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Abstract 

Background When data is distributed across multiple sites, sharing information at the individual level among sites 
may be difficult. In these multi-site studies, propensity score model can be fitted with data within each site or data 
from all sites when using inverse probability-weighted Cox regression to estimate overall hazard ratio. However, 
when there is unknown heterogeneity of covariates in different sites, either approach may lead to potential bias 
or reduced efficiency. In this study, we proposed a method to estimate propensity score based on covariate balance-
related criterion and estimate the overall hazard ratio while overcoming data sharing constraints across sites.

Methods The proposed propensity score was generated by choosing between global and local propensity score 
based on covariate balance-related criterion, combining the global propensity score fitted in the entire popula-
tion and the local propensity score fitted within each site. We used this proposed propensity score to estimate 
overall hazard ratio of distributed survival data with multiple sites, while requiring only the summary-level informa-
tion across sites. We conducted simulation studies to evaluate the performance of the proposed method. Besides, 
we applied the proposed method to real-world data to examine the effect of radiation therapy on time to death 
among breast cancer patients.

Results The simulation studies showed that the proposed method improved the performance in estimating overall 
hazard ratio comparing with global and local propensity score method, regardless of the number of sites and sam-
ple size in each site. Similar results were observed under both homogeneous and heterogeneous settings. Besides, 
the proposed method yielded identical results to the pooled individual-level data analysis. The real-world data analysis 
indicated that the proposed method was more likely to find a significant effect of radiation therapy on mortality com-
pared to the global propensity score method and local propensity score method.

Conclusions The proposed covariate balance-related propensity score in multi-site distributed survival data out-
performed the global propensity score estimated using data from the entire population or the local propensity 
score estimated within each site in estimating the overall hazard ratio. The proposed approach can be performed 
without individual-level data transfer between sites and would yield the same results as the corresponding pooled 
individual-level data analysis.
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Background
The growth of large multi-site medical datasets is accel-
erating with the development of big data and advances 
in data collection and storage. If data from multiple 
sources can be combined, the study power and general-
izability can be improved, and multi-site research col-
laboration can also be carried out. However, in research 
of data from multiple sites, it is generally challenging to 
share information at the individual level among sites due 
to privacy, network security, and transmission speed [1]. 
Therefore, it is necessary to develop statistical methods 
that only require summary-level information to provide 
personal privacy protection while analyzing data from 
multiple sites.

In biomedical research, a common outcome of interest 
is the time-to-event endpoint, which focuses on whether 
or not an event occurred and when that event occurred. 
Cox proportional model is a popular semi-parametric 
approach to describe the relationship between the time-
to-event endpoints and a set of covariates by estimat-
ing the hazard ratios [2]. In multi-site, distributed data, 
Lu et al. and Vilk et al. developed distributed Cox model 
based on iterative methods, which required iterative data 
sets to be transferred multiple times between the analysis 
center and each site [3, 4]. Li et  al. proposed a method 
for distributed Cox regression that did not need multi-
ple iterative file transfers among sites, but used the sum-
mary-level statistical data received from each site to find 
the solution of parameters based on the iterative method 
in the analysis center [5].

In observational studies, the inverse probability 
weighted (IPW) Cox regression model can be used to 
estimate the overall hazard ratio while adjusting for 
measured confounders through weighting [6]. Propen-
sity score is the probability of treatment assignment con-
ditional on the covariates and the IPW method assigns 
weight as the inverse of the probability of receiving the 
observed treatment to each individual [7–9]. In multi-
site, distributed studies, considering propensity score 
weighting, Yoshida et  al. compared three methods of 
sharing aggregate-level information to assess the per-
formance of estimating hazard ratio from cox models in 
simulated distributed data networks [10]. The estimated 
results were comparable to the pooled individual-level 
data analysis. Shu et  al. estimated the hazard ratio in 
multi-site study based on the IPW Cox model with sum-
mary-level information and provided theoretical justifi-
cation [11]. Most multi-site studies obtained estimation 
based on local propensity score and local weight which 

fit propensity score models using data within each site. 
The local propensity score considered the possible het-
erogeneity of each site, while the sample size used to fit 
models was reduced. Alternatively, a global propensity 
score model can also be fitted using data from all sites 
based on distributed logistic regression, and the esti-
mated treatment effect will be equivalent to a weighted 
pooled individual-level analysis [12]. However, when 
there is unknown heterogeneity of covariates in different 
sites, either global or local propensity score to estimate 
the overall treatment effect may result in potential bias or 
lower efficiency.

In this article, we propose a new method that uses only 
the summary-level statistics from each site to estimate 
the overall hazard ratio based on the new proposed pro-
pensity score in distributed survival data. The proposed 
propensity score is generated by choosing between global 
and local propensity score based on criteria to better 
control confounding bias and improve estimation effi-
ciency. Our proposed propensity score is motivated by 
Dong et  al. who proposed the subgroup balancing pro-
pensity score to estimate the subgroup treatment effect, 
which combined the global and local propensity score 
estimation to ensure covariate balance and control vari-
ance inflation [13].

The rest of the article is organized as follows. In Sect. 
"Data transfer from each site k to the analysis center: each 
site transmits  distinct observed event times for site k,, to 
the analysis center." in methods, we present the weighted 
estimation of overall hazard ratio through IPW Cox 
model. In Sect.  2 in methods, we present the proposed 
method to estimate the propensity score, and provide 
respective algorithms using summary-level information 
to obtain the proposed propensity score. In Sect.  3 in 
methods, we present the methods of solving the estimat-
ing equations to estimate the overall hazard ratio based 
on the proposed propensity score. In simulations section, 
we present the simulation results demonstrating the per-
formance of the proposed method and compare that to 
the global or local propensity score method and pooled 
individual-level data analysis. In application section, we 
give a real-world data application for illustration. At the 
end of the article, we conclude with some discussion.

Methods
Weighted estimation of the overall hazard ratio
Let X be a vector of measured confounders, A be a 
binary treatment variable ( A = 1 if treated and A = 0 
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if untreated). T ∗ is the true survival time, C is the cen-
soring time which assumed to be independent of T ∗ 
given X . Due to censoring, we observe T = min(T ∗,C) 
and δ = I(T ∗ ≤ C).I(•) is the indicator function. Sup-
pose we observe n independent sample {Ai,Ti,X i, δi} , 
i = 1, . . . , n , from K data-contributing sites. Let 
�k = {i : iinsitek , fori = 1, . . . , n} be the index set 
for individuals belonging to the kth sites with size nk 
and Gi = k if individual i belongs to the kth site, where 
k = 1, . . . ,K .

Suppose we have d distinct observed event times across 
all sites whereTD

1 < TD
2 < · · · < TD

d  . For j = 1, . . . , d , let 
Dj be the set of individuals who have the observed event 
time ofTD

j ,Dj = {i : Ti = TD
j , δi = 1, i = 1, . . . , n} , and let 

Rj be the risk set for individuals who are at risk at timeTD
j

,Rj = {i : Ti ≥ TD
j , i = 1, . . . , n} . Also, let Rj(k) be the risk 

set for individuals who are at risk at time TD
j  in sitek

,Rj(k) = {l : Tl ≥ TD
j , l ∈ �k forl = 1, . . . , n} . Similarly,  

within site k, there are d(k) distinct observed event 
timesTD

k ,1 < TD
k ,2 < · · · < TD

k ,d(k) . For j = 1, . . . , d(k) ,  
let Dk ,j(k′) be the set of individuals who have  
the observed event time of TD

k ,j in sitek′ , 
Dk ,j(k′) = {l : Tl = TD

k ,j , δl = 1, l ∈ �k′forl = 1, . . . , n} 
and let Rk ,j(k′) be the risk set for individuals  
who are at r isk at time TD

k ,j  in sitek′ , 
Rk ,j(k′) = {l : Tl ≥ TD

k ,j , l ∈ �k′forl = 1, . . . , n} ,  where 
k′ = 1, . . . ,K .

In this article, we focus on estimating the overall haz-
ard ratio, exp(θ) , between treatment and control groups 
in the entire population:

where �0(t) is the baseline hazard function.
IPW Cox regression model is commonly used to estimate 

hazard ratio. Based on the propensity score e = P(A = 1|X) , 
the inverse probability weight is w = A

e + 1−A
1−e  . We assume 

that the hazard ratio to be common across K data-contrib-
uting sites and all sites have a common baseline hazard 
�0(t) . The weighted partial likelihood score function for the 
common log hazard ratio θ is [14],

The estimate of the log hazard ratio θ  can be obtained 
by solving Eq. (1).

Proposed propensity score weighting method 
for estimating the overall hazard ratio
We propose a new method to estimate the overall haz-
ard ratio based on our proposed propensity score weight, 
which does not require individual-level data sharing 

�(t) = �0(t)exp(θA)

(1)
d∑

j=1

∑

iǫDj

wi

{
Ai −

∑
lǫRj

wlexp(θAl)Al
∑

lǫRj
wlexp(θAl)

}
= 0

among sites. Specifically, we first estimate the global pro-
pensity score for the entire population by distributed 
logistic regression and generate a global weight for each 
individual. Second, we fit logistic regression within each 
site to generate the local propensity score and local weight 
for each individual. Third, we choose between global and 
local propensity score for each site based on covariate 
balance-related criterion, and use this chosen propensity 
score in each site to obtain the proposed weight for each 
individual. Fourth, we estimate the overall hazard ratio 
based on the proposed weight. All the above steps require 
only summary-level data to be transferred among sites, 
which would help protect individual privacy.

Global and local propensity score
In the setting of distributed data with K sites, the propen-
sity score can be estimated globally using data from the 
entire population or locally within each site.

Taking logistic regression models as an example, global 
propensity score is estimated by fitting logistic regression 
models to the overall sample:

Since we assume that data at the individual level can-
not be shared among sites, data from the full sample 
cannot be directly used to fit model, and only summary-
level statistics can be obtained from each site. The global 
propensity score can be obtained by distributed logistic 
regression. Let e(X ,αg ) = P(A = 1|X), and the logistic 
loss is

The distributed Newton–Raphson method 
[15, 16] is used to obtain the empirical loss mini-
mizer  α̂ := arg minα

∑
i,k M

logis
(
Ai,k ,X i,k ,α

)
  through 

iterations:

where G
logis
n (α(t)) = 1

n

∑K
k=1

∑
i∈�k

∇αM
logis

(
Ai,X i,α

(t)
)
 

is the global gradient and 
H

logis
n (α(t)) = 1

n

∑K
k=1

∑
i∈�k

∇2
αM

logis
(
Ai,X i,α

(t)
)
 is the 

global Hessian matrix [15]. The iteration process is as 
follows:

1. Initialize α(0) = argmin
α

∑
i∈�1

Mlogis(Ai ,X i ,α) based on 
data from the analysis center (e.g. site 1), and set t = 0.

2. Repeat the following steps until t meets the max iter-
ation times or �Glogis

n (α)� ≤ pre-specified threshold.

a) Transfer α(t) to each site to compute the local 
gradient Glogis

nk (α(t)) and the local Hessian matrix 

(2.1)logit[e(X ,α)] = δ0,g + α

′

g
X

(2.2)
Mlogis

(
A,X ,αg

)
= −{Alog

[
e
(
X ,αg

)]
+ (1− A)log

[
1− e

(
X ,αg

)]
}

(2.3)α
(t+1) = α

(t) − [H
logis
n

(
α
(t)
)
]
−1

G
logis
n

(
α
(t)
)
t = 1, 2, . . .
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H
logis
nk

(
α
(t)
)
 , and transfer the local gradient and 

local Hessian matrix to the analysis center.
b) Calculate the global gradient 

G
logis
n

(
α
(t)
)
= 1

K

∑K
k=1G

logis
nk (α(t)) and the global 

Hessian matrix Hlogis
n

(
α
(t)
)
= 1

K

∑K
k=1H

logis
nk (α(t)) 

in the analysis center.
c) Update α

(t) in the analysis center as 
α
(t+1) = α

(t) − [H
logis
n

(
α
(t)
)
]
−1

G
logis
n

(
α
(t)
).

Then we could obtain the global propensity score êg = 
e
(
X , α̂g

)
 based on the estimated parameter α̂g from itera-

tions. It is worth noting that each site computes its own 
gradient and Hessian matrix, which are subsequently sum-
marized to update the parameters. As a result, any site 
can be chosen as the analysis center. It is generally recom-
mended to consider the hardware capabilities and compu-
tational power of each site when determining the analysis 
center.

An alternative approach is to estimate the local propen-
sity score within each site:

We fit the model at each site using the observations 
from that site and obtain the local propensity score êl = 
e
(
X , α̂l,k

)
 based on the estimated parameter α̂l,k from each 

site.

Proposed propensity score
Motivated by Dong et al. [13] we propose a balancing pro-
pensity score to estimate the overall hazard ratio in dis-
tributed data to improve the estimation efficiency. The 
proposed method is to choose between the global and local 
propensity score by optimizing the overall confounder bal-
ance for propensity score weighting.

where êi is the estimated propensity score, xip is the value 
of the pth measured confounder Xp for individual i ; σ̂p  is 
the standard deviations of Xp for overall population. M̂p 
accounts for balancing of confounder Xp in the overall 
sample.

Notably, M̂p could not be directly estimated in distrib-
uted data and needs file transfer between sites.
M̂p could be rewritten as:

(2.4)logit[e(X ,α)] = δk + α

′

l,kXk = 1, . . . ,K

(2.5)

M̂p =
1

n

[∑
Ai=1

1

êi
xip −

∑
Ai=0

1

1− êi
xip

]
/σ̂p

(2.6)

M̂p =

1

n

[∑K
k=1

∑
Ai=1,Gi=k

1

êi
xip −

∑K
k=1

∑
Ai=0,Gi=k

1

1−êi
xip

]

σ̂p

To obtain M̂p , each site should transfer the following 
items to the analysis center:

(1) 
∑

Ai=1,Gi=k
1
êi
xip and 

∑
Ai=0,Gi=k

1
1−êi

xip.
(2) 

∑
Gi=k xip and 

∑
Gi=k x

2
ip.

M̂p could then be calculated in the analysis center 
using these transferred values from each site based on 
(2.6). The objective function is the sum of the squares 
of M̂p.

We choose between global and local propensity scores 
for each site to minimize the objective function F .

Stochastic search algorithm to estimate the proposed 
propensity score
Dong and others proposed a stochastic search algo-
rithm to find the minimized objective function Fin (2.7) 
[13]. For each site k = 1, . . . ,K  , let Sk = 1 if individu-
als in site k are weighted based on the estimated global 
propensity score, and Sk = 2 if individuals in site k are 
weighted based on the estimated local propensity score.

The search process is as follows:

1. Initially, let all sites use the global propensity score 
and Sk = 1 for k = 1, . . . ,K  . The analysis center cal-
culates the initial value Fint for the objective func-
tion F using information transferred from each 
site. Let the minimum value Fmin = Fint , and let 
Sk ,min = Sk = 1 for k = 1, . . . ,K .

2. Repeat the following steps until the number of repeats 
is no smaller than L1 or Fmin does not change over L2 
repeats. The values of L1 and L2 are pre-specified.

3. Randomly permutate all the sites { 1 , 2,…, K} and get a 
new random ordering of the K sites, { A1,A2, . . . ,AK}.

4. Following the order { A1,A2, . . . ,AK  } in step (a), for 
each site, choose the global or local propensity score 
that gives a smaller value of objective function F 
while fixing the propensity score chosen for other 
K − 1 sites each time. If site k chooses the global pro-
pensity score, then Sk = 1 ; if site k chooses the local 
propensity score, then Sk = 2.

σ̂p =

[
∑K

k=1

∑
Gi=k x

2
ip −

(∑K
k=1

∑
Gi=k xip

)2

n

]

n− 1

(2.7)F =

P∑

p=1

(M̂p)
2
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5. After all sites have selected the global or local pro-
pensity score, calculate Frep for this repeat in the 
analysis center.

6. If Frep in step (c) is smaller than Fmin , then update 
Fmin = Frep and Sk ,min = Sk ; if Frep ≥ Fmin , then keep 
Fmin and Sk ,min unchange.

For each site k = 1, . . . ,K  , if Sk ,min = 1 then the pro-
posed propensity score for site k is equal to the global 
propensity score; otherwise the proposed propensity 
score is equal to the local propensity score estimated 
within that site, i.e.,

Estimation of overall hazard ratio with distributed survival 
data based on proposed propensity score
Based on the proposed propensity score êi = êp,i , the 
inverse probability weight for individual i is

Then we could estimate the log hazard ratio θ̂  by 
solving Eq. (1). In order to obtain θ̂  in distributed data, 
Eq. (1) can be rewritten as

∑
lǫRk ,j(k′)

ŵlexp(θAl)Al and 
∑

lǫRk ,j(k′)
ŵlexp(θAl) in 

the score Eq. (3.1) can be expressed as

êp = êg forsitek , ifSk ,min = 1

êp = êl forsitek , ifSk ,min = 2

ŵi =
Ai

êi
+

1− Ai

1− êi

(3.1)
K∑

k=1

d(k)∑

j=1

∑

iǫDk ,j(k)

ŵiAi −

K∑

k=1

d(k)∑

j=1

∑

iǫDk ,j(k)

ŵi

∑K
k′=1

∑
lǫRk ,j(k′)

ŵlexp(θAl)Al

∑K
k′=1

∑
lǫRk ,j(k′)

ŵlexp(θAl)
= 0

Then the Eq. (3.1) can be further rewritten as

To solve (3.2), we need to know: 
(u1)

 (u2)

Particularly in (u2), exp(θ)
∑K

k′=1

∑
lǫRk ,j (k′),Al=1 ŵl

exp(θ)
∑K

k′=1

∑
lǫRk ,j (k′),Al=1 ŵl+

∑K
k′=1

∑
lǫRk ,j (k′),Al=0 ŵl

 

should be calculated for all d distinct observed event 
times across all sites. Therefore, each site needs to 
know the d distinct observed event times, which 
requires each site to first send d(k) observed event 
times in that site to the analysis center. Then the analy-
sis center needs to summarize the event times from 
each site and send back all the d distinct event times to 
each site. With information on d distinct event times, 
each site k could then calculate 

∑
lǫRj(k),Al=1 ŵl and ∑

lǫRj(k),Al=0 ŵl , and sends the results to the analysis 
center to sum up.

Detailed procedures to obtain the estimated log haz-
ard ratio θ̂  in distributed data:

1. Data transfer from each site k to the analysis center: 
each site transmits d(k) distinct observed event times 
for site k,TD

k ,1, T
D
k ,2, . . . , T

D
k ,d(k) , to the analysis center.

∑

lǫRk ,j(k′)

ŵlexp(θAl)Al = exp(θ)
∑

lǫRk ,j(k′),Al=1

ŵl

∑

lǫRk ,j (k′)

ŵlexp(θAl) = exp(θ)
∑

lǫRk ,j (k′),Al=1

ŵl +
∑

lǫRk ,j (k′),Al=0

ŵl

(3.2)
K∑

k=1

d(k)∑

j=1

∑

iǫDk ,j(k)

ŵiAi−

K∑

k=1

d(k)∑

j=1

∑

iǫDk ,j(k)

ŵi

exp(θ)
∑K

k′=1

∑
lǫRk ,j(k′),Al=1 ŵl

exp(θ)
∑K

k′=1

∑
lǫRk ,j(k′),Al=1 ŵl +

∑K
k′=1

∑
lǫRk ,j(k′),Al=0 ŵl

= 0

K∑

k=1

d(k)∑

j=1

∑

iǫDk ,j(k)

ŵiAi

K∑

k=1

d(k)∑

j=1

∑

iǫDk ,j(k)

ŵi

exp(θ)
∑K

k′=1

∑
lǫRk ,j(k′),Al=1 ŵl

exp(θ)
∑K

k′=1

∑
lǫRk ,j(k′),Al=1 ŵl +

∑K
k′=1

∑
lǫRk ,j(k′),Al=0 ŵl
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2. Data transfer from analysis center to each 
site: The analysis center summarizes the distinct 
observed event times across all sites, and transmits 
all d event times, TD

1 , T
D
2 , . . . , T

D
d  , to each site.

3. Calculation in each site and data transfer from 
each site to the analysis center: Each site k calcu-
lates  

∑
lǫRj(k),Al=1 ŵl and 

∑
lǫRj(k),Al=0 ŵl for d dis-

tinct observed event times, and transmits the cal-
culation result to the analysis center.
4. Data transfer from the analysis center to each site: 
Analysis center summarizes 

∑K
k=1

∑
lǫRj(k),Al=1 ŵl 

and 
∑K

k=1

∑
lǫRj(k),Al=0 ŵl for d distinct observed 

event times, and transmits the summarized result to 
each site.
5. Data transfer from each site to the analysis center: 
For d(k) distinct observed event times within each site, 
each site generates a summary-level table with 4 col-
umns and d(k) rows. The four columns are (i) ∑

iǫDk ,j(k)
ŵiAi , (ii) 

∑
iǫDk ,j(k)

ŵi , (iii) ∑K
k′=1

∑
lǫRk ,j (k′),Al=1 ŵl

 
for the d(k) distinct observed event times TD

k ,j in site k, 
(iv) 

∑K
k′=1

∑
lǫRk ,j(k′),Al=0 ŵl for the d(k) distinct 

observed event times TD
k ,j in site k. Each site transmits 

the 4-column table to the analysis center. An example 
of the 4-column summary table is presented in 
Table S1.
 In particular, for all d distinct observed event 
times across all sites, 

∑K
k′=1

∑
lǫRk ,j(k′),Al=1 ŵl and 

∑K
k′=1

∑
lǫRk ,j(k′),Al=0 ŵl has been calculated and 

transmitted to each site in step 4. Therefore, for d(k) 
distinct event times observed in site k, columns (iii) 
and (iv) can be directly obtained from file transfer in 
step 4.
6. The analysis center solves equation (3.1) based on 
file transfer in step 5, and obtains the estimated log 
hazard ratio θ̂ .

Simulations
Simulation design
To examine the performance of the proposed method, we 
performed two sets of simulations. The first simulation was 
to compare the performance of our proposed method with 
the global propensity score for the entire population or 
local propensity score estimated within each site in distrib-
uted data with K sites. The second simulation was to com-
pare our proposed method to the results obtained from the 
corresponding pooled individual-level data.

Assumed there were four covariates X1~X4 and consid-
ered two scenarios:

(a) Covariates and the treatment assignment in each 
site were homogenous: X1 ∼ Normal(0, 1) , X2 ∼ Uniform(0, 1) , 
X3 ∼ Normal(0, 1) , X4 ∼ Bernoulli(0.4) . The treatment indi-

cator A was generated from the Bernoulli distribution 
according to the following propensity score model:

where α = (α1,α2,α3,α4,α5,α6) = (−1.5,−0.5, 0.5,−0.5, 0.5, 1.5) 
and δ0 = 0.

(b) Covariates and the treatment assignment in 
each site were heterogeneous: X1 ∼ Normal(µk , 1) , if 
G = k , where µk = 3− 3× (k−1)

K−1  , X2 ∼ Uniform(0, 1) , 
X3 ∼ Normal(0, 1) , X4 ∼ Bernoulli(0.4) . The treatment 
indicator A was generated from the Bernoulli distribu-
tion according to the following propensity score model:

where α = (α1,α2,α3,α4,α5,α6) = (−1.5,−0.5, 0.5,−0.5, 0.5, 1.5) and 
δk = −1+ 2× (k−1)

K−1 .
Under each scenario, we also simulated the case where 

the treatment assignment model only included linear 
terms. Under homogenous scenario, the treatment indi-
cator A was generated from

where α = (α1,α2,α3,α4) = (−1.5,−0.5, 0.5,−0.5)andδ0 = 0.

Under heterogeneous scenario, the treatment indicator 
A was generated from

where α = (α1,α2,α3,α4) = (−1.5,−0.5, 0.5,−0.5)andδk = −1+ 2× (k−1)
K−1

.

For survival outcome, we defined 
L = log(1)A+ log(2)X1 + log(1.5)X2 + log(0.5)X3 + log(5)X4 , we 
generated T ∗ from a Weibull distribution with a shape 
parameter of 2 and a scale parameter of 0.5exp(L)−0.5 . For 
censoring, we generated C from an exponential distribu-
tion with a rate parameter of exp(0.5) . T = min(T ∗,C) 
and δ = I(T ∗ ≤ C).

In the stochastic search process, L1 was set to be 500, 
and L2 was set to be 20. We considered K = 5, 10, 20 and 
nk = 500, 1000, 2000 to evaluate the impact of different 
numbers of sites and different sample sizes in each site on 
performance. We reported following performance meas-
ures: absolute bias, root mean squared error (RMSE), and 
ratio of RMSE of different methods against the proposed 
method (r-RMSE). We also presented the measure of 
coverage probability; however, due to constraints regard-
ing computational costs, we only provided results for 5 

logit[e(X ,α)] = δ0 + α1X1 + α2X2 + α3X3 + α4X4

+ α5X
2
1 + α6X1X4

logit[e(X ,α)] =

K∑

k=1

δk1{G = k} + α1X1 + α2X2+

α3X3 + α4X4 + α5X
2
1 + α6X1X5

logit[e(X ,α)] = δ0 + α1X1 + α2X2 + α3X3 + α4X4

logit[e(X ,α)] =

K∑

k=1

δk1{G = k} + α1X1 + α2X2 + α3X3 + α4X4
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sites. We compared three methods to generate weight 
for individual when estimating the overall hazard ratio: 
global weight (weight generated based on global pro-
pensity score êg for the entire population), local weight 
(weight generated based on local propensity score êl esti-
mated within each site), and proposed weight (weight 
generated based on our proposed propensity score êp ). 
The statistical performance was evaluated based on 500 
simulated datasets.

Simulation results
When the covariates and the treatment assignment in 
each site were homogenous, the absolute bias was small 
for all the methods, i.e., weighted using global, local, and 
proposed propensity score. Compared with global weight 
and local weight, our proposed weight had a smaller 
RMSE, regardless of the number of sites and sample 
size in each site. The ratio of RMSE of the global or local 
weight to our proposed weight (r-RMSE) was up to 1.578 
(Table 1).

In the heterogeneity setting, the absolute bias of our 
method was mostly somewhere between global and 
local weight, or close to that of global and local weight. 
Regarding RMSE, the RMSE of our proposed method 
remained the smallest, and the r-RMSE was up to 1.540 
(Table  2). The results are similar when the treatment 
assignment was generated with X = (X1,X2,X3,X4) 
(Table 3, Table 4).

Besides, we have computed the 95% coverage probabil-
ity for 5 sites, and our proposed method achieved a cover-
age probability close to the nominal 95%, and was closer 
to the nominal 95% compared to the global and local 
method (Table 5).

When comparing our proposed method to the results 
obtained from the corresponding pooled individual-level 
data analysis, as expected, our proposed method in dis-
tributed data and pooled individual-level data analysis 
yielded identical results under all scenarios (Table 6).

Application
We apply the proposed method to real-world triple-
negative breast cancer (TNBC) data from Surveillance, 
Epidemiology, and End Results (SEER) [17]. TNBC is 
an aggressive subtype of breast cancer, accounting for 
about 20% of all breast cancer cases [18]. It is known 
that radiation therapy can improve locoregional control 
in breast cancer patients and has a positive impact on 
the long-term survival of high-risk patients [19].

The dataset included 4120 patients aged 20–79  years 
diagnosed with TNBC in 2010 with complete informa-
tion. The treatment variable was set to 1 if the patient 
received radiation therapy and 0 if not. The outcome of 
interest was the time to death during the follow-up of 

up to 71  months. Descriptive characteristics of patients 
according to radiation therapy were presented in Table 
S2. We estimated the hazard ratio and 95% confidence 
interval after adjusting for age, race, marital status, lat-
erality, grade, the American Joint Committee on Cancer 
(AJCC) stage, surgery, distant metastasis, and chemo-
therapy in the propensity score model.

The patients were from five states: Connecticut 
( n1 = 717 ), Hawaii ( n2 = 274 ), Iowa ( n3 = 723 ), Ken-
tucky ( n4 = 1176 ), and Louisiana ( n5 = 1230 ). Descrip-
tive characteristics of patients according to five sites 
were presented in Table S3. We compared the proposed 
method with methods based on the global or local pro-
pensity score in the distributed survival data with 5 sites. 
We further compared the estimates from proposed meth-
ods in distributed data to estimates from the correspond-
ing pooled individual-level data analyses.

The confidence intervals were calculated using the 
bootstrap method with 200 replications [11]. All n indi-
viduals in K  sites were assigned ID of {1, 2, . . . n} . In each 
bootstrap replication, the analysis center re-sampled with 
replacement from {1, 2, . . . n} and sent the re-sampled ID 
of the 200 replications to each site. Each site then pre-
pared 200 bootstrap samples based on the instruction 
from the analysis center. The sample size of the resulting 
bootstrap samples for each site may differ from that site’s 
original size.

Table 7 presented the estimated hazard ratio and their 
95% confidence intervals. Results from the proposed 
methods and methods based on global or local propen-
sity score indicated that radiation therapy had a positive 
impact on long-term survival in patients with TNBC. 
The proposed method was more likely to find a signifi-
cant effect (hazard ratio, 0.679; 95% confidence interval, 
0.585 to 0.789) compared to the global propensity score 
method (0.737; 0.653 to 0.832) and local propensity score 
method (0.709; 0.619 to 0.812). Besides, the proposed 
method and methods based on global or local propen-
sity score produced hazard ratio estimates and 95% con-
fidence intervals equivalent to those obtained from the 
corresponding pooled individual-level data analyses.

Discussion
We have proposed a covariate balance-related propen-
sity score to create inverse probability weight to make 
inferences on the overall hazard ratio in multi-site dis-
tributed survival data. This proposed propensity score 
is produced based on covariate balance-related crite-
rion in the entire population. The proposed propen-
sity score is shown to perform better than the global 
propensity score estimated using data from the entire 
population or the local propensity score estimated 
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within each site. Besides, the proposed method could 
be conducted without individual-level data transferred 
among sites and would yield identical results to the 
corresponding pooled individual-level data analysis.

The proposed method is developed based on dis-
tributed data with multiple sites. Since our proposed 
method in distributed data and pooled individual-level 

data analysis yield identical results, the proposed 
method can be extended to the general studies that data 
is distributed in multiple sites, but data communication 
among sites is not restricted. Therefore, in multi-site 
data, whether or not data transmission between sites is 
allowed, we recommend using our proposed approach 
and selecting between the global and local propensity 

Table 5 The coverage probability of different propensity score 
methods with the number of sites set to 5

Setting 1: homogenous design and treatment assignment generated with X1
~X4 and X2

1
 , X1X4 ; setting 2: heterogeneous design and treatment assignment 

generated with X1~X4 and X2
1

 , X1X4

Setting 1

Global weight Local weight Proposed weight

nk = 500 88.2 90.0 91.2

nk = 1000 93.0 93.0 95.0

nk = 2000 90.8 91.4 92.8

Setting 2

Global weight Local weight Proposed weight

nk = 500 88.6 91.0 92.8

nk = 1000 89.0 91.0 93.2

nk = 2000 87.2 90.2 94.4

Table 6 Comparisons of the proposed method in distributed data and corresponding pooled individual-level data analysis

Bias absolute bias, RMSE root mean squared error, r-RMSE ratio of RMSE of global weight or local weight against proposed weight

Setting 1: homogenous design and treatment assignment generated with X1~X4 and X2
1

 , X1X4 ; setting 2: heterogeneous design and treatment assignment generated 
with X1~X4 and X2

1
 , X1X4

Distributed Data Analysis

Setting 1 Setting 2

Global weight Local weight Proposed weight Global weight Local weight Proposed weight

K = 5 , nk = 500 Bias -0.018 -0.014 -0.017 0.045 0.041 0.033

RMSE 0.116 0.129 0.106 0.129 0.125 0.110

r-RMSE 1.093 1.215 1.000 (Ref ) 1.176 1.140 1.000 (Ref )

K = 5 , nk = 1000 Bias -0.006 -0.008 -0.006 0.039 0.024 0.022

RMSE 0.089 0.100 0.077 0.096 0.092 0.076

r-RMSE 1.160 1.303 1.000 (Ref ) 1.269 1.216 1.000 (Ref )

K = 5 , nk = 2000 Bias -0.002 -0.003 -0.001 0.031 0.014 0.011

RMSE 0.066 0.065 0.061 0.093 0.094 0.077

r-RMSE 1.087 1.071 1.000 (Ref ) 1.210 1.223 1.000 (Ref )

Pooled Individual-Level Data Analysis

Setting 1 Setting 2

Global weight Local weight Proposed weight Global weight Local weight Proposed weight

K = 5 , nk = 500 Bias -0.018 -0.014 -0.017 0.045 0.041 0.033

RMSE 0.116 0.129 0.106 0.129 0.125 0.110

r-RMSE 1.093 1.215 1.000 (Ref ) 1.176 1.140 1.000 (Ref )

K = 5 , nk = 1000 Bias -0.006 -0.008 -0.006 0.039 0.024 0.022

RMSE 0.089 0.100 0.077 0.096 0.092 0.076

r-RMSE 1.160 1.303 1.000 (Ref ) 1.269 1.216 1.000 (Ref )

K = 5 , nk = 2000 Bias -0.002 -0.003 -0.001 0.031 0.014 0.011

RMSE 0.066 0.065 0.061 0.093 0.094 0.077

r-RMSE 1.087 1.071 1.000 (Ref ) 1.210 1.223 1.000 (Ref )

Table 7 Estimation of overall hazard ratio and the corresponding 
95% confidence intervals using different propensity score 
estimation methods in distributed data and pooled individual-
level data

Distributed Data Analysis

Method Hazard ratio 95% Confidence intervals

Global weight 0.737 0.653 to 0.832

Local weight 0.709 0.619 to 0.812

Proposed weight 0.679 0.585 to 0.789

Pooled Individual-Level Data Analysis

Method Hazard ratio 95% Confidence intervals

Global weight 0.735 0.651 to 0.831

Local weight 0.708 0.618 to 0.811

Proposed weight 0.669 0.575 to 0.777
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score in each site to estimate the overall treatment effect 
with efficiency.

In our real-world data analysis, we calculated the 
95% confidence intervals based on the global bootstrap 
method, which re-sampled from the entire population. 
In practice, researchers can also use the alternative local 
bootstrap method for simplicity [11]. Specifically, each 
site could generate its 200 or more bootstrap samples with 
replacement from the original sample in that site, which 
is the conventional bootstrap method within the site. We 
also applied the local bootstrap method to the real-world 
data, and the result was similar and presented in Table S4.

Our method is proposed based on the unstratified 
Cox model. Sometimes, if we assume the baseline haz-
ard to vary by site, stratification on site is helpful and 
the stratified Cox model is used accordingly. In this 
case, the stratified Breslow-type weighted partial likeli-
hood would be used instead of (1) in our study [11]. The 
main difference is that each site no longer needs to 
know the information of all d distinct observed event 
times across all sites, but only needs to obtain its own 
summarized information of d(k) distinct observed event 
times. Accordingly, the detailed steps 1 to 5 in calculat-
ing the overall hazard ratio in our study can be replaced 
by a simple step, i.e., to obtain the following information 
within each site: (i) 

∑
iǫDk ,j(k)

ŵiAi , (ii) 
∑

iǫDk ,j(k)
ŵi , (iii) ∑

lǫRk ,j(k′),Al=1 ŵl for the d(k) distinct observed event 
times TD

k ,j in site k, (iv) 
∑

lǫRk ,j(k′),Al=0 ŵl for the d(k) dis-
tinct observed event times TD

k ,j in site k. Under such cir-
cumstances, only one file transfer from each site to the 
analysis center is required after obtaining the proposed 
propensity score.

When conducting propensity score-based analysis, it 
is crucial to correctly identify the set of confounders and 
specify the propensity score model. We assume that all 
confounding variables are measurable and known in our 
study, and that there is no misclassification, missing data, 
or time-varying covariates. In future studies, it is possi-
ble to consider extending our method to situations where 
these assumptions are not satisfied or data with a large 
number of candidate covariates [20, 21].

Conclusions
In this study, we proposed a covariate balance-related 
propensity score to estimate the overall hazard ratio, 
which only required summary-level information across 
sites to provide personal privacy protection. The pro-
posed propensity score was estimated based on covariate 
balance-related criterion, and was shown to outperform 
the global propensity score estimated using data from the 
entire population or the local propensity score estimated 
within each site.
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