-
ond Generation Surveillance System (SGSS) in the 
UK to monitor infectious diseases and provide early 

warning of outbreaks to public health officials. Simi-
larly, the Farrington Flexible algorithm used tempera-
ture and humidity as additional covariates to improve 
its accuracy in detecting outbreaks of dengue fever in 
Brazil, allowing public health officials to respond more 
promptly and effectively. Various studies conducted 
comparisons and evaluations of these two algorithms 
against different algorithms, using multiple indica-
tors. Table 1 presents a subset of the results obtained 
from these studies [9, 18]. The Jackson model, as a 
GLM-based algorithm, did not receive as much atten-
tion in the literature as the previous two algorithms, 
and fewer comparative studies have been conducted 
on this method compared to other algorithms. How-
ever, similar to other GLM-based algorithms, this 
method has the capability to detect sudden epidem-
ics more effectively and demonstrates better sensitiv-
ity in detecting outbreaks compared to widely used 
algorithms such as EWMA, particularly in the context 
of daily syndromic surveillance [5, 26]. The Periodic 
Poisson GLM method is a statistical technique that 
utilizes Poisson regression to model count data series. 
It considers the periodic nature of count data changes 
and models the controlled mean as a function of time 
and other covariates. By modeling the controlled mean 
at different time points, the method detects changes in 
the mean and provides an outbreak detection system. 
The method also considers seasonal and time trends 
in modeling the controlled mean and does not use a 
weighting scheme for observations. This makes the 
method particularly useful for diseases with a seasonal 
pattern [6]. The Generalized Likelihood Ratio (GLR) 
method is a statistical technique that is particularly 
well-suited for detecting sudden shifts in count data 
series. This method is found to be effective in detect-
ing changes in controlled means of count data series, 
especially in the context of infectious diseases where 
counts tend to change periodically and seasonally. 
According to the study by Bédubourg, the periodic 
Poisson GLM method has a lower FPR, higher speci-
ficity, and higher F1-measure compared to the GLR 
Poisson method. Meanwhile, the GLR Poisson method 
shows better performance in terms of POD, POD-
1week, sensitivity, and NPV [6, 29].

New examples of outbreak detection algorithms based 
on GLM for surveillance system
In this study, we illustrate the effectiveness of some of 
the introduced outbreak detection algorithms based on 
GLM using real-world data examples. The data used 
in these examples were obtained from the surveillance 
system of the Center for Disease Control and Preven-
tion in Iran, covering the period from April 2016 to 
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March 2022 for Measles and from February 2020 to 
July 2022 for Covid-19. Providing a brief explanation 
of the types of data, data preprocessing, and surveil-
lance workflow involved in disease surveillance in Iran 
is necessary. In disease surveillance systems, data falls 
into three categories: proportional, count, and con-
tinuous. Count data is the most common type, such as 
the number of flu cases in the past week. Proportional 
data such as the percentage of positive Covid-19 cases 
among new samples taken on the day of sampling for 
Influenza-Like Illness (ILI), Severe Acute Respira-
tory Infection (SARI), and Acute Respiratory Infection 
(ARI). Disease surveillance systems classify reported 
cases into suspected, probable, and laboratory-con-
firmed cases and take appropriate actions based on the 
category. Count data for both Measles and Covid-19 
were obtained from the routine or traditional surveil-
lance system. The count data for both diseases were 
based on laboratory-confirmed cases, and for Covid-
19, it included the number of hospitalized individu-
als. An expert evaluates and corrects the data for each 
disease to ensure the accuracy and completeness of 
patient variables, as well as to identify and remove any 
outliers or incorrect data.

The disease surveillance system in Iran is imple-
mented using the syndromic and routine or traditional 
surveillance approach. In this structure, healthcare 
providers and other stakeholders passively report noti-
fiable diseases to higher levels of primary healthcare 
centers. The reports are then transferred to higher lev-
els of the network system, where they are analyzed and 
used to identify potential outbreaks and inform public 
health interventions. This system relies on the coop-
eration and coordination of healthcare providers at all 
levels to ensure the timely and accurate reporting of 
disease cases. We selected two diseases with different 
incidence rates: measles, which has a low incidence 
rate, and Covid-19, an emerging disease with a short 
baseline history and high incidence rate. To detect 
outbreaks, we employed four methods: Original Far-
rington, Farrington Flexible, GLR Poisson, and Periodic 
Poisson GLM (Figs.  2, 3, 4, 5, 6, and 7). We collected 
data based on date, frequency, and status, and used this 
data to run outbreak detection algorithms.

In the ’Status’ variable, we record the researcher’s 
opinion as a binary variable based on whether an out-
break has occurred during that time period. For Mea-
sles, an outbreak was defined as a frequency of three 

Fig. 2 Applying the original farrington algorithm to measles data from 2018 to 2022
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or more, while for Covid-19, a frequency greater than 
three times the standard deviation was considered an 
outbreak. The researcher’s opinion is indicated by a 
green marker in the graphs and is used to determine 
the performance of each algorithm, including calcu-
lating sensitivity and specificity. This opinion may 
change based on new guidelines and is specific to each 
disease. Data for both diseases were monitored on a 
weekly basis. These examples are for educational pur-
poses only and were not used for predictive modeling. 
To use any algorithm effectively, it is advisable to select 
parameters based on more reliable evidence. Table  2 
shows the software package used and the parameter 
details.

Evaluation the performance of GLM‑based algorithms 
for detecting measles and Covid‑19 outbreak
In this section, the performance of Original Farrington, 
Farrington Flexible, GLR Poisson, and Periodic Poisson 
algorithms in detecting outbreak of measles and Covid-
19 diseases is examined based on various evaluation 
indicators. various indicators, including sensitivity, speci-
ficity, PPV, NPV, and FPR, which are presented in Table 3 
for each algorithm.

For measles outbreaks, both the Original Far-
rington and Farrington Flexible algorithms exhibit 
similar performance in terms of sensitivity and speci-
ficity, with the Original Farrington algorithm having 
slightly higher sensitivity and the Farrington Flexible 
algorithm having slightly higher specificity. Both algo-
rithms are better at ruling out non-outbreak situations 
than identifying true outbreaks.

The GLR Poisson algorithm performs well compared 
to other algorithms based on some of its key perfor-
mance indicators, such as specificity and PPV and FPR. 
Although it has lower sensitivity compared to algorithms 
like Farrington, it has a very high specificity and PPV, 
indicating that the cases it identifies as positive are very 
likely to be true positives.

Additionally, the FPR for this algorithm is zero, 
meaning it has no false positives. Overall, the GLR 
Poisson algorithm can be a useful algorithm in iden-
tifying disease outbreaks in real-time, particularly 
in  situations where high specificity and PPV are cru-
cial, such as in public health emergency response. The 
Periodic Poisson algorithm uses a periodic Poisson dis-
tribution model and can work well in identifying dis-
eases with periodic patterns (such as influenza). In this 

Fig. 3 Applying the farrington flexible algorithm to measles data from 2018 to 2022
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Fig. 4 Applying the GLR poisson algorithm to measles data from 2018 to 2022

Fig. 5 Applying the periodic poisson GLM algorithm to measles data from 2018 to 2022
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algorithm, both sensitivity and specificity are lower 
than other algorithms, indicating that its performance 
in identifying anomalous data points is lower. The PPV 
and NPV are also lower than other algorithms. This 
algorithm has a lower specificity and performs better 
in identifying days with epidemics or outbreaks com-
pared to identifying days with epidemics or outbreaks. 
The FPR for this algorithm is relatively high. The Orig-
inal Farrington algorithm has better overall perfor-
mance than the GLR Poisson algorithm for detecting 
Covid-19 epidemics, with higher specificity and lower 
false positive rate. However, the GLR Poisson algo-
rithm may still be useful in certain situations where 
high sensitivity is required. It is worth noting that the 
performance of the GLR algorithm varies between 
detecting Covid-19 and measles.

In general, the choice of algorithm depending on 
the specific research or application requirements, as 
well as the characteristics of the data being analyzed. 
A careful evaluation of multiple algorithms may be 
necessary to determine the most appropriate one for 

a particular situation. Therefore, depending on the 
research needs and goals, a trade-off may be necessary 
to be made between sensitivity and specificity when 
choosing which algorithm to use.

Conclusions
In recent years and with the pandemic of emerging 
infectious diseases, more researchers are interested 
in the development of outbreak detection algorithms 
and the correct practical use of these algorithms in 
the field of communicable disease management. Since 
numerous studies have been conducted in this field, 
conducting review studies in different classifications 
will contribute to the creation of better frameworks 
and the development of the theoretical field, as well 
as the practical use of the introduced algorithms. To 
provide better guidance for researchers in the field of 
outbreak detection methods, it is necessary to refine 
general reviews with broad questions into more spe-
cific reviews with focused questions. By reading review 
articles, researchers can gain a deeper understanding 

Fig. 6 Applying the original farrington algorithm to Covid-19 data from 2020 to 2022
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Fig. 7 Applying the GLR poisson algorithm to Covid-19 data from 2020 to 2022

Table 2 Characteristics of GLM-based outbreak detection algorithms in examples

a determines the desired time points which should be evaluated

Method Package’s name; Command Rangea(week) Control parameters Data Reference to R packag 
and control parameters

Original Farrington R package surveillance; algo.
farrington()

270–319 b = 5, w = 3, weight, 
reweight = TRUE α = 0.05

Measles [9, 19]

52–120 b = 2, w = 3, weight, 
reweight = TRUE α = 0.05

Covid-19

Farrington Flexible R package surveillance;  
farringtonFlexible()

270–319 b = 5, w = 3, weight thresh-
old = 2.58, threshold-
Method = “nbPlugin”, α = 0.05

Measles [18, 19]

GLR Poisson R package surveillance; algo.
glrpois()

270–319 ARL = 5, dir = “inc” Measles [19, 29]

52–120 Covid-19

Periodic Poisson GLM 
Method

- 270–319 m = 2 Measles [26]

Table 3 Comparison of the performance of epidemic detection algorithms for measles and COVID-19 based on performance 
evaluation indicators

a Generalized likelihood ratio

Algorithms Disease Sensitivity Specificity Positive Predictive 
Value

Negative Predictive 
Value

False Positive 
Rate

Figures

Original Farrington Measles 0.78 0.78 0.75 0.81 0.22 Fig. 2

Farrington Flexible Measles 0.74 0.82 0.77 0.79 0.19 Fig. 3

GLRa Poisson Measles 0.44 1.00 1.00 0.68 0.00 Fig. 4

Periodic Poisson Measles 0.48 0.70 0.58 0.61 0.30 Fig. 5

Original Farrington Covid-19 1.00 0.79 0.38 1.00 0.21 Fig. 6

GLR Poisson Covid-19 1.00 0.57 0.24 1.00 0.43 Fig. 7
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of the application and progress of these algorithms. 
This study focuses on the emergence and develop-
ment of outbreak detection algorithms based on GLM, 
aiming to provide a comprehensive view of these algo-
rithms for students of epidemiology, biostatistics, and 
health managers studying in the field of surveillance 
and outbreak detection algorithms.
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