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Abstract 

Introduction Plasmode simulations are a type of simulations that use real data to determine the synthetic data-
generating equations. Such simulations thus allow evaluating statistical methods under realistic conditions. As far 
as we know, no plasmode algorithm has been proposed for simulating longitudinal data. In this paper, we propose 
a longitudinal plasmode framework to generate realistic data with both a time-varying exposure and time-varying 
covariates. This work was motivated by the objective of comparing different methods for estimating the causal effect 
of a cumulative exposure to psychosocial stressors at work over time.

Methods We developed two longitudinal plasmode algorithms: a parametric and a nonparametric algorithms. 
Data from the PROspective Québec (PROQ) Study on Work and Health were used as an input to generate data 
with the proposed plasmode algorithms. We evaluated the performance of multiple estimators of the param-
eters of marginal structural models (MSMs): inverse probability of treatment weighting, g-computation and tar-
geted maximum likelihood estimation. These estimators were also compared to standard regression approaches 
with either adjustment for baseline covariates only or with adjustment for both baseline and time-varying covariates.

Results Standard regression methods were susceptible to yield biased estimates with confidence intervals having 
coverage probability lower than their nominal level. The bias was much lower and coverage of confidence intervals 
was much closer to the nominal level when considering MSMs. Among MSM estimators, g-computation overall 
produced the best results relative to bias, root mean squared error and coverage of confidence intervals. No method 
produced unbiased estimates with adequate coverage for all parameters in the more realistic nonparametric plas-
mode simulation.

Conclusion The proposed longitudinal plasmode algorithms can be important methodological tools for evaluat-
ing and comparing analytical methods in realistic simulation scenarios. To facilitate the use of these algorithms, we 
provide R functions on GitHub. We also recommend using MSMs when estimating the effect of cumulative exposure 
to psychosocial stressors at work.
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Introduction
Simulation studies are commonly used to examine and 
compare the performance of different statistical meth-
ods. Because multiple datasets can be randomly gener-
ated, they can limit the impact of random variability on 
their results. In addition, because data are generated 
from known mathematical equations, it is often possible 
to determine analytically the true value of the parameters 
of interest, thus allowing direct comparison between the 
estimates and the truth. However, synthetic simulations 
generally lack realism because their data are often gen-
erated based on arbitrary parameters. Thus, they cannot 
reflect the complexity of real-life data, raising concerns 
regarding the generalizability of their results. Alterna-
tively, it is possible to compare different methods using 
real-life data. Although more realistic, the results of such 
studies can be difficult to interpret, since the differences 
(or lack of differences) may simply be due to random fluc-
tuations. Moreover, in the absence of a “gold standard”, it 
is not possible to assess the bias of the estimators or the 
coverage of the confidence intervals.

Plasmode simulations were described by Vaughan et al. 
(2009) [1] as a more natural process to generate data and 
to account for the complex structure of real data. More 
specifically, plasmode refers to a general framework 
wherein simulated data are generated using a combina-
tion of information from real data and known mathemat-
ical equations. Franklin et  al. (2004) [2] proposed an R 
package, Plasmode, to perform plasmode simulations for 
datasets with baseline covariates, a binary point-expo-
sure, and a binary, continuous or time-to-event outcome. 
This simulation framework is becoming increasingly 
popular for evaluating statistical methods (e.g., [3–6]). 
To the best of our knowledge, there currently exists no 
plasmode algorithm for simulating both time-varying 
exposures and time-varying covariates. Such features are 
ubiquitous in longitudinal data. Simulating realistic lon-
gitudinal data can be challenging, notably because of the 
large amount of data-generating equations that needs to 
be specified.

In this article, we propose two longitudinal plasmode 
algorithms for generating data with time-varying expo-
sure and covariates. These algorithms take a real dataset 
as an input and determine the data-generating equations 
by estimating the relations between the variables either 
using parametric models or nonparametric models. Both 
algorithms were devised in such a way that it is possi-
ble to estimate the true value of the parameter of inter-
est using a Monte Carlo simulation. The benefits of these 
algorithms are twofold. First, they alleviate the need to 
manually specify multiple data-generating equations 
since these equations are determined from the observed 
data. Second, for the same reason, the generated data are 

expected to be more similar to the real data than what 
could realistically be achieved using conventional simu-
lation approaches. As such, these algorithms allow com-
paring statistical methods for analyzing longitudinal data 
in realistic scenarios, while benefiting from the ability to 
generate multiple simulated datasets and thus control the 
Monte Carlo error.

The motivation for developing these longitudinal plas-
mode algorithms was to compare different confound-
ing adjustment methods when estimating the effect of 
cumulative exposure over time to psychosocial stressors 
at work (PSW) on blood pressure. Multiple studies have 
investigated such effects, often using traditional adjust-
ment methods where models are either adjusted for 
baseline covariates only or for both baseline and time-
varying covariates [7]. Such adjustment methods may 
be inappropriate if some covariates have a double role of 
confounders and mediators, since adjustment for time-
varying confounders leads to an overadjustment bias, 
and not adjusting for these variables leads to residual 
confounding bias. It has been argued that this expo-
sure-confounder feedback could be present in the PSW 
context [8]. Marginal structural models (MSMs) are well-
known methods to estimate the effect of time-varying 
exposures while controlling for time-varying covariates 
[9]. However, these models have only scarcely been used 
in the context of PSW (for example [8, 10–13]). Various 
estimators of the parameters of MSMs have been pro-
posed. Some are relatively simple to implement, such as 
inverse probability of treatment weighting (IPTW), and 
others are more complex but have more desirable theo-
retical properties, such as targeted maximum likelihood 
estimation (TMLE). Advantages of TMLE include that 
it is expected to have a smaller variance than IPTW, and 
that it can naturally be combined with machine learning 
algorithms that reduce the amount of statistical assump-
tions required for consistent estimation. While TMLE 
combined with machine learning is theoretically superior 
to traditional methods, whether the benefits are worth 
the additional analytical complexity in real data analyses 
may vary between fields of application. Multiple stud-
ies have compared MSMs with traditional approaches in 
real data analyses [14]. While both traditional approaches 
and MSMs yield similar results in multiple situations, 
the effect estimates were found to differ substantially in 
others and even lead to opposing conclusions in a few 
cases [14]. As such, empirical comparisons of MSMs 
with traditional approaches in area-specific settings are 
important to guide analysts. Our proposed plasmode 
algorithms were originally developed to compare tradi-
tional methods with estimators of the parameters of an 
MSM in the context of PSW effect estimation. However, 
these algorithms are general and can be used in other 
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fields to carry out simulation studies on longitudinal data 
with time-varying exposure and covariates.

In the remainder, we first provide a motivating exam-
ple where we estimate the effect of cumulative exposure 
to PSW on blood pressure using different methods. We 
then describe plasmode simulations for a point-expo-
sure, before presenting the two longitudinal plasmode 
algorithms we have developed, one which is parametric 
and another which is nonparametric. A simulation study 
based on these algorithms is then presented. We end the 
paper with some recommendations.

Motivating example
Data
The PROspective Québec (PROQ) Study on Work and 
Health is a cohort study of 9,189 white-collar workers 
aged 18 to 65 years at baseline from 19 public or semi-
public organizations in Québec, Canada [7]. A nested 
cohort comprising 2,200 workers from 3 public insur-
ance institutions was initiated in 2000-2004 with fol-
low-ups after 3 (2004-2006) and 5 years (2006-2009). 
The participation rate was 80.1% at baseline and 85% at 
years 3 and 5. The data from this nested cohort study 
are used in the current analysis. Participants completed 
self-reported questionnaires on work characteristics and 
risk factors for ambulatory blood pressure (ABP). Body 
weight and height were recorded by a trained nurse to 
calculate body mass index ( kg/m2 ). The exposure (PSW) 
was measured at baseline and both follow-ups accord-
ing to a well-known theoretical model, the effort-reward 
imbalance (ERI) model. This model postulates that an 
imbalance between the efforts expended in the work 
environment and the rewards received in return has dele-
terious consequences on health [15]. Efforts and rewards 
were measured by means of a validated questionnaire 
[16]. The ERI ratio was obtained by dividing the effort 
score by the reward score. This ERI ratio was dichoto-
mized, such that a ratio greater than 1 indicates expo-
sure to PSW (PSW = 1, otherwise PSW = 0) [15]. Then, 
the cumulative PSW was classified into five categories: 
never exposed (0, 0, 0), intermittent exposure (0, 1, 0 or 
1, 0, 1), exposure that ceased during the follow-up (1, 0, 
0 or 1, 1, 0), onset exposure (0, 1, 1 or 0, 0, 1) or chronic 
exposure (1, 1, 1). The outcome for the present study was 
ABP measured at the end of the follow-up (2006-2009). 
ABP was measured at the participants’ workplace using 
the oscillometric device Spacelabs 90207 [17]. Potential 
confounders included gender, age at baseline, level of 
education (less than college, college completed, univer-
sity completed), smoking (current or non-smoker), alco-
hol use ( < 1 drink/week, 1− 5 drinks/week, ≥ 6 drinks/
week), family history of cardiovascular disease (yes or 
no), sedentary lifestyle (physical activity <1/week or ≥ 1

/week). Finally, body weight and height were measured 
by a trained nurse to calculate body mass index ( < 18.5 , 
18.5− 25 , ≥ 25kg/m2 ). These covariates were selected 
a priori because they affect blood pressure [18, 19] and 
may also be associated with exposure [20]. Covariates 
were time-varying except for gender, age at baseline and 
education. The data were anonymized by removing infor-
mation identifying the patient prior to analysis.

To simplify the illustration, only subjects with com-
plete data for the aforementioned covariates, exposure 
and outcome were considered. Women who were preg-
nant at the last follow-up were also excluded because 
of the impact of pregnancy on blood pressure. Finally, 
workers that were working less than 21 hours per week 
at any time point were excluded. The final sample con-
sisted of 1,576 workers, of whom 925 were women and 
651 were men.

Marginal structural models and notation
The objective of our motivational illustration was to 
estimate the effect of cumulative exposure to ERI on 
ABP at the end of the follow-up. As mentioned in the 
introduction, the use of MSMs is theoretically justi-
fied by the possible presence of exposure-confounder 
feedback (see Fig. 1).

We now introduce some notation in order to formally 
present MSMs and their estimators. Let K be the num-
ber of follow-up time points, i = 1, ..., n the observations, 
Lt the covariates at time t ( t = 1, ...,K  ), At the exposure 
at time t, and Y the outcome at the end of the follow-up. 
We assume the following time-ordering of the variables 
( L1,A1, ..., LK ,AK ,Y  ). We use an overbar to denote the 
history of a variable up to and including a given time, for 
example, Ā4 = {A1,A2,A3,A4} . As a notational shortcut, 
the index is dropped to represent the complete history of 
a variable (for example, Ā ≡ ĀK  ). The counterfactual out-
come Y ā is the value that the outcome would have taken 
if, possibly contrary to fact, the exposure had been ā . 
Using this notation, an MSM can be formally defined as 
a model for the counterfactual outcome according to the 
exposure history:

where f() is some regression function. In our analysis, 
we assume f (ā) = γ0 + γ1intermittent + γ2cessation+

γ3onset + γ4chronic , where intermittent, cessation, 
onset and chronic are dummy variables for intermittent, 
ceased, onset and chronic exposure as defined previously, 
respectively.

Three well-known estimators of the parameters 
of an MSM are IPTW, g-computation and TMLE. 
These estimators require the following usual causal 

(1)E(Y ā) = f (ā),
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assumptions (see [9]): 1) Y ā
∐

At |Āt−1, L̄t for all t, 2) 
0 < P(At = 1|Āt−1, L̄t) < 1 , and 3) Ā = ā ⇒ Y = Y ā . 
The first assumption means there are no unmeasured 
confounders between the exposure at any time point 
and the outcome. Assumption 2 implies that each indi-
vidual had nonzero probabilities of being exposed and of 
being unexposed at each time point. The final assump-
tion means that the observed outcome corresponds to 
the counterfactual outcome under the observed exposure 
history.

The most popular estimation approach of an MSM is 
IPTW. The IPTW entails fitting a weighted regression of 
the observed outcome on the observed exposure history. 
The stabilized weights are derived from the probability of 
exposure conditional on the covariates:

Intuitively, these weights create a pseudo-population 
where the exposure at each time point is independent of 
previously measured confounders, thus mimicking a ran-
domized trial relative to those confounders. G-computa-
tion is a generalization of the standardization approach. 
An algorithm for implementing the g-computation esti-
mator of E[Y ā] proceeds as follows: 

1. Fit a regression of the outcome according to the 
exposure and covariate history E[Y |Ā, L̄].

(2)swi =
K

t=1

P(At = at,i|Āt−1 = āt−1,i)

P(At = at,i|Āt−1 = āt−1,i, L̄t = l̄t,i)
.

2. For each observation, compute the predicted value 
under Ā = ā and L̄ = l̄i and denote the result by Qā

K ,i.
3. Recursively for t = K − 1, ..., 1

           3.1.  Fit a regression E[Qā
t+1

|Āt , L̄t ]
     3.2.  Compute the predicted value Qā

t,i = Ê[Qā
t+1

|Āt 
= āt , L̄t = l̄t,i]

4. Ê[Y ā] = 1

n

∑n
i=1Q

ā
1,i.

After all counterfactual means E[Y ā] have been esti-
mated, the parameters of the MSM can be estimated by 
regressing Ê[Y ā] on ā as in Eq. (1). Alternative algorithms 
for implementing g-computation have been described 
and compared [21].

TMLE is closely related to IPTW and g-computation [22, 
23]. Indeed, an algorithm for obtaining a TMLE of E[Y ā] 
when Y is continuous is the same as the g-computation 
algorithm described previously, except that each Qā

t,i is first 
updated (or fluctuated) before moving on to the next step:

where

I is the usual indicator function, and ε can be estimated 
as the sole coefficient of regression of Y on Ht(Ā, L̄)t−1 
with Qā

t,i as an offset term.

Qā,1
t,i = Qā

t,i + εHt(Ā, L̄)t−1,

Ht(Ā, L̄)t−1 =
I(Āt−1 = āt−1)∏t−1
s=0 P(As|Ās−1, L̄s)

,

Fig. 1 Directed acyclic graph representing the presumed relations between the exposure (psychosocial stressors at work; PSW), the outcome 
(ambulatory blood pressure; ABP) and the covariates. Some arrows between the time-varying exposure, the time-varying covariates 
and the outcome were omitted to simplify the presentation
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While all these estimators depend on the same causal 
assumptions, they depend on different statistical assump-
tions. IPTW requires modeling the exposure at each 
time point and thus additionally depends on correct sta-
tistical models for these components to yield consistent 
estimates. Similarly, g-computation requires the correct 
modeling of the outcome. On the other hand, TMLE 
uses both models for the outcome and for the exposure. 
TMLE is a doubly robust method that is consistent as 
long as either the exposure model or the outcome model 
is correctly specified [22, 24]. In addition, TMLE better 
combines with machine learning than either IPTW or 
g-computation from a theoretical point of view. Indeed, 
IPTW and g-computation require that their compo-
nent model (exposure model or outcome model, respec-
tively) is 

√
n-consistent to achieve the 

√
n-consistency 

that most usual statistical estimators have. On the other 
hand, TMLE can achieve 

√
n-consistency under less 

stringent conditions, for example, if both the exposure 
and outcome models are estimated with n1/4-consist-
ent estimators [25, 26]. Many flexible machine learning 
algorithms have convergence rates that are lower than √
n . As such, TMLE can be combined with more flexible 

machine learning algorithms than IPTW and g-compu-
tation while retaining desirable statistical properties. In 
particular, Super Learner, an algorithm that finds the best 
linear combination of multiple machine learning models 
minimizing the cross-validated risk, can be combined 
with TMLE to improve its performance [27, 28]. The 
Super Learner is also implemented and available in the R 
software. It is noteworthy that while TMLE better com-
bines with machine learning methods than traditional 
approaches, several recent studies warn that including 
machine learning algorithms that are too flexible in the 
Super Learner when using TMLE or other double robust 
approaches can lead to invalid inferences [29, 30].

Analysis
We estimated the effect of cumulative exposure to PSW 
using an MSM whose parameters were estimated using 
IPTW, g-computation, TMLE and TMLE with Super 
Learner (TMLE-SL). For IPTW and TMLE, the expo-
sure models were logistic regression models whereas the 
outcome models for g-computation and TMLE were lin-
ear regression models, both including main terms only. 
For TMLE-SL, we used both generalized linear models 
and generalized additive models (GAM) for both the 
exposure and the outcome. We also considered stand-
ard regression approaches where ABP was modeled 
according to cumulative exposure with either adjust-
ment for baseline covariates only or with adjustment 

for both baseline and time-varying covariates. All these 
approaches were implemented in the R software.

Standard errors for g-computation and TMLE were 
estimated using the nonparametric bootstrap method 
with 1000 replicates. For these methods, confidence 
intervals were calculated using the 2.5th and 97.5th 
quantiles of the bootstrap estimates. For TMLE-SL, 
the standard errors were estimated by computing the 
square-root of the variance of the empirical efficient 
influence curve divided by n [31]. For each method, we 
present the parameter estimates for each exposure lev-
els (estimated ABP mean difference of intermittent, ces-
sation, onset and chronic exposure vs never exposed), 
95% confidence intervals (CI) and the computation time 
in seconds (s).

Results
Figure  2 presents the results of the data analysis. 
Overall, estimates differed somewhat importantly 
between estimation approaches. For example, the esti-
mated ABP mean difference between onset exposure 
and never exposed was 0.19  mm  Hg (CI: -1.49, 1.88) 
when using IPTW and 1.60  mm  Hg (CI: -0.02, 3.23) 
when using a standard regression adjusted for base-
line covariates only. As another example, the estimated 
ABP mean difference between intermittent and never 
exposed varied from 1.05 mm Hg (CI: 0.36, 1.74) with 
g-computation, to 2.42  mm  Hg (CI: 0.93, 3.91) with 
TMLE. The width of the CIs also varied substantially 
between estimation methods, with g-computation 
yielding the narrowest CIs overall. Finally, the com-
putation time was negligible (<1 second) for IPTW 
and classical approaches, whereas it was of 3.39 sec-
onds for TMLE-SL, and 16-25 seconds for g-compu-
tation and TMLE with bootstrap. While these results 
showcase how different methods can produce differ-
ent results when analyzing the same data, they do not 
permit concluding which performed best. Simulation 
studies, especially plasmode simulations, provide valu-
able additional information in that regard.

Description of the plasmode algorithms
Plasmode algorithm for single time point exposure
Before introducing our proposed longitudinal plas-
mode algorithms, we first describe a typical plasmode 
algorithm for generating simulated data with an expo-
sure measured at a single time point (see Fig. 3). Such 
an algorithm could be used to compare estimators of 
the effect of the exposure on the outcome, for example. 
We use the notation introduced in the previous section, 
but drop the time index since it is not needed. First, a 
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“true” outcome model is fitted on the complete origi-
nal dataset. For example, if Y is a continuous variable, 
the model could be a linear regression of Y on A and 
L with normal errors [2, 32]. Then, m < n observations 
are sampled with replacement from the original dataset 
to form the basis of the plasmode data. The observed 
outcome is discarded and replaced by a synthetic out-
come which is generated using the output of the true 
outcome model that was fitted earlier, and the sampled 
data on A and L. The resulting dataset comprising the 
sampled A and L, and the synthetically derived Y form 
the plasmode dataset. Because Y was generated using 
a known model, the true effect of A on Y can either be 
calculated analytically from the data-generating equa-
tions or by Monte Carlo simulation of counterfactual 

outcomes (for example, see [2]). Multiple plasmode 
datasets would typically be generated to reduce the 
Monte Carlo error (i.e., random fluctuations). As pre-
viously noted, this is only an example of a plasmode 
algorithm; other algorithms are possible. For example, 
instead of using resampled values of the exposure, A 
could be synthetically generated using a true exposure 
model that would be determined by fitting a model for 
the exposure according to baseline covariates on the 
complete original dataset.

Parametric plasmode algorithm for time‑varying exposure 
and covariates
The first proposed plasmode algorithm for time-var-
ying exposure and covariates is a natural extension of 

Fig. 2 Estimated causal effects of categories of cumulative exposure to psychosocial stressors at work on ambulatory blood pressure (in mm Hg) 
using different estimation methods
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the parametric plasmode algorithm for point-exposure 
described previously. This algorithm uses parametric 
regression models, whose parameters are determined 
from the original dataset, to generate the plasmode 
data. Because the causal effect of the cumulative expo-
sure on the outcome depends on the exposure → con-
founders → outcome pathways, it is necessary to have 
known data-generating equations for most of the time-
varying exposures and confounders, in addition to the 
outcome, to be able to determine the true effect. Both 
this parametric algorithm and the nonparametric algo-
rithm described in the next subsection share the same 

rationale. First, it can be noted that the joint distribu-
tion of the data can be factorized as a product of condi-
tional distributions:

where any variable with a 0 index should be disregarded 
for notational convenience. Both algorithms entail esti-
mating each of these conditional distributions using 
either a parametric or a nonparametric model. Then, data 
are sequentially simulated from the estimated conditional 
distributions. Based on the previous factorization, the 

f (Ā, L̄,Y ) = f (Y |Ā, L̄)
K∏

t=1

f (Lt |Āt−1, L̄t−1)f (At |Āt−1, L̄t ),

Fig. 3 Visual representation of a plasmode algorithm for generating simulated data with a single time point exposure
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algorithms thus allow simulating data from the estimated 
joint distribution of the data.

The first step of the algorithm consists in building 
“true” parametric models for generating the simulated 
exposure, confounders and outcome. To achieve this, 
the following models must be fitted to the original 
dataset: 1) At conditional on ( Āt−1 , L̄t ) for t = 1, ...,K  , 
2) Lt conditional on ( Āt−1 , L̄t−1 ) for t = 2, ...,K  , 3) Y 
conditional on ( Ā , L̄ ). For example, continuous vari-
ables could be modeled using linear regression models 

with normal errors, binary variables could be modeled 
with logistic regression models, count variables can be 
modeled using Poisson regression models and a time-
to-event outcome could be modeled using an acceler-
ated failure time model. Denote by β̂At , β̂Lt and β̂Y  the 
coefficients of the models for the exposure at time t, 
covariates at time t and outcome, respectively. Note 
that it is not necessary to include all previous variables 
as independent variables in each model. To simplify 
the model specification, a relevant subset could be 

Fig. 4 Visual representation of the proposed parametric plasmode algorithm for generating simulated data with time-varying exposures 
and covariates
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chosen based on substantive or expert knowledge, or 
variables to be used could be randomly sampled (see 
for example [33]). Employing more parsimonious mod-
els may be essential when the number of available vari-
ables is large.

To generate a plasmode dataset, m observations are 
randomly sampled with replacement from the original 
dataset, but only L1 variables are kept; all other vari-
ables are discarded. Then, the output of the “true” mod-
els (i.e., β̂At , β̂Lt and β̂Y  ) are used to randomly generate 
synthetic data sequentially for A1 , L2 , A2 , ..., Y.

A total of J plasmode datasets are generated using the 
algorithm. Figure 4 summarizes this parametric plasmode 
algorithm. The true effect can either be determined analyt-
ically from the data-generating equations or using Monte 
Carlo simulations. An algorithm for estimating the true 
parameters using Monte Carlo simulations in the specific 
example where causal effects are of interest is described in 
the “Counterfactual plasmode algorithms” section.

Nonparametric plasmode algorithm for time‑varying 
exposure and covariates
One disadvantage of the parametric plasmode algorithm 
we have described is that it uses parametric models to 
generate most of the data, whereas plasmode simulations 
should be designed to be as similar as possible to the real 
data. Parametric models may lack the required flexibil-
ity to achieve this goal. However, it is essential to have 
known data-generating equations to calculate the true 
values of the parameters. The nonparametric plasmode 
we propose uses random forest models to generate the 
data. Such models allow having known data-generating 
equations that are nonparametric and thus more similar 
to the real data. Random forest models are particularly 
useful when dealing with non-linear modeling and they 
run efficiently on large datasets which makes it a suitable 
choice for our nonparametric plasmode algorithm [34]. 
Extensions of random forest for time-to-event data are 
also available [35].

Fig. 5 Visual representation of the proposed nonparametric plasmode algorithm for generating simulated data with time-varying exposures 
and covariates
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Similar to the parametric plasmode, the nonparametric 
plasmode algorithm first entails fitting the following ran-
dom forest models to the original data: 1) At conditional on 
( Āt−1 , L̄t ) for t = 2, ...,K  , 2) Lt conditional on ( Āt−1 , L̄t−1 ) 
for t = 2, ...,K  , 3) Y conditional on ( Ā , L̄ ). Next, to gener-
ate a plasmode dataset, m < n observations are randomly 
sampled with replacement from the original dataset. Only 
data on L1 are kept; however, it is also possible to retain A1 . 
These data and the random forest models are then used 
to randomly generate synthetic values for L2 , A2 , ..., Y (see 
Fig.  5). One challenge with this nonparametric plasmode 
algorithm is that it is difficult to determine the true values 
of the parameters analytically, given the nonparametric 
nature of the data-generating models. Instead, Monte Carlo 
simulations can be used to estimate the true parameters.

Counterfactual plasmode algorithms
We now describe a counterfactual plasmode algorithm 
that can be applied to determine the true values of the 
causal effect when generating data using either of our 
longitudinal plasmode algorithms. The general princi-
ple is to generate new datasets based on the same equa-
tions used in the plasmode algorithms, except that the 
exposure is deterministic instead of being random. More 
specifically, consider a given exposure pattern ā . Then, 
for each observation, simulated data on L2 , ..., LK  are 
sequentially generated using the “true” confounder mod-
els, previously generated covariates and the fixed previ-
ous exposures. Finally, the counterfactual outcome Y ā is 
simulated using the “true” outcome model. This process 
is repeated for each possible exposure patterns, resulting 
in a dataset of n× 2K  observations. The true parameters 
of the MSM are then estimated by running a regression 
of the simulated counterfactual outcomes on the cumula-
tive exposure. In simulation studies where the parameter 
of interest is not a causal contrast, a different algorithm 
for estimating the true values using Monte Carlo simula-
tions may need to be devised.

Practical implementation
We provide four R functions on GitHub (https:// github. 
com/ detal9/ Longi tudin alPla smode) that implement the 
parametric and nonparametric plasmode algorithms as 

well as their related counterfactual algorithms. We briefly 
describe the use of these functions in this section.

First, some data preprocessing may be required. For 
example, because our functions do not support miss-
ing data, subjects with missing information either need 
to be excluded or their missing data need to be imputed. 
Because the algorithm does not take into account uncer-
tainty, a single maximum likelihood imputation of the data 
may be deemed to be sufficient. Some levels of categorical 
variables may also need to be collapsed together to avoid 
problems when fitting the models. Categorical variables 
should be coded as factors in R. Note that the functions we 
provide currently support only continuous or categorical 
(binary or multinomial) covariates and binary exposures.

The functions all share similar arguments:

• data: A dataframe containing the real data to be 
used to generate simulated datasets.

• n: The sample size of the orignal data.
• nsmin: The number of simulated datasets to generate.
• timeobs: The number of time points.
• Y: The name of the outcome variable.
• id: The name of the variable representing the unique 

subject identifier.
• A1, A2, ...: The names of the exposure variables. 

As many “A” arguments should be supplied as the 
number of time points.

• L1, L2, ...: The names of the covariates at each 
time point. A vector of names should be supplied for 
each time point.

• A.fixed: For counterfactual functions, a matrix of 
dimension (number of regimes x timeobs), where 
each row represents a treatment regime ( Ā ) for 
which counterfactual outcomes should be generated.

• distribution: For parametric functions, the 
names of the distribution of each variable in data, 
either “gaussian”, “binomial” or “multinomial”. If this 
is not supplied, the function tries to guess the distri-
bution from the observed data.

The output is a list of nsim simulated datasets. For 
example, we used the following code to generate 1000 
plasmode datasets in the nonparametric simulation sce-
nario presented in the next section.

https://github.com/detal9/LongitudinalPlasmode
https://github.com/detal9/LongitudinalPlasmode
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Plasmode simulation study
In this section, we illustrate the use of our proposed plas-
mode algorithms by comparing estimators of the effect 
of the cumulative exposure to PSW on ABP. Data from 
1,576 workers were used (“Data” section). We generated 
J = 1000 simulated datasets of size m = 1000 according 
to each of the plasmode algorithms. The true values of 
the coefficients were determined by our proposed coun-
terfactual plasmode algorithms. The cumulative expo-
sure effect was estimated in each simulated dataset using 
the methods described in “Marginal structural models 
and notation”  section. When using IPTW, the standard 
error was estimated with a robust estimator, while for 
g-computation the standard error was estimated as the 
standard deviation of 50 nonparametric bootstrap repli-
cates. We used this bootstrap approach rather than the 
percentile bootstrap to reduce the computation time. In 
the case of TMLE-SL, the standard error was estimated 

using the influence curve of the estimator. The 95% con-
fidence intervals were obtained as the estimate ±1.96 
the estimated standard error. The different estimating 
approaches were compared separately for the parametric 
and nonparametric plasmode algorithms. Methods were 
compared according to their bias (difference between the 
average of the coefficient estimates and the true value), 
the standard deviation of the estimates, the root mean 
squared error (RMSE), and the coverage of the 95% con-
fidence intervals (proportion of the simulated datasets 
where the confidence interval included the true value).

Table  1 presents the results for the parametric plas-
mode scenario. Overall, we observed that estimates were 
more biased when using standard approaches. Among 
MSM estimators, the bias was lowest for g-computation 
with a sum of all biases of 0.56, compared to 0.77 for 
IPTW and 0.75 for both TMLE and TMLE-SL. Simi-
larly, traditional methods had an overall larger RMSE 

Table 1 Comparison of the performance of different estimation methods of the effect of cumulative exposure to psychosocial 
stressors at work on blood pressure in the parametric plasmode simulation scenario

Legend: IPTW = Inverse probability of treatment weighting, RMSE = root mean squared error, SL = Super Learner, TMLE = Targeted maximum likelihood

Intermittent Cessation Onset Chronic

Bias
    IPTW -0.37 -0.03 0.23 -0.05

    g-computation 0.27 0.02 0.16 -0.01

    TMLE 0.26 -0.09 0.24 -0.07

    TMLE+SL 0.25 -0.09 0.24 -0.07

    Baseline adjustment -0.40 -0.11 0.48 0.01

    Baseline and Time-varying covariate adjustment -0.44 -0.08 0.21 -0.19

Standard deviation
    IPTW 1.29 1.05 1.27 1.29

    g-computation 0.53 0.84 0.86 1.05

    TMLE 1.20 1.00 1.05 1.18

    TMLE+SL 1.20 1.00 1.05 1.18

    Baseline adjustment 1.12 0.98 1.06 1.17

    Baseline and Time-varying covariate adjustment 1.11 0.98 1.06 1.19

RMSE
    IPTW 1.35 1.05 1.29 1.29

    g-computation 0.59 0.84 0.88 1.05

    TMLE 1.22 1.00 1.08 1.18

    TMLE+SL 1.22 1.00 1.08 1.18

    Baseline adjustment 1.19 0.98 1.16 1.17

    Baseline and Time-varying covariate adjustment 1.20 0.98 1.08 1.21

Coverage of the 95% confidence interval
    IPTW 93% 96% 95% 95%

    g-computation 90% 94% 94% 94%

    TMLE 92% 94% 93% 93%

    TMLE+SL 92% 94% 93% 93%

    Baseline adjustment 92% 95% 92% 95%

    Baseline and Time-varying covariate adjustment 92% 95% 94% 94%
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than MSM estimators and g-computation had the lowest 
RMSE among MSM estimators. Almost all adjustment 
methods yielded a coverage of the confidence intervals 
fairly close to the nominal level of 95%. The Monte Carlo 
standard error was minimal: ≤ 0.04 for bias, ≤ 0.03 for 
standard deviation, and ≤ 0.01 for coverage of confidence 
intervals [36].

In Table 2, we present the results for the nonparamet-
ric plasmode scenario. Similar to the results obtained in 
the parametric plasmode scenario, standard approaches 
yielded estimates with a greater bias. The sum of all biases 
was lowest for IPTW with 1.79 compared with 2.02, 
2.35 and 2.39 for g-computation TMLE and TMLE-SL, 
respectively. The standard deviations of the estimates for 
g-computation, TMLE, and TMLE-SL were smaller than 
those for IPTW or standard approaches. G-computation 
yielded the overall lowest RMSE. TMLE and TMLE-SL 
also had lower RMSE in general than either IPTW or 

standard approaches. Overall, standard approaches had 
poorer coverage of their confidence intervals than MSM 
estimators. All MSM estimators performed fairly simi-
larly in terms of coverage of their 95% confidence inter-
vals, with most values being in the 85%-95% range. The 
Monte Carlo standard error was ≤ 0.05 for bias, ≤ 0.07 
for standard deviation, and ≤ 0.02 for coverage of confi-
dence intervals [36].

Discussion
We have introduced plasmode simulation algorithms 
adapted to settings with a time-varying exposure and 
time-varying covariates. As far as we know, such algo-
rithms combining the advantage of artificial data and 
real-data had not been proposed for this setting before. 
The development of these algorithms was motivated 
by the objective of comparing traditional confounding 

Table 2 Comparison of the performance of different estimation methods of the effect of cumulative exposure to psychosocial 
stressors at work on blood pressure in the nonparametric plasmode simulation scenario

Legend: IPTW = Inverse probability of treatment weighting, RMSE = root mean squarred error, SL = Super Learner, TMLE = Targeted maximum likelihood

Intermittent Cessation Onset Chronic

Bias
    IPTW -0.51 0.04 -0.38 -0.34

    g-computation -0.59 -0.42 -0.39 -0.14

    TMLE -0.20 -0.75 -0.02 -0.91

    TMLE+SL -0.24 -0.73 -0.05 -0.90

    Baseline adjustment -0.94 -0.77 0.58 -0.90

    Baseline and Time-varying covariates adjustment -0.88 -0.82 0.04 -1.08

Standard deviation
    IPTW 1.02 1.49 1.16 2.93

    g-computation 0.49 0.80 0.66 0.98

    TMLE 0.90 0.84 0.63 1.43

    TMLE+SL 0.90 0.84 0.63 1.42

    Baseline adjustment 0.65 0.89 0.64 1.45

    aseline and Time-varying covariates adjustment 0.65 0.85 0.70 1.50

RMSE
    IPTW 1.14 1.49 1.22 2.95

    g-computation 0.77 0.90 0.77 0.99

    TMLE 0.92 1.12 0.63 1.70

    TMLE+SL 0.93 1.12 0.64 1.68

    Baseline adjustment 1.14 1.15 0.90 1.75

    Baseline and Time-varying covariates adjustment 1.09 1.21 0.65 1.81

Coverage of the 95% confidence interval
    IPTW 94% 91% 93% 71%

    g-computation 73% 89% 89% 92%

    TMLE 93% 83% 94% 86%

    TMLE+SL 93% 83% 94% 87%

    Baseline adjustment 70% 74% 80% 67%

    Baseline and Time-varying covariates adjustment 71% 69% 93% 65%
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adjustment methods with various estimators of the 
parameters of MSMs for the estimation of the effect of 
cumulative exposure to PSW.

The plasmode algorithms we have proposed have mul-
tiple strengths as compared to the standard approach to 
conducting simulation studies, which entails manually 
specifying all data-generating equations. First, our pro-
posed plasmode algorithms allow generating realistic 
simulated data since the data-generating equations are 
determined from a real dataset. This feature also allevi-
ates the need to manually specify multiple simulation 
parameters. In both plasmode and standard simulations, 
the true value of the parameter of interest can also be 
estimated by Monte Carlo simulation, for example by 
generating counterfactual outcomes when the param-
eter of interest is a causal effect. The main limitation of 
the plasmode algorithms as compared to fully synthetic 
simulations concerns their ability to investigate methods 
in various scenarios. Because the data-generating equa-
tions are dictated by the input data, all simulation sce-
narios based on the same data will inevitably have similar 
characteristics. Some of the only parameters that can be 
varied in our proposed plasmode algorithms are the sam-
ple size, which variables are considered in the algorithm, 
and whether parametric or nonparametric models are 
used to generate the simulated data. To some extent, this 
limitation can be mitigated by employing several input 
datasets. However, when the goal is to investigate the 
performance of statistical methods under specific con-
ditions, employing standard simulation algorithms with 
manually specified parameters would be more appropri-
ate. Using standard simulation algorithms allow varying 
many parameters between scenarios, such as the amount 
of collinearity between covariates, the probability distri-
bution or density function of the variables being gener-
ated, the strength of the associations between generative 
and generated variables, and the exact functional form 
of the data-generating equations. Overall, standard and 
plasmode simulations thus have different and comple-
mentary roles in methods evaluation. Standard simula-
tions are more suitable to evaluate methods in a variety 
of scenarios, whereas plasmode simulations simplify the 
process of evaluating methods in realistic scenarios.

A limitation of our longitudinal plasmode algorithms 
compared to point-exposure plasmode algorithms is 
that only the baseline covariates and baseline exposure 
are resampled from the original data, whereas the time-
varying exposure, the time-varying covariates and the 
final outcome are all generated according to models fit-
ted in the original data. The need to specify models for 
the time-varying exposure and covariates arise from the 
fact that the cumulative exposure effect depends on the 
exposure → confounders → outcome pathways. To be 

able to determine the true cumulative exposure effect, 
it must be possible to quantify these pathways, which is 
only possible if the data-generating equations for time-
varying exposures, the time-varying confounders and the 
outcome are known. To mitigate this seemingly unavoid-
able limitation, we proposed determining the data-gener-
ating equations by fitting parametric or non-parametric 
models to the original data. As such, although models are 
used to generate most of the simulated data, instead of 
resampling, these models are made to share similarities 
with the original data.

The plasmode algorithms we have devised allowed us 
to compare empirically different methods for estimat-
ing the effect of cumulative exposure to PSW in context-
specific realistic simulation scenarios. In the parametric 
plasmode simulation, traditional adjustment methods, 
wherein only baseline covariates or both baseline and 
time-varying covariates are included as covariates in an 
outcome model, had a slightly greater bias than MSM 
alternatives. In the more realistic and more challenging 
nonparametric plasmode scenario, the difference in bias 
between traditional and MSM methods was amplified, 
and traditional methods had undercovering confidence 
intervals, that is, confidence intervals that include the 
true exposure effect less often than expected. Among 
estimators of MSMs, g-computation overall produced the 
best results relative to bias, RMSE and coverage of con-
fidence intervals. However, no method produced unbi-
ased estimates with adequate coverage for all parameters 
in this nonparametric plasmode scenario. The nonpara-
metric scenario likely reflects reality where parametric 
models are almost inevitably misspecified to some extent, 
leading to residual confounding bias. Our simulation sug-
gests that this residual confounding due to model speci-
fications would be of moderate size in the PSW context.

Our results provide empirical evidence supporting 
the importance of using MSMs when estimating the 
effect of cumulative exposure to PSW, since traditional 
adjustment approaches have been observed to have 
non-negligibly more bias than MSM approaches in our 
area-specific simulations. These results supplement the 
theoretical arguments that we had previously advanced in 
favor of using MSMs in this context [8]. However, we rec-
ognize that MSMs are more difficult to implement than 
conventional methods. While IPTW did not perform 
as well as g-computation, TMLE and TMLE-SL in our 
simulation study, it may represent a good compromise to 
improve the validity of analyses while remaining accessi-
ble to most analysts. It is also noteworthy that in our sim-
ulation study, the most complicated alternatives, TMLE 
and TMLE-SL, offered no particular benefit over the sim-
pler g-computation approach. This may be because the 
machine learning algorithms we have considered within 
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TMLE-SL were relatively simple. However, as mentioned 
previously, employing machine learning algorithms that 
are too flexible may also lead to invalid results [29, 30]. 
If employing flexible machine learning algorithms is nec-
essary, using a cross-fitting technique can be required to 
ensure the validity of the TMLE-SL [29, 37]. A downside 
of employing such cross-fitting techniques is that it adds 
another layer of complexity to the analysis.

While the bias of traditional approaches was larger 
than that of MSM methods, it was relatively small as 
compared to what constitutes a meaningful difference in 
blood pressure from a clinical or public health perspec-
tive. As such, the impact of such bias on the conclusions 
of previous studies that used traditional approaches may 
be limited.

In conclusion, the plasmode algorithms we have devel-
oped can be important methodological tools for evalu-
ating and comparing analytical methods for analyzing 
longitudinal data in realistic simulation scenarios. To 
facilitate the use of these algorithms, we provide R func-
tions on a GitHub repository (https:// github. com/ detal9/ 
Longi tudin alPla smode). From a substantive point of view, 
we recommend using MSMs when estimating the cumu-
lative effect of PSWs.
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