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Abstract 

Background The World Health Organization (WHO)’s excess mortality estimates presented in May 2022 stirred 
controversy, due in part to the high estimate provided for Germany, which was later attributed to the spline model 
used. This paper aims to reproduce the problem using synthetic datasets, thus allowing the investigation of its sen-
sitivity to parameters, both of the mortality curve and of the used method, thereby shedding light on the conditions 
that gave rise to this error and identifying possible remedies.

Methods A negative binomial model was used accounting for long-term change, seasonality, flu seasons, and heat 
waves. Simulated mortality curves from this model were then analysed using simple methods (mean, linear trend), 
the WHO method, and the method of Acosta and Irizarry.

Results The performance of the WHO’s method with its original parametrization was indeed very poor, however it 
can be profoundly improved by a better choice of parameters. The Acosta–Irizarry method outperformed the WHO 
method despite being also based on splines, but it was also dependent on its parameters. Linear extrapolation 
could produce very good results, but was highly dependent on the choice of the starting year, while the average 
was the worst in almost all cases.

Conclusions Splines are not inherently unsuitable for predicting baseline mortality, but caution should be taken. In 
particular, the results suggest that the key issue is that the splines should not be too flexible to avoid overfitting. Even 
after having investigated a limited number of scenarios, the results suggest that there is not a single method that out-
performs the others in all situations. As the WHO method on the German data illustrates, whatever method is chosen, 
it remains important to visualize the data, the fit, and the predictions before trusting any result. It will be interesting 
to see whether further research including other scenarios will come to similar conclusions.

Keywords Excess mortality, Spline regression, Prediction, Robustness

Background
Excess mortality is the difference between the actual 
all-cause mortality (number of deaths) over a particu-
lar time period in a given country or (sub- or suprana-
tional) region and its “expected” mortality, which refers 
to the mortality statistically forecasted from the region’s 
historical data. Excess mortality calculations can be used 
to characterize the impact of an event on mortality if the 
data were obtained before the onset of the event. There-
fore, the prediction pertains to a counterfactual mor-
tality that would have been observed without the event 
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[1]. Excess mortality can thus measure the impact of the 
event, assuming that the prediction is correct.

Calculating excess mortality is particularly useful if 
the event’s impact on mortality is difficult to measure 
directly. For instance, one of the typical applications is 
characterizing the mortality associated with natural dis-
asters [2–4], but it is also used for epidemics, such as the 
seasonal flu, where direct mortality registration is miss-
ing, incomplete, or unreliable [5, 6].

Coronavirus disease 2019 (COVID-19) is no exception. 
While the mortality attributed to COVID-19 is reported 
in developed countries, typically daily or weekly, two 
drawbacks in the reporting have been realized. First, the 
number of reported deaths is – while to much less extent 
than the number of reported cases – still contingent on 
testing activity, which may be vastly different between 
countries or time periods. Second, despite efforts at 
standardization, the criteria for death certification may 
be different between countries [7]. Excess mortality 
resolves both of these problems because it is completely 
exempt from differences in testing intensity and cause-of-
death certification procedures. This makes it especially 
suitable for between-country comparisons, which are 
critical to better understand the pandemic, particularly 
with regard to evaluating different control measures and 
responses [8].

This, however, comes at a price. First, and perhaps most 
importantly, excess mortality is inherently a gross met-
ric, measuring both direct and indirect effects; the latter 
of which can be both positive (e.g., COVID-19 control 
measures also protect against the flu) and negative (e.g., 
the treatment of other diseases becomes less efficient) 
[9]. Second, excess mortality is the slowest indicator. 
The necessary data (i.e., the number of deaths) usually 
becomes available after 4 weeks (and even that is typically 
revised to some extent later) even in developed countries. 
This is in contrast to reported COVID-19 deaths, which 
are available by the following week or even the next day. 
Finally, the whole calculation depends on how accurate 
the forecast was.

The last of these issues is the focus of the current study. 
Given the importance of cross-country comparisons, the 
results should reflect true differences and should not be 
too sensitive to the prediction method used.

Only those methods that use the traditional regression 
approach are considered here. Methods using ARIMA 
models [10–13], the Holt–Winters method [14], or those 
based on Gaussian process [15] are not considered, nor 
are ensemble methods [16, 17]. Questions concerning 
age or sex stratification or standardization [18], small 
area estimation [19, 20], and the inclusion of covariates 
(e.g., temperature) to improve modelling [16, 17, 19] are 
also not considered.

These considerations leave us with two matters of con-
cern: the handling of seasonality and the handling of a 
long-term trend. For the latter, the following are the typi-
cal solutions concerning COVID-19:

• Using the last prepandemic year [16, 21]. This solu-
tion is good – even if not perfect –because it uses 
data closest to the investigated period. However, this 
metric has a huge variance due to the natural year-to-
year variability in mortality.

• Using the average of a few prepandemic years (typi-
cally 5 years) [22–28]. This is more reliable than the 
previous solution because averaging reduces variabil-
ity. However, it is even more biased in case the mor-
tality has a long-term trend (which it almost always 
has). For instance, if mortality is falling, this provides 
an overestimation; thus, excess mortality is underes-
timated.

• Using a linear trend extrapolation [29–31]. This 
approach accounts for the potential trends in mor-
tality, removing the bias of the above-mentioned 
methods, at least as far as linearity is acceptable, but 
it depends on the selection of the starting year from 
which the linear curve is fitted to the data.

• Using splines [32, 33]. The method of Acosta and 
Irizarry [34, 35] is based on splines, just as many 
other custom implementations [16, 36], which, cru-
cially, includes the model used by the World Health 
Organization (WHO) [37].

While this issue has received minimal public atten-
tion, the choice of the method (and the parameters) used 
to handle long-term trends may have a highly relevant 
impact on the results of the calculation. This is evidenced 
by the case of excess mortality estimation by the WHO. 
On May 5, 2022, the WHO published its excess mor-
tality estimates [38], which immediately raised several 
questions. In particular, it was noted that the estimates 
for Germany were surprisingly high [39]: the WHO esti-
mated that 195,000 cumulative excess deaths occurred in 
Germany in 2020 and 2021, a figure that was inexplicably 
larger than every other previous estimate. For instance, 
the World Mortality Dataset reported 85,123 excess 
deaths in Germany for the same period [1].

The case was so intriguing that one paper termed it the 
“German puzzle” [39]. Figure  1 illustrates the “German 
puzzle” using actual German data, with the curves fit-
ted on the 2015–2019 data and extrapolated to 2020 and 
2021 (as done by the WHO). While the dots visually indi-
cate a rather clear simple upward trend (as shown by the 
linear extrapolation), the spline prediction turns back.

The WHO [37] later explained that the problem 
resulted from two issues. First, the WHO rescaled the 
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raw data to compensate for underreporting (caused by 
late registration, for instance), but this approach was 
unnecessary in the case of Germany, which had excellent 
death registration. Figure  1 shows the unadjusted Ger-
man data avoiding this problem to focus on the second 
issue; that is, the usage of splines, which is the subject of 
the current investigation.

As described above, the WHO method uses a spline to 
capture the long-term trend. However, the lower data of 
2019 had a very high impact on the spline, and this single 
observation turned the entire spline despite earlier points 
showing an upward trend. Too much weight seems to 
have been placed on this – likely short-term, random, 
noise-like – fluctuation; hence, the extrapolation was too 
sensitive for this. The culprit was quickly identified as the 
spline regression itself, with one commentator saying that 
“[e]xtrapolating a spline is a known bad practice” [39].

However, questions have emerged as to whether splines 
are really to be blamed. Motivated by the intention to bet-
ter understand the “German puzzle,” this study aims to 
investigate the following questions: 1) Are splines really 
the culprit per se?, 2) What were the particular character-
istics, both of the scenario and of the used spline regres-
sion used that gave rise to the problem?, and 3) Is there a 
better way to predict the baseline for the excess mortality 
calculation to avoid this problem?

To answer these questions, we first needed to devise a 
model that could generate mortality curves that capture 
the relevant features exhibited by the real-life German 
example. Thus, calculating the accuracy of a forecast 
would be possible because the ground truth is now 
known, and we could investigate how the parameters of 

the simulation influence it. By averaging several simula-
tions, the mean accuracy can be approximated, allow-
ing for a comparison of the methods and investigation 
of its dependence on the parameters – both for the 
mortality curve and for the method – thereby hopefully 
resolving the “German puzzle.”

This investigation focuses on the errors of prediction. 
However, as excess mortality is defined as the differ-
ence between actual and predicted mortality, any error 
in the prediction directly translates to the same error 
in the estimation of excess mortality (given any actual 
mortality). Thus, the current study equivalently covers 
the errors in the estimation of excess mortality itself.

It should be noted that the present study does not use 
age or sex stratification or consider the size and com-
position of the background population. While these 
parameters are important, the WHO’s original study 
also did not take these factors into account.

Methods
Data source
Data on weekly all-cause mortalities for Germany were 
obtained from the European Statistical Office (Euro-
stat) database demo_r_mwk_ts. We applied no addi-
tional pre-processing or correction such as that for late 
registration, as part of the problem with the WHO’s 
approach was caused by upscaling, and we wanted to 
focus solely on the modelling aspect. Additional file  1 
shows a detailed comparison of the possible data 
sources.

Figure  2 illustrates the basic properties of the data 
(raw weekly values, yearly trend, and seasonal pattern).

Fig. 1 A linear trend and a spline fitted on the 2015–2019 German mortality data and extrapolated to 2020 and 2021
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Simulation model
Based on the patterns shown in Fig.  2, the following 
three components were used to create the synthetic 
datasets:

• Long-term change, modelled with a quadratic 
trend; described by three parameters (constant, lin-
ear, and quadratic terms)

• Deterministic seasonality, modelled with a sin-
gle harmonic (sinusoidal) term; described by two 
parameters (amplitude and phase)

• Random additional peaks during winter (i.e., flu 
season) and summer (i.e., heat waves); described in 
each season by five parameters (probability of the 
peak, minimum and maximum values of the peak 

Fig. 2 Weekly mortalities (upper), yearly mortalities with the LOESS-smoother (middle), and the seasonal pattern (bottom) for the German mortality 
data, 2000–2019
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height, and minimum and maximum values of the 
peak width)

These components governed the expected value; the 
actual counts were obtained from a negative binomial 
distribution with a constant size and log link function.

Thus, the number of deaths at time t (Dt) was simulated 
according to a negative binomial model Dt ~ NegBin(μt, 
s), with mean μt and size parameter s = 1000. The mean 
was modelled such that log(μt) = β0 + β1 · t + β2 · t2 + A · 
cos(2π · w[t] + φ), where w[t] is the week of time t, scaled 
from 0 to 1. The first three terms in this equation refer 
to the “long-term trend” (characterized by parameters 
β0 = 10.11, β1 =  − 7.36·10–5, and β2 = 3.04 ·  10–9), and the 
latter to the seasonality (characterized by parameters 
A = 0.07 and φ =  − 0.61). Additionally, some peaks have 
been randomly added to log(μt), with widths between 
8.41 and 35.36 and heights between 0.11 and 0.33 posi-
tioned in the winter (uniformly between weeks 1 and 
11) with 0.45 probability in each year, and with widths 
between 0.86 and 9.24 and heights between 0.10 and 0.24 
positioned in the summer (uniformly between weeks 26 
and 37) with 0.40 probability in each year. The shape of 
the peaks follows the probability density function of the 
Cauchy distribution. These parameters were chosen so 
that the simulated curves mimic the properties of the 
real-life mortality curve.

Additional file  2 describes in detail how the above-
mentioned model is built (including the estimation from 
the actual German data that resulted in these parameters, 
and an example of the simulated data along with the real 
data).

Baseline mortality prediction
We predicted mortality by using four methods: the WHO 
method, an advanced alternative method developed by 
Acosta and Irizarry in 2020 that also uses splines [34], 
and two simple methods for comparison. These lat-
ter methods cover classical statistical methods that are 
widely used for predicting baseline mortality in excess 
mortality studies. The methods are detailed below:

• Average: after accounting for seasonality with a sin-
gle cyclic cubic regression spline, the average of the 
preceding years was used as the constant, predicted 
value. The response distribution is assumed to be 
negative binomial (with the overdispersion param-
eter estimated from the data) with a log link function. 
Parameter: starting year (i.e., how many previous 
years were used for averaging). Some studies used 
the last prepandemic year (2019) as the predicted 
baseline mortality, this is just the special case of this 
method, with the starting year set to 2019.

• Linear: after accounting for seasonality with a single 
cyclic cubic regression spline, the long-term trend 
was modelled with a linear trend. The response dis-
tribution is assumed to be negative binomial (with 
the overdispersion parameter estimated from the 
data) with a log link function. Parameter: starting 
year (from which the model was fitted).

• WHO method: this method was reconstructed 
according to the description mentioned above [37]. 
Briefly, seasonality was accounted for with a single 
cyclic cubic regression spline (as done in previous 
cases), and the long-term trend was accounted for 
with a thin plate regression spline. The only devia-
tion compared with WHO’s study is that the actual 
time (number of days since January 1, 1970) was 
used as the predictor of the long-term trend, not the 
abruptly changing year. The response distribution is 
assumed to be negative binomial (with the overdis-
persion parameter estimated from the data) with a 
log link function, and the model was estimated with 
restricted maximum likelihood. Second derivative 
penalty was used for constructing the spline; thus, 
the forecasting would be a linear extrapolation. 
Parameters: starting year (from which the model is 
fitted) and k , which is the dimension of the basis of 
the spline used for capturing the long-term trend.

• Acosta–Irizarry (AI) method: the method described 
in [34] using their reference implementation. It offers 
many advantages when estimating excess mortal-
ity, however, these advantages partly appear only 
in the second stage (i.e., calculating the excess after 
the expected is forecasted). Regarding baseline pre-
diction, the method is similar to that of the WHO 
in using splines, with three differences. First, for 
capturing seasonality, two harmonic terms are used 
(with prespecified frequencies of 1/365 and 2/365 as 
default, and arbitrary phase estimated from the data) 
instead of the cyclic cubic regression spline. Second, 
the spline to capture the long-term trend is a natu-
ral cubic spline, not a thin plate regression spline, 
with the number of knots selectable. If the number of 
years in the training data is less than 7, a linear trend 
is used instead of the spline. Finally, the response dis-
tribution is quasi-Poisson (with a log link function). 
Parameters: starting year (from which the model is 
fitted) and tkpy , which denotes the number of trend 
knots per year. Other parameters are left on their 
default values (i.e., two harmonic terms are used).

The equations presented in Table  1 provide an over-
view of these modelling approaches.

As already noted, population size is not included in 
the models, consistent with what the WHO did for the 
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analysis of countries with frequently available data. 
Thus, changes in the population size are absorbed into 
the changes in death counts without explicit modelling, 
clearly suggesting potential room for improvement.

Validation through simulation
First, a synthetic dataset was randomly generated from 
the model described above using the investigated param-
eters (parameters of the scenario). This dataset simulated 
mortalities recorded from 2000 to 2023. We then applied 
the investigated prediction method with the investigated 
parametrization (parameters of the method), and after 
fitting on the 2000–2019 data, we obtained a prediction 
for 2020–2023, where it can be contrasted with the simu-
lation’s actual values, which represent the ground truth in 
this case. Denoting the actual number of deaths in the 
simulated dataset for year y with My =

∑
t:y[t]=yDt and 

the predicted number with M̂y , the goodness of predic-
tion is quantified with mean squared error 
(MSE = 1

4
2023
y=2020 My −My

2

 ), mean absolute percent-

age error (MAPE = 1
4

∑2023
y=2020

∣∣∣∣
My−M̂y

My

∣∣∣∣ ), and bias 

(Bs = 1
4

∑2023
y=2020

(
My − M̂y

)
 ). This whole procedure was 

repeated 1000 times, and the metrics were averaged over 
these replications. This step was then repeated for all pre-
diction methods, all parameters of the method, and all 
parameters of the scenario.

The investigated parameters of the prediction methods 
were the following:

• Average: starting years 2000, 2005, 2010, 2015, and 
2019

• Linear: starting years 2000, 2005, 2010, and 2015
• WHO method: all possible combinations of the start-

ing years 2000, 2005, 2010, and 2015 and k (basis 
dimension) 5, 10, 15, and 20

• AI method: all possible combinations of the start-
ing years 2000, 2005, 2010, and 2015 and tkpy (trend 
knots per year) 1/4, 1/5, 1/7, 1/9, and 1/12

For the scenario, simulations were run with the opti-
mal parameters to mimic the real-life German situation, 
as discussed previously (base case scenario), and three 
further parameter sets, describing a scenario where the 
long-term trend is linear (β0 = 10.11, β1 =  − 7.36 ·  10–5 
and β2 = 0), constant (β0 = 10.11, β1 = 0 and β2 = 0), and 
when it is non-monotone (β0 = 10, β1 = 9.5 ·  10–5 and 
β2 =  − 3·10–9).

This framework also enables us to investigate any fur-
ther scenarios, including varying parameters other than 
the long-term trend, or varying several in a combinato-
rial fashion (although the latter has a very high computa-
tional burden).

Additional file 3 details the simulation.

Programs used
All calculations were performed using the R statistical 
program package version 4.2.2 with the packages data.
table (version 1.14.4), ggplot2 (version 3.4.0), excessmort 
(version 0.6.1), mgcv (version 1.8.41), scorepeak (version 
0.1.2), parallel (version 4.2.2) lubridate (version 1.8.0), 
ISOweek (version 0.6.2), and eurostat (version 3.7.10).

The full source code allowing for complete reproduc-
ibility is openly available at: https:// github. com/ tamas- 
feren ci/ Morta lityP redic tion.

Results
Figure  3 illustrates the 2020–2023 predictions for the 
base case scenario by showing the estimated yearly 
deaths for 200 randomly selected simulations together 
with the ground truth for all four methods with all pos-
sible parameters.

Figure 3 already strongly suggests some tendencies but, 
for a precise evaluation, we needed to calculate the error 

Table 1 Overview of the models used to create predictions

cc cyclic cubic regression spline, tp thin plate regression spline, nc natural cubic spline, *: > 7 years training data, **: ≤ 7 years training data, w[t]: week of the year scaled 
to 0–1

Name Model

Average Yt ∼ NegBin(µt , θ)
log(µt) = β0 + fcc(w[t])

Linear Yt ∼ NegBin(µt , θ)
log(µt) = β0 + β1t + fcc(w[t])

WHO Yt ∼ NegBin(µt , θ)
log(µt) = ftp(t)+ fcc(w[t])

Acosta–Irizarry Yt ∼ QuasiPoi(µt)

log(µt) =

{
β0 + fnc(t)+

∑2
k=1

[
sin(2π · k · w[t])+ cos(2π · k · w[t])

]
∗

β0 + β1t +
∑2

k=1

[
sin(2π · k · w[t])+ cos(2π · k · w[t])

]
∗ ∗

  

https://github.com/tamas-ferenci/MortalityPrediction
https://github.com/tamas-ferenci/MortalityPrediction
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Fig. 3 Estimated yearly deaths (for 2020–2023) for 200 randomly selected simulations (black lines) together with the ground truth (red line). A WHO 
method, B Acosta–Irizarry method, C Linear trend, D Average. Parameters of the methods are shown in column and row headers, and parameters 
of the scenario are set to the base case values. Note that 2020 is a long year with 53 weeks; therefore, higher values are expected for that year
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metrics. Figure  4 shows the three error metrics for all 
methods and all possible parametrizations. As shown in 
the figure, the ordering of the methods according to dif-
ferent criteria is largely consistent.

As suggested in Fig. 3, this confirms that k = 3 (WHO) 
and tkpy = 1/12 or 1/7 (AI) are the best parameters in 
this particular scenario. Note that the default value 
in the method used by the WHO is k = 10, but it is just 
tkpy = 1/7 for the AI method. Figures 3 and 4 shed light 
on the nature of error. The linear trend and average 
methods are particularly clear in this respect: early start-
ing ensured low variance, but it was highly biased. Con-
versely, later starting reduced the bias but increased the 
variance. Thus, this observation is a typical example of a 
bias-variance trade-off.

All the above-mentioned investigations used the base 
case scenario for the simulated mortality curve. Figure 5 
shows the MSEs achievable with each method in the 
further investigated scenarios representing four distinct 
types of the long-term trend of simulated mortality as 
a function of the starting year (with k = 3 for the WHO 
method and tkpy = 1/7 for the AI approach).

Table  2 summarizes the error metrics of all four 
methods.

Finally, considering that different methods were eval-
uated on the same simulated dataset for each simula-
tion, we could directly compare not only the averages 
but also the errors themselves. Additional file  4 pre-
sents this possibility.

Discussion
The results of this study demonstrate that we could reli-
ably reproduce the “German puzzle” using synthetic 
datasets. This approach allowed us to investigate how the 
results depend on the method used, its parameters, and 
the parameters of the scenario.

As expected, prediction with averaging had the highest 
error, except for very poor parametrizations of the spline-
based methods, and it was highly biased. Its performance 
was improved by a later starting year; that is, a smaller 
bias offsets the larger variability. Naturally, it performs 
well in a practically very unlikely case when even true 
mortality is constant.

Fig. 4 Different error metrics (logMSE, MAPE, and Bias) for all methods and all possible parameter combinations of all methods. Parameters 
of the scenario are set to the base case values
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Linear extrapolation seemed to be a very promising 
alternative, comparable to the considerably more sophis-
ticated spline-based methods. The only problem was that 
it was very sensitive to the appropriate selection of the 
starting year; the phase where the change in historical 
mortality is linear should be covered. Linear extrapola-
tion is prone to subjectivity and may not work at all if the 
linear phase is too short (thereby limiting the available 
information), but it depends on how wiggly the histori-
cal curve is. Naturally, it works best if the true mortality 
is linear, but it can perform very poorly with non-mono-
tone curves when the starting year is not selected to 
match the last section that can be approximated with a 
linear curve, consistent with the previous remark.

Theoretically, splines can work well even in cases of 
non-monotone mortality. The spline-based method can 
use all historical data. It is not abruptly cut off as with 
linear extrapolation, but more weight is placed on the 
trends suggested by recent observations. At first glance, 
this method seems to be the ideal solution, delivering the 
benefits of linear extrapolation but without the need to 
“guess” the good starting point. However, as this study 

reveals, the definitions of “more weight” and “recent” are 
crucial, and certain parameter choices can result in very 
poor extrapolations, despite the tempting theoretical 
properties.

In selecting the optimal parameters, as confirmed by 
the results of the two spline-based methods (the WHO 
method and the AI method), the splines should be quite 
simple in baseline mortality prediction for excess mor-
tality calculations. This finding is in line with the expe-
riences both with the WHO method (where increasing 
the basis dimension decreased the performance) and the 
AI method (where increasing the trend knots per year 
decreased the performance).

One possible explanation is that mortality curves 
exhibit only slow changes, so high flexibility is not 
required. As with any regression model, excessively high 
model capacity can be downright detrimental, as it allows 
the model to pick up noise, which can cause overfitting.

Importantly, the AI method only uses splines to model 
the long-term trend if it has more than 7  years of data. 
Otherwise, it switches into a simple linear trend. This 
finding is completely in line with the above-mentioned 

Fig. 5 Mean squared errors of the investigated methods by starting year on a logarithmic scale (with k = 3 for the WHO method and tkpy = 1/7 
for the AI approach) for the four defined scenarios

Table 2 Mean squared errors of the investigated methods, using the parametrization with the lowest MSE for each scenario (data 
shown as mean ± standard deviation)

Method Constant Linear trend Quadratic trend Non-monotone

AI 1182.2 ± 1273.6 73.3 ± 77.4 388.2 ± 553.5 8380.2 ± 14478

Average 969.0 ± 596.0 961.3 ± 753.1 929.6 ± 1039.6 8013.8 ± 4529.7

Linear 1150.0 ± 1213.7 70.3 ± 73.1 365.5 ± 524.0 10,702.6 ± 11901.7

WHO 1418.4 ± 2075.1 89.1 ± 123.8 552.5 ± 824.5 8067.2 ± 9866.4
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remarks. That is, flexibility is useful but can backfire with 
small amounts of training data.

In Germany, the 2019 data were quite lower, likely 
because of simple random fluctuation, but the spline 
was flexible enough to be “able to take this bend.” Data 
are presented using the ISO 8601  year definition; thus, 
the year can be either 52 or 53  weeks long. From 2015 
to 2019, every year was 52 weeks long, except for 2015, 
which was 1  week longer. This definition adds to the 
reasons why the value for 2015 is higher, increasing the 
German data’s wiggliness and thereby potentially con-
tributing to the problem. The increased wiggliness of 
the data forces the thin plate regression spline used in 
the WHO method to be more flexible. (This was not a 
problem with the WHO’s original analysis because it 
used monthly data, but it could be if the WHO method is 
directly applied to yearly data.)

The WHO method is only acceptable if k ≤ 5 (but even 
that requires a longer observation than starting from 
2015, as was done by the WHO), not higher. For the AI 
method, 1/4 trend knots per year was too flexible, and 
perhaps even 1/5 was too high. The default value in the 
reference implementation of the AI method is 1/7, and 
using a considerably higher value is not recommended. 
However, the WHO study did not specify what basis 
dimension was used [37]; nonetheless, the default of the 
package used is k = 10. Thus, even k = 5, and especially 
k = 3, is substantially lower. Possibly, this component is 
crucial in the WHO’s experience, where the starting year 
was 2015 (and k = 10 was probably used).

Between the two spline-based methods, when using 
rigidity parameters that are optimal in this particular sce-
nario, the WHO method performed better with longer 
fitting periods, whereas the AI method performed better 
with shorter ones. However, the performance of the AI 
method was considerably less dependent on the starting 
year.

Perhaps one of the most important lessons learned, 
especially from Figs.  4 and 5, is that there is no “one 
size fits all” optimal choice. In other words, a method 
that performs well for a given true mortality curve can 
exhibit extremely poor performance for another shape 
of mortality. Moreover, the optimal choice of param-
eters even for one given method can substantially 
depend on the scenario, and a parameter that works 
well for one situation might be poor for another. Hence, 
while there are “safer choices,” recommending a uni-
versally “optimal” parameter is not possible. In select-
ing a good parameter for a particular case, perhaps 
the most important is to examine the fit of the model 
on historical data. Figure 6 provides an example using 
the German data. The figure shows the prediction for 
3 years (2020–2022) from the historical data, using all 
methods and all parameters. A quick visual inspection 
immediately reveals relevant and likely meaningless 
predictions. The latter, unfortunately, includes that of 
the WHO (2015 as the starting year, k = 10). Thus, such 
an inspection would have likely revealed the problem. 
Time-series bootstrap and time-series cross-validation, 
which are objective, might be promising alternatives 

Fig. 6 Predictions for 2020–2022 from all methods with all possible parameters, using historical German data
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for the potentially subjective method of visual inspec-
tion, still with the use of only historical data.

Two studies conducted by Nepomuceno et al. [40] and 
Shöley [41] are similar to ours. They used several models, 
partly overlapping those that are presented in our study 
but, importantly, neither of them considered splines for a 
long-term trend. Nepomuceno et al. did not try to evalu-
ate the methods and compared these methods without 
having ground truth to determine any concordance. In 
contrast, Shöley conducted an objective evaluation but, 
contrary to the synthetic dataset simulation approach 
used in the present study, time-series cross-validation 
with historical data was applied to measure accuracy. 
Cross-validation is guaranteed to be realistic as opposed 
to a simulation, but it has less freedom; in this method, 
investigators are bound to the empirical data with lim-
ited possibilities in varying the parameters.

We did not investigate the impact of using the popu-
lation and modelling death rates instead of death counts 
directly. We also did not examine the potential impact 
of data frequency. In our study, we used weekly data, 
which may be unavailable in developing countries but 
are almost universally available in developed countries. 
Therefore, using the most frequent data seems logical 
(with the appropriate handling of seasonality). Further-
more, because our focus was on developed countries, 
we did not consider adjusting for late registration and 
imputing missing data, which may be needed when full 
data are unavailable.

Another limitation of our study is that it only ana-
lysed point estimates. The applied prediction models 
can provide prediction intervals; thus, investigating 
their validity (e.g., coverage properties) could be a rel-
evant future research direction.

Finally, this study did not consider the age and sex 
structures of the population (consistent with the 
WHO’s approach). However, the inclusion of these 
structures together with an explicit modelling of the 
population size might improve predictions by capturing 
and separating mechanisms that govern the change of 
population size and structure in the models. To explore 
whether and to which extent predictions could be 
improved by taking these structures into account is an 
important matter that requires further research.

Conclusions
The performance of the WHO’s method with its origi-
nal parametrization is indeed very poor, as revealed by 
extensive simulations. Thus, the “German puzzle” was 
not just an unfortunate mishap, but it could have been 
profoundly improved by selecting better parameters. 
The performance of the WHO method is similar to that 
of the AI method, with the former being slightly better 

for longer fitting periods and the latter for shorter ones. 
Despite its simplicity, linear extrapolation can exhibit a 
favourable performance, but this depends highly on the 
choice of the starting year. Conversely, the AI method 
exhibits relatively stable performance (considerably more 
stable than the WHO method) irrespective of the starting 
year. The performance of the average method is almost 
always the worst, except for very special circumstances.

This study also shows that splines are not inherently 
unsuitable for predicting baseline mortality, but caution 
should be taken, with the key issue being that the splines 
should not be too flexible to avoid overfitting. In general, 
no single method outperformed the others in the investi-
gated scenarios. Regardless of the approach or parametri-
zation used, it is essential to have a proper look at the 
data, and to visualize the fit and the predictions produced 
by the method used. Further research is warranted to see 
if these statements can be confirmed on the basis of other 
scenarios.
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