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Abstract 

Background Evidence‑based treatment decisions in medicine are made founded on population‑level evidence 
obtained during randomized clinical trials. In an era of personalized medicine, these decisions should be based 
on the predicted benefit of a treatment on a patient‑level. Survival prediction models play a central role as they incor‑
porate the time‑to‑event and censoring. In medical applications uncertainty is critical especially when treatments dif‑
fer in their side effect profiles or costs. Additionally, models must be adapted to local populations without diminishing 
performance and often without the original training data available due to privacy concern. Both points are supported 
by Bayesian models—yet they are rarely used. The aim of this work is to evaluate Bayesian parametric survival models 
on public datasets including cardiology, infectious diseases, and oncology.

Materials and methods Bayesian parametric survival models based on the Exponential and Weibull distribu‑
tion were implemented as a Python package. A linear combination and a neural network were used for predicting 
the parameters of the distributions. A superiority design was used to assess whether Bayesian models are better 
than commonly used models such as Cox Proportional Hazards, Random Survival Forest, and Neural Network‑based 
Cox Proportional Hazards. In a secondary analysis, overfitting was compared between these models. An equivalence 
design was used to assess whether the prediction performance of Bayesian models after model updating using Bayes 
rule is equivalent to retraining on the full dataset.

Results In this study, we found that Bayesian parametric survival models perform as good as state‑of‑the art models 
while requiring less hyperparameters to be tuned and providing a measure of the uncertainty of the predictions. In 
addition, these models were less prone to overfitting. Furthermore, we show that updating these models using Bayes 
rule yields equivalent performance compared to models trained on combined original and new datasets.

Conclusions Bayesian parametric survival models are non‑inferior to conventional survival models while requir‑
ing less hyperparameter tuning, being less prone to overfitting, and allowing model updating using Bayes rule. 
Further, the Bayesian models provide a measure of the uncertainty on the statistical inference, and, in particular, 
on the prediction.
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Background
Many treatment decisions in medicine are made 
based on evidence from clinical trials, which evaluate 
whether an intervention benefits a certain population 
on average [1]. However, in a personalized medicine 
approach, such decisions would preferably be made 
based on predictions for an individual patient [2, 3]. 
Predictive models using machine learning (ML) could 
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learn the patterns in patient characteristics for which 
one treatment works better than another. In contrast to 
other ML tasks in medical applications, such as radio-
logical image segmentation or disease detection, the 
true result is often unknown because the patient may 
experience the event of interest many years after the 
treatment (e.g. disease recurrence or death). Survival 
models have been introduced for statistical analysis of 
such data and incorporate the time to an event in addi-
tion to the event itself [4].

Predictive models in medical applications have unique 
requirements, as the size of datasets is often limited 
because diseases are divided into many subcategories. 
For example, cancers are subclassified according to the 
stage, histological findings, and genetic mutations with 
the list of subclassifications continuously increasing 
[5]. Thus, the sample size for each subtype treated in a 
single health care center or region might be very small. 
Such datasets are especially prone to overfitting. Most 
ML algorithms use regularization to prevent overfitting, 
which requires more hyperparameters tuning during 
the training process [6]. Another challenge is retrain-
ing models due to changes in the patient population or 
treatment strategies [7]. When adapting a model from 
an older dataset or from another institution, it is often 
impossible to keep the original training data due to data 
privacy concerns. Some models can be updated using 
transfer learning techniques where the training pro-
cess is initialized using the existing model [8]. However, 
this approach treats the existing parameters as random 
numbers, which ignores the amount of information that 
is in these parameters (e.g. 10 vs. 100 samples). It is also 
essential for physicians who base their clinical decisions 
on such predictions to have a measure of uncertainty 
about a prediction [9].

Bayesian models have intrinsic properties, such as 
regularization through non-informative priors, model 
updating using Bayes rule, and estimation of the uncer-
tainty of the prediction, that would make them ideal for 
medical applications (Fig. 1). Yet, these types of models 
are rarely used for survival predictions and in medical 
applications in general. The aim of this work is to evalu-
ate Bayesian parametric survival models with respect 
to prediction performance compared to other state-of-
the-art models. We hypothesize that Bayesian survival 
models i)are superior to state-of-the art models (i.e. 
Cox Proportional Hazards, Random Survival Forest 
[10], DeepSurv [11]) with less overfitting and hyperpa-
rameter tuning; ii) have equivalent performance when 
re-trained on the whole dataset compared to updated 
using Bayes rule.

Materials and methods
Bayesian parametric survival models – Mathematical 
background
The Bayesian parametric survival models are composed 
of two basic building blocks. The first, is the underlying 
distribution by which the survival times TSurvival are dis-
tributed. In the second part, the parameters of the dis-
tribution are given by a function of the input data and 
the coefficients θ. Additionally, a prior is set to the coef-
ficients θi which are estimated during the training phase.

Functions for distribution parameters

Linear function The most basic predictor function is 
a linear combination of the predictors X and the coef-
ficients θ.  X0 is set to one such that θ0 represents the 
intercept. The result is exponentiated to ensure that the 
parameters are positive, which is required by the prob-
ability distributions of the survival time.

Neural network For non-linear relationships, a feed for-
ward neural network is used with L hidden layers consist-
ing of the weights and biases denoted as W and b respec-
tively (later combined as θ).  X1 is set to the model input. 
The hyperbolic tangent function is used as activation 
function between the layers.

For the last layer, the result is exponentiated to ensure 
that the parameters are positive.

The number of outputs of the last layer equals the num-
ber of parameters of the survival time distribution (see 
next section).

Distributions of the survival time
The most common probability distributions for sur-
vival times are the Exponential and the Weibull dis-
tribution. Following, the mathematical description of 
the survival model based on these distributions are 
described.

(1)
θi ∼ Normal(µi, σi)

� = f (X , θ)
TSurvival ∼ Dist(�)

(2)� = f (X , θ) = exp(
n

i=0
θixi)

(3)al = tanh
(
Wl

· al−1
+ bl

)

(4)� = exp
(
WL

· aL−1
+ bL

)
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Exponential model The time to event follows an Expo-
nential distribution which is parametrized by a rate param-
eter (λ) [12]. The parameter λ is predicted using one of the 
predictor functions using inputs X and coefficients θ:

For censored observations, the true survival time  ttrue is 
larger than the time they were under observation  tobserved. 
This probability is given by the log complementary cumula-
tive distribution function (CDF):

The probability of an event at any point in time is the 
given by the CDF:

(5)
� = f (X , θ)

TSurvival ∼ Exponential(�)

(6)ln(P(ttrue > tobserved)) = −�t

(7)Pevent(t; �, κ) = 1− e
−�t

The survival function is then the complement of the 
CDF (1-CDF):

As an intuition, the parameter λ represents rate of 
events with a higher value corresponding to shorter 
time-to-event.

Weibull model In this model the time to event follows 
a Weibull distribution which is parametrized by a scale 
parameter (λ) and a shape parameter (κ) [12]. These 
parameters are predicted using one of the predictor 
functions using inputs X and coefficients θλ and θκ.

(8)Psurvival(t; �, κ) = 1− Pevent(t; �, κ) = e
−�t

(9)
� = f (X , θ�)
κ = f (X , θκ)

TSurvival ∼ Weibull(�, κ)

Fig. 1 Overview of Bayesian approach to survival prediction. a data pipeline with tabular input, Bayesian model for survival times, 
and individualized survival prediction with uncertainty; b Intrinsic properties of Bayesian models that are essential in medical applications: 
Regularization through non‑informative priors, model updating using Bayes rule through informative priors from previous model, estimation 
of uncertainty through full posterior probability distributions of each parameter
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As for the Exponential model, the survival probability 
for censored observations is given by the log complemen-
tary CDF:

The probability of an event at any point in time is the 
given by the CDF.

The survival function is then the complement of the 
CDF (1-CDF):

As an intuition, the parameter λ represents the time-
point when the probability of having experienced an 
event is 63.2%. The shape parameter κ represents whether 
the probability of an event increases (κ > 1), decreases 
(κ < 1) or stays constant (κ = 1) over time. With κ = 1 
the model is equivalent to the Exponential model. The 
Weibull model has a setting that specifies whether the 

(10)ln(P(ttrue > tobserved)) = −(�t)κ

(11)Pevent(t; �, κ) = 1− e
−(�t)κ

(12)Psurvival(t; �, κ) = 1− Pevent(t; �, κ) = e
−(�t)κ

shape parameter κ is modeled ad intercept only (default 
setting in our implementation).

Bayesian parametric survival models—training, predicting, 
and updating
The proposed Bayesian parametric survival models are 
trained using a combined Bayesian model building and 
machine learning workflow incorporating specification of 
priors, sampling, model checking using posterior predic-
tive checks, testing, and predicting using sampling of the 
posterior predictive distribution (Fig.  2). Details on the 
mathematical background and model training and updat-
ing are in the following sections.

Model training
The models were implemented using the probabilistic 
programming framework PyMC (v4.3.0) [13]. The priors 
for the coefficients of the model parameters were set to 
∼ Normal(0, 1) , representing non-informative priors. 
The models were fitted using Hamiltonian Monte Carlo 
using the No-U-Turn Sampler (NUTS) provided in the 
software package PyMC [14]. Three Bayesian parametric 

Fig. 2 General workflow for training, updating, and testing of the Bayesian parametric survival models using fivefold cross validation for feature 
selection and hyperparameter tuning. Model training itself is detailed in the gray box
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survival (BPS) models were used in this study; an expo-
nential and a Weibull model with linear predictor (BPS 
Exp and BPS Wb respectively) and a Weibull model with 
a Neural Network predictor (BPS WbNN).

Model prediction
The predictions were performed using posterior predic-
tive sampling to obtain the probability distribution of the 
parameters λ and κ (Weibull model only) with a new set 
of input data. These parameters are then used to estimate 
the survival function using the respective formulas of the 
complementary CDF. The survival function is evaluated 
at the mean ± standard deviation to provide a measure of 
uncertainty.

Model updating
Bayesian models provide a natural way to retrain with 
new data using Bayes rule. With this, the posterior prob-
ability of the model parameters of the old model is used 
as prior of the new model. When training a model from 
scratch, the priors are set to non-informative priors like 
∼ Normal(0, 1) . In the initial training this acts like a regu-
larization. For model updating, informative priors can be 
used based on the posterior distribution of the old model. 
Once the prior is set to the “old” posterior distribution, 
the workflow for obtaining the likelihood and the “new” 
posterior during model updating is identical to the initial 
model training. For example, if the posterior distribution 
of λparam has a mean of 2 and a standard deviation of 0.5, 
the prior would be set as such �param ∼ Normal(2, 0.5).

P(θ |data) is the posterior probability of the parameters 
θ after observing the data. P(θ), is the prior probability 
before observing the data, which can be obtained from 
a previous model. P(data|θ) is the likelihood that the 
observed data was generated by a model with the param-
eters θ. P(data) is the probability of the data itself. Since 
the data has been observed, the probability is one and 
therefore the equation can be interpreted as follows.

If a model is trained on a very large sample size the 
posterior distributions can be very informative (e.g. small 
standard deviations, means far away from zero). Thus, it 
would require more samples during model updating to 
influence the new posterior distribution. Widening the 
standard deviation of the prior would make them less 
informative and therefore reduce the effect on the poste-
rior in such cases.

(13)P(θ |data) =
P(θ)× P(data|θ)

P(data)

(14)Posterior ∝ Prior × Likelihood

Evaluation
The evaluation uses data of two experiments and a case 
study. The first experiment compares the models using 
five different public datasets. The second compares the 
models after updating on the four larger datasets. Finally, 
a case study is presented on the Veteran dataset. The pub-
lic datasets were: AIDS Clinical Trials Group (ACTG), 
German Breast Cancer Study (GBCS), Veteran lung can-
cer (Veteran), Worcester Heart Attack Study (WHAS), 
and primary biliary cirrhosis (PBC) [4, 15, 16]. Details are 
in section Datasets.

Experiment 1: comparison with other survival models
The models were compared against the Cox proportional 
hazards (CoxPH) model [17], Random survival forest 
(RSF) [10], and deep neural network CoxPH (DeepSurv) 
[11]. These models are easy-to-use and available in 
well-known and maintained open source packages. 
The CoxPH and RSF models were implemented using 
scikit-survival(v0.19.0) and the DeepSurv model using 
PyCox(v0.2.3) and PyTorch(v1.13.0). All models were 
applied to each of the 5 datasets (see Datasets).

All models were evaluated in common ML pipeline 
using train/test split, cross validation, feature selec-
tion and hyperparameter tuning using scikit-learn [18] 
(v1.1.3) and scikit-optimize (v0.9.0). The hyperparame-
ters and the boundaries used during tuning are described 
in Table  1. All splits (train/test, cross validation) were 
performed at random. The following procedure was per-
formed 47 times for each model and dataset combination 
(see Sample size estimation).

First, the dataset was split into training and test set 
using an 80%/20% split at random. On the training set, 
the continuous variables were normalized. Feature selec-
tion and hyperparameter tuning (Table  1) were per-
formed using fivefold cross validation and Bayesian 
search. Features were ordered using mutual information 
with median survival, and k-best features were selected 
with k as a hyperparameter. The hyperparameters and 
features with the best average fivefold cross-validation 
performance were used to train the final model on the 
whole training data set. The final model was then evalu-
ated against the test set using the concordance index 
(C-Index) as evaluation metric [19]. In addition, the dif-
ference in C-Index between the training and test set was 
used to estimate overfitting.

Experiment 2: model updating
The Exponential, Weibull, and DeepSurv model were 
updated using two strategies – full retraining and model 
updating. Therefore, the dataset was split into parti-
tions, representing data collected in different timeframes 
(Fig.  3). In full retraining, the training data from all the 
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previous partitions is combined with the data of the 
current partition. In model updating, the training data 
from the previous partition is discarded and the model 
updated using the new partition only. For the Bayesian 
models the posterior distribution of the previous model 
was used as prior for the new model. For DeepSurv 

transfer learning was applied. The C-Index is used as a 
performance metric at each partition.

We further investigate the internals of the Bayes-
ian models to see whether the model parameters are in 
agreement. Therefore, the posterior distributions of the 
parameters of the models were extracted after each par-
tition. The probability density function (PDF) for each 
parameter was estimated using kernel density estima-
tion. The overlap index (OVI) between the PDF of full 
training vs. model updating was computed after each 
partition [20].

For this experiment, the four datasets with > 200 
samples were used. Datasets with > 1000 samples were 
split into 10 and the others into 6 partitions. Datasets 
with year of enrollment (WHAS) were split accord-
ing to the year variable and the others by random. The 
experiment was repeated 74 times (see Sample size 
estimation).

Case studies on the Veterans dataset
To show the benefit of models with integrated uncer-
tainty estimation, a series of cases of the Veteran dataset 
is presented. All six models (CoxPH, RSF, DeepSurv, BPS 
Exp, BPS WB, BPS Wb NN) were trained on the Veteran 
dataset. The variables age, trt, celltype, and interaction 
terms between trt and celltype are used. Survival predic-
tions, along with the uncertainty (Bayesian models only), 
are presented for all six models.

Datasets
Five public datasets for survival analysis were used to eval-
uate the models. The original and pre-processed (binarized 
and one-hot encoded) datasets are available on Zenodo 

Table 1 Hyperparamters that were optimized during the 
training process of the different models in evaluation

CoxPH Cox Proportional Hazards, RSF Random Survival Forest, BPS Bayesian 
Parametric Survival model, Exp Exponential, Wb Weibull, NN Neural Network

Model Hyperparameter Description Bounds

Cox PH alpha Regularization param‑
eter

(10–5, 0.9)

k K‑best features [1, n_features]

RSF n_estimators Number of trees  [5,25]

tree_depth Max depth per tree  [3, 5, 7, 9]

k K‑best features [1, n_features]

DeepSurv hidden_units Nr of hidden units (X, n_features)

lr Learning rate (10–5,  10–1)

dropout Dropout (0.1, 0.5)

k K‑best features [1, n_features]

BPS Exp priors_sd Standard deviation 
of priors

(10–1,  101)

k K‑best features [1, n_features]

BPS Wb priors_sd Standard deviation 
of priors

(10–1,  101)

k K‑best features [1, n_features]

BPS Wb NN n_hidden_layers Number of hidden 
layers

priors_sd Standard deviation 
of priors

(10–1,  101)

k K‑best features [1, n_features]

Fig. 3 Use of data‑partitions for model updating vs. full re‑training. In model updating only the two most recent data partitions is used for training 
(orange) and testing (green). Previously used training data is ignored (grey). In full re‑training, all previously used training data partitions are 
combined with the new training data (orange). The data partition for testing remains the same (green)
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(https:// zenodo. org/ record/ 74297 22). Only complete cases 
were included, and no imputation was performed.

AIDS Clinical Trials Group Study (ACTG)
This is a dataset from the AIDS Clinical Trials Group 
(ACTG) study, a randomized-control trial of HIV patients 
1151 observations and 16 variables [4]. Binary variables (sex, 
hemophil) were transformed to 0 and 1. Categorical variables 
(strat2, txgrp, ivdrug, karnof, raceth) were one-hot encoded. 
Continuous variables (age, cd4, priorzdv) were normalized.

German Breast Cancer Study data (GBCS)
This is a dataset from the German Breast Cancer Study 
(GBCS) study of patients with primary node positive 
breast cancer with 686 observations and 16 variables 
[4]. Binary variables (menopause, hormone) were trans-
formed to 0 and 1. Categorical variables (grade) were 
one-hot encoded. Continuous variables (age, size, nodes, 
prog_recp, estrg_recp) were normalized.

Veteran lung cancer (Veteran)
This is a dataset from the a randomized-control trial of two 
treatments for lung cancer with 137 observations and 8 
variables [15]. Due to the smaller sample size, this dataset 
was not used for the model updating experiment. Binary 
variables (trt, prior) were transformed to 0 and 1. Categori-
cal variables (celltype) were one-hot encoded. Continuous 
variables (age, karno, diagtime) were normalized.

Worcester Heart attack study (WHAS)
This is a dataset from the Worcester Heart Attack Study 
(WHAS) of patients admitted for acute myocardial infarc-
tion with 481 observations and 14 variables [4]. Binary 

variables (sex, sho, chf, miord) were transformed to 0 and 
1. Categorical variables (mitype, yrgrp) were one-hot 
encoded. Continuous variables (age, ckp) were normalized.

Primary Biliary Cirrhosis (PBC)
This is a dataset from a randomized-control trial of the 
drug D-penicillamine for primary biliary cirrhosis (PBC) 
of the liver with 418 observations and 20 variables [16]. 
Binary variables (sex, trt, ascites, hepatomegaly, spi-
ders) were transformed to 0 and 1. Categorical variables 
(edema, histologic) were one-hot encoded. Continuous 
variables (age, bilirubin, cholesterol, albumin, copper, 
alkphosphotase, sgot, triglycerides, platelet, prothrombin) 
were normalized.

Statistical methods
Sample size estimation
In the superiority analysis of the different survival 
models, we assume a 0.02 higher C-Index in the best 
performing models with a standard deviation of 0.025. 
Six models are compared with each other per dataset, 
resulting in 15 comparisons per dataset. Using Bonfer-
roni correction, the significance level was adjusted to 
0.05 / 15 = 0.0033. Thus, we estimated that a total of 47 
samples per model/dataset combination are necessary 
to achieve a power of 0.8 at a significance level of 0.0033 
to detect a 0.02 ± 0.025 difference.

For the equivalence analysis of two model updating 
strategies, we defined a range of practical equivalence 
of [-0.01, 0.01]. Three models are compared with each 
other per dataset, resulting in 3 comparisons per dataset. 
Using Bonferroni correction, the significance level was set 
to 0.05 / 3 = 0.016. Thus, we estimated that a total of 75 
samples per model/dataset combination are necessary to 
achieve a power of 0.8 at a significance level of 0. 016.

Table 2 Results of the comparative experiments of six models on five public datasets. Per dataset, the best performing model (bold) 
and the models within the 95% CI of the best performing model (italics) are highlighted

a Mean [99.6% CrI]

best performing model

within 95% CI of best performing model

Characteristic CoxPH, N =  47a DeepSurv, N =  47a BPS Exp, N =  47a BPS Wb, N =  47a BPS Wb NN, N =  47a RSF, N =  47a

ACTG 

C‑Index 0.754 [0.731—0.778] 0.714 [0.691—0.739] 0.739 [0.715—0.763] 0.745 [0.718—0.776] 0.748 [0.724—0.770] 0.729 [0.704—0.751]

GBCS

C‑Index 0.736 [0.715—0.757] 0.731 [0.711—0.751] 0.737 [0.721—0.756] 0.735 [0.719—0.751] 0.735 [0.718—0.753] 0.737 [0.718—0.756]

PBC

C‑Index 0.820 [0.801—0.838] 0.813 [0.796—0.829] 0.825 [0.808—0.845] 0.824 [0.805—0.843] 0.842 [0.825—0.858] 0.832 [0.814—0.851]

Veteran

C‑Index 0.709 [0.692—0.727] 0.699 [0.674—0.724] 0.700 [0.668—0.731] 0.696 [0.665—0.729] 0.704 [0.678—0.730] 0.693 [0.671—0.715]

WHAS

C‑Index 0.817 [0.790—0.843] 0.825 [0.804—0.845] 0.828 [0.806—0.850] 0.832 [0.811—0.853] 0.834 [0.814—0.853] 0.821 [0.794—0.848]

https://zenodo.org/record/7429722
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The code for the sample size estimation is available in 
the Supplementary material (Sample size calculation.pdf).

Statistical analysis
Bayesian statistics was used in this analysis. Credible Inter-
vals (CrI) were estimated using the high definition inter-
val (HDI) of the posterior distribution. In the comparative 

analysis, significant outperformance/underperformance by 
a model was defined when the median performance of all 
other models lied outside the CrI of the best/worst perform-
ing model. Using Bonferroni correction, the HDI was set at 
99.66% (1–0.05/15). In the model updating analysis, Bayesian 
equivalence testing was used to test whether the difference 
between Full training and model updating is within the region 

Table 3 Results of the comparative experiments evaluating overfitting. Per dataset, the least overfitting model (bold) and the models 
within the 95% CI of the least overfitting model (italics) are highlighted

a Mean [95% CrI]

least overfitting model

within 95% CI of least overfitting model

Characteristic CoxPH N =  47a DeepSurv N =  47a BPS Exp N =  47a BPS Wb N =  47a BPS WbNN N =  47a RSF N =  47a

ACTG 

C‑Index 0.031 [0.005—0.056] 0.096 [0.059—0.131] 0.038 [0.011—0.063] 0.037 [0.007—0.065] 0.043 [0.015—0.074] 0.090 [0.058—0.122]

GBCS

C‑Index 0.007 [‑0.014—0.029] 0.032 [0.008—0.055] 0.014 [‑0.006—0.032] 0.016 [‑0.005—0.038] 0.030 [0.010—0.052] 0.053 [0.034—0.074]

PBC

C‑Index 0.018 [‑0.004—0.040] 0.064 [0.040—0.089] 0.015 [‑0.005—0.036] 0.018 [‑0.008—0.041] 0.017 [‑0.003—0.037] 0.074 [0.053—0.095]

Veteran

C‑Index 0.022 [0.002—0.044] 0.063 [0.035—0.089] 0.029 [‑0.005—0.062] 0.027 [‑0.005—0.056] 0.037 [0.014—0.060] 0.066 [0.034—0.097]

WHAS

C‑Index 0.028 [0.004—0.051] 0.039 [0.014—0.066] 0.020 [‑0.005—0.046] 0.016 [‑0.009—0.040] 0.034 [0.012—0.057] 0.098 [0.071—0.125]

Fig. 4 Overfitting of the models under evaluation shows that Weibull model had consistently small overfitting, whereas DeepSurv and RSF models 
showed consistently larger overfitting
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of practical equivalence (ROPE) of [-0.01, 0.01]. Using Bonfer-
roni correction, the HDI was set at 98.33%(1–0.05/3). The two 
training methods were considered equivalent or non-equiva-
lent if 100% or 0% of the CrI of the difference in performance 
was within the ROPE respectively. Otherwise, the result was 
considered inconclusive. Bayesian analysis was performed 
using rstanarm (v 2.21.3) and bayestestR (0.13.0). All plots 
were created using ggplot2 and ggpubr. All statistical analyses 
were performed in R and RStudio. Sample size estimation was 

performed using pwr (v 1.3.0) and TOSTER (v 0.4.2) [21]. The 
statistical analysis is available in the Supplementary material 
(Comparison of algorithms.pdf, Overlap of posterior distribu-
tions.pdf, Posterior distributions.pdf, Retraining.pdf).

Results
Comparison with state‑of‑the art models
Overall, none of the models consistently outperformed or 
underperformed. In all datasets, at least one model was 

Fig. 5 a Model performance after each partition, b Difference between full training and model updating after each partition. Dashed lines 
represent the region of practical equivalence [‑0.01, 0.01], c Difference between full training and model updating. Dashed lines represent the region 
of practical equivalence [‑0.01, 0.01]
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within the CrI of the best performing model, and there-
fore no model outperformed. For the PBC dataset, the 
BPS Wb NN model performed significantly better than 
all other models. The DeepSurv and the BPS Wb NN 
model, two neural network-based models, were never 
the top performing model. However, the PM NN model 
was always within the CrI of the best performing model. 
Table 2 shows detailed results of all experiments.

When looking at overfitting, represented by the dif-
ference in C-Index between training and testing, it 
shows that the Cox PH model and the Weibull-based 
Bayesian models overfit the least. The Exponential 
and Neural Network-based model overfit more but are 
mostly within the CrI of the former. The DeepSurv and 
RSF model consistently show significantly more overfit-
ting than the least overfitting model. Detailed results 
are available in Table 3 and Fig. 4.

Partial re‑training vs. full re‑training
In all 4 datasets, the performance of the updated Bayes-
ian parametric models is similar to the model with full 
training and within the CrI at each partition (Fig.  5a). 
In the PBC dataset, the performance difference of the 
Bayesian models crosses the equivalence boundary and 
equivalence can neither be accepted nor rejected (Fig. 5 
b). The performance of the DeepSurv model diverged 
and decrease for the ACTG, PBC, and WHAS dataset 
and is clearly outside the equivalence boundary. In the 
GBCS dataset, the performance difference is within the 
equivalence boundary on average but Fig. 5c show initial 
performance difference below the equivalence boundary 
followed by a difference above the equivalence boundary. 
Detailed results are presented in Table 4.

Figure 6 shows the posterior distributions and the OVI 
between full training and model updating of the BPS 
Exponential model trained on the WHAS dataset. Some 
parameters are in strong agreement between the train-
ing modes (> 0.9 OVI) whereas others disagree more and 
more over time. Of those who disagree in terms of lower 
OVI two different types of disagreement were observed. 
One type represents a shift in the median of the pos-
terior PDF, which would indicate a change in feature 
importance. The second type represents higher certainty 
(smaller standard deviation) about the parameter in the 
model updating compared to full retraining. Despite 
these changes in the model parameters, the performance 
difference was less than 1% in terms of C-Index. Further 
examples are shown in the Supplementary materials.

Case studies
To show examples, all models were trained on the Vet-
eran dataset. The first case is a 50-year-old male with 
lung adenocarcinoma (Fig.  7left). The second case is a 
65-year-old male with small cell lung cancer (Fig. 7 right). 
In both cases, two survival predictions are shown; one for 
the standard-of-care treatment and one for the experi-
mental treatment. In the first case, all models favor the 
experimental treatment. However, the Bayesian models 
show some uncertainty, where the standard-of-care treat-
ment is within the uncertainty region of the experimen-
tal treatment. In the second case, all, except of the two 
Neural Network-based models, favor the experimental 
treatment. In this case, the Bayesian models have a much 
smaller uncertainty and thus predict a clear survival ben-
efit for the experimental treatment.

Discussion
In this study, we evaluated the performance of Bayesian 
parametric survival models compared to state-of-the art 
models. While these models were among the best per-
forming, no model significantly outperformed all oth-
ers. This emphasizes the importance of model selection 
per application. However, our results suggest that using 
a Bayesian parametric model would lead to good perfor-
mance in all datasets. In addition, we demonstrate that 
Bayesian models can be updated as more data is collected 
without requiring the original training data by applying 
Bayes rule. The performance of these updated models 
was equivalent to the performance of models trained on 
all data.

The possibility of updating models without the original 
data and without sacrificing model performance has sev-
eral practical advantages. First, privacy concerns often 
preclude data sharing among institutions. Second, the 
proposed models use Bayes rule to enable model updating 

Table 4 Detailed results of model updating vs. full retraining

a Median [98.3% CrI]
b Difference between full re-training and model updating

HEquivalence: Hypothesis that difference in model performance is N = 75

Model Experiment C‑Indexa,b % in 
ROPE

HEquivalence

DeepSurv ACTG 0.0610 [0.0520—0.0700] 0.0 Rejected

BPS Exp ACTG 0.0026 [0.0007—0.0045] 100.0 Accepted

BPS Wb ACTG 0.0023 [0.0006—0.0039] 100.0 Accepted

DeepSurv GBCS ‑0.0004 [‑0.0072—0.0062] 100.0 Accepted

BPS Exp GBCS 0.0046 [0.0030—0.0063] 100.0 Accepted

BPS Wb GBCS 0.0042 [0.0023—0.0060] 100.0 Accepted

DeepSurv PBC 0.0260 [0.0190—0.0330] 0.0 Rejected

BPS Exp PBC 0.0094 [0.0063—0.0130] 68.1 Undecided

BPS Wb PBC 0.0088 [0.0054—0.0120] 79.6 Undecided

DeepSurv WHAS 0.0290 [0.0140—0.0430] 0.0 Rejected

BPS Exp WHAS 0.0052 [0.0046—0.0057] 100.0 Accepted

BPS Wb WHAS 0.0035 [0.0030—0.0041] 100.0 Accepted
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which only requires the summary statistics of the origi-
nal models used as priors to update the new model (e.g. 
in another institution). In this work, the performance 

between these two re-training approaches resulted in 
equivalent performance. To the best of our knowledge, this 
application of Bayesian models has not been studied so far.

Fig. 6 Overlap index of posterior distributions (a) with three different patterns of overlap between Full and partial re‑training (b)
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In secondary analyses, we showed that the Bayes-
ian models had less overfitting (performance decrease 
between training and testing) despite requiring less 
hyperparameter tuning for regularization. Regulariza-
tion is achieved through non-informative priors. This 
is contrary to the belief that Bayesian models are more 
complex, which is mostly related to the lack of easy-to-
use frameworks like scikit-learn. Previously reported 
non-parametric Bayesian models either did not provide 

code or use more complicated methods for model fit-
ting [22, 23]. Even though the performance between 
training approaches was equivalent the model param-
eters diverged in some cases. We identified two distinct 
patterns of divergence: a difference in the mean or the 
standard deviation. While these divergences did not 
affect the performance in this study, it shows that atten-
tion should be paid to such effects before deploying a 
model. This is also stated by the US FDA in their good 

Fig. 7 Predictions for case 1 using different survival models with treatment from the control arm or the experimental treatment. Predictions 
for case 2 using different survival models with treatment from the control arm or the experimental treatment
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machine learning guidelines, that re-training risks must 
be managed [7].

This study has limitations. The datasets used are 
relatively small when compared to other AI studies. 
However, there are many scenarios where researchers 
initially are only able to collect a few hundred samples. 
Further, we did not compare the models in terms of 
computation time for training and predicting. In gen-
eral, all models could be trained in < 10 min including 
hyperparameter optimization. Bayesian frameworks, 
such as PyMC, are undergoing heavy development with 
a focus on computation time. Computational librar-
ies such as NumPy or JAX are getting faster through 
accessing GPUs and parallel computing optimizations. 
Therefore, a comparison in terms of computation per-
formance would likely be outdated within a very short 
period of time.

In conclusion, Bayesian parametric survival models 
have similar performance as state-of-the art models 
while requiring less hyperparameter tuning and result-
ing in less overfitting. In addition, they allow for model 
updating using Bayes rule with equivalent performance 
compared to re-training using the full dataset. These 
properties of Bayesian parametric survival models 
would make them ideal for medical applications with 
their unique requirements due to the high stakes deci-
sions and data privacy regulations.
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