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Abstract 

Background Technology advancement has allowed more frequent monitoring of biomarkers. The resulting data 
structure entails more frequent follow-ups compared to traditional longitudinal studies where the number of follow-
up is often small. Such data allow explorations of the role of intra-person variability in understanding disease etiology 
and characterizing disease processes. A specific example was to characterize pathogenesis of bacterial vaginosis (BV) 
using weekly vaginal microbiota Nugent assay scores collected over 2 years in post-menarcheeal women from Rakai, 
Uganda, and to identify risk factors for each vaginal microbiota pattern to inform epidemiological and etiological 
understanding of the pathogenesis of BV.

Methods We use a fully data-driven approach to characterize the longitudinal patters of vaginal microbiota by con-
sidering the densely sampled Nugent scores to be random functions over time and performing dimension reduction 
by functional principal components. Extending a current functional data clustering method, we use a hierarchical 
functional clustering framework considering multiple data features to help identify clinically meaningful patterns 
of vaginal microbiota fluctuations. Additionally, multinomial logistic regression was used to identify risk factors 
for each vaginal microbiota pattern to inform epidemiological and etiological understanding of the pathogenesis 
of BV.

Results Using weekly Nugent scores over 2 years of 211 sexually active and post-menarcheal women in Rakai, four 
patterns of vaginal microbiota variation were identified: persistent with a BV state (high Nugent scores), persistent 
with normal ranged Nugent scores, large fluctuation of Nugent scores which however are predominantly in the BV 
state; large fluctuation of Nugent scores but predominantly the scores are in the normal state. Higher Nugent score 
at the start of an interval, younger age group of less than 20 years, unprotected source for bathing water, a woman’s 
partner’s being not circumcised, use of injectable/Norplant hormonal contraceptives for family planning were associ-
ated with higher odds of persistent BV in women.
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Conclusion The hierarchical functional data clustering method can be used for fully data driven unsupervised 
clustering of densely sampled longitudinal data to identify clinically informative clusters and risk-factors associated 
with each cluster.

Keywords Functional data clustering, Intra-person variability, Longitudinal data analysis, Unsupervised learning, 
Vaginal flora

Background
Technology advancement has allowed more frequent 
monitoring of biomarkers to evaluate diseases or health 
conditions. For example, weekly measurements of grip 
strength collected during a 6-months period have been 
used to study how trajectories of muscle weakness served 
as a marker for adverse health outcomes in older adults 
[1]. Another scenario is studies using ecological momen-
tary assessment technologies (EMA) where frequent data 
are captured to reflect peoples’ real-time behavior or 
emotion in their natural environments. Examples include 
studies using EMA data to identify patterns of illicit drug 
use behaviors [2, 3]. In our own collaboration in infec-
tious disease epidemiology, a 2-year study in Uganda 
recorded weekly Nugent assay scores to assess the bacte-
rial vaginosis (BV) status of women of reproductive age. 
The data structure resulting from all these studies entails 
more frequent follow-up sampling than traditional lon-
gitudinal studies where the number of follow-up is often 
small. Compared to cross-sectional or traditional lon-
gitudinal studies, the more frequent sampling offers a 
unique opportunity to study how intra-person variability 
contributes to disease etiology.

Traditional longitudinal data analysis methods such 
as mixed effects models or generalized estimating equa-
tion models focus on modeling the cross-sectional mean 
values and thus do not apply when the scientific goal is 
to explore and characterize the patterns of intra-person 
longitudinal changes. To analyze the frequently sampled 
data in the aforementioned BV dataset, we resorted to 
functional data analysis framework and developed a hier-
archical functional clustering framework utilizing a set of 
data features by applying the functional non-parametric 
clustering method by Ferraty and Vieu (2006) [4].

BV is a common form of vaginitis in women and is 
related to various adverse health outcomes [5, 6]. BV can 
present with vague clinical manifestations like discharge, 
odor, and elevated vaginal pH (above 4.5). Up to 50% of 
women with BV may not experience any symptoms [7, 8], 
and the causes and mechanisms underlying the condition 
are not well-understood [6]. Over a period of 2 years, a 
group of sexually experienced post-menarcheal women 
were monitored by the Rakai Health Sciences Program 
in Uganda, where the women collected their own vagi-
nal samples on a weekly basis. The vaginal samples were 

scored on an integer scale from 0 to 10 using the Nugent 
criteria [9]. The goal with the densely sampled longi-
tudinal data was to characterize fluctuations in vaginal 
microbiota and understand factors associated with per-
sistence and resolution of BV in sexually experienced 
postmenarcheal women. It was hypothesized that the 
intra-person variability could be a clinical feature and 
encode different etiologic processes. The dataset was 
previously analyzed by dividing the Nugent scores into 
three groups based on the vaginal microbiota states: nor-
mal (Nugent score of 0-3), intermediate (Nugent score of 
4-6), and BV (Nugent score of 7-10), and converting the 
frequently collected longitudinal data into the propor-
tion of each of these three states over the entire follow-up 
period. Another analysis used conditional logistic regres-
sion to model the weekly transitional probabilities of the 
3 states with relevant covariates [9–12]. Cheon et al. [13] 
developed a mixture Markov transition model formula-
tion to allow identification of different covariates associ-
ated with different longitudinal transition probabilities. 
The transitions were between the 3 states determined by 
categorized Nugent scores, and the longitudinal patterns 
over time were pre-defined through visual inspection of 
the longitudinal trichotomized data.

Here we use a fully data-driven approach to character-
ize the longitudinal patterns of vaginal microbiota. The 
approach uses the original numerical values of Nugent 
scores and utilizes the intra-person variability to char-
acterize the longitudinal patterns. More specifically, we 
applied functional data analysis (FDA) [14–17] based 
clustering methods in an unsupervised manner, and also 
extended Ferraty & Vieu’s functional clustering algorithm 
[4] by using additional data features during the clustering 
process. After the vaginal microbiota longitudinal pat-
terns were identified, we then used multinomial logistic 
regression models to identify risk factors associated with 
each of the disease patterns.

The remaining of the paper is structured as below: 
the “The motivating example: a cohort study on vaginal 
microbiota changes in women from Rakai, Uganda” sec-
tion provides an elaborate account of the aforementioned 
dataset that motivated this research; the “Review of func-
tional principal components (FPC) [4]” - “Functional data 
clustering algorithm using FPC [4]” sections review Fer-
raty & Vieu’s functional data clustering algorithm using 
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FPC [4]; and the  “Extending the clustering algorithm to 
incorporate multiple data features” section describes our 
extended functional data clustering algorithm. The algo-
rithm allows more usage of the features embedded in the 
longitudinal data and better differentiates patterns that 
may reflect distinct biological processes. “Results”  sec-
tion presents the results of the identified vaginal micro-
biota patterns for BV and the pattern specific risk factors 
using the motivating dataset. The  “Discussion”  section 
concludes the paper with a discussion.

Methods
The motivating example: a cohort study on vaginal 
microbiota changes in women from Rakai, Uganda
In the rural Rakai Region of Uganda, 312 consenting 
females between the ages of 13 and 39 participated in a 
two-year cohort study between 2001 and 2003. For up to 
two years, participants underwent weekly home-based 
self-collection of vaginal swabs for assessment of the vag-
inal microbiota and vaginal pH level. The self-collected 
vaginal swabs were placed on slides and allowed to air dry 
before being stained with Gram stain and scored using 
the Nugent quantitative morphologic categorization for 
vaginal microbiota, which yields integer scores ranging 
from 0 (normal) to 10 (BV). Detailed questionnaires on 
sexual risk behaviors and general health were adminis-
tered at baseline and every 6 months. Every 6 months, a 
serologic sample was examined for the presence of HIV 
using HIV enzyme immunosorbent assays, with any dis-
crepant findings being validated by Western blot.

The women who were sexually active, post-menarcheal, 
and who continued in the research for at least 18 months 
of observation were the focus of this analysis ( N = 211 ). 

Data of the subjects ( N = 184 ) who participated in at 
least 80% of the weekly visits during the two years were 
used for this analysis to characterize patterns of the lon-
gitudinal Nugent scores. Any remaining missing Nugent 
values were imputed by interpolating the immediately 
surrounding values if available and otherwise by carry-
ing forward the previous non-missing value. The result-
ing Nugent scores observed for these 184 women over 
the 2 years are shown in Fig. 1. The potential risk factors 
and their baseline summary statistics are listed in Table 1 
including covariates measured via the semi-annual ques-
tionnaires and HIV status.

Review of functional principal components [4]
Functional data analysis (FDA) extends the methods of 
multivariate statistics which concern Rd valued random 
variables to random variables taking values in function 
spaces [18]. In particular, the method of FPC reduces 
functional data to lower dimensions in an optimal way 
[19].

Let χ = {χ(t), t ∈ T } denotes a square integrable L2
-continuous stochastic process indexed over a compact 
interval T  . Denote the mean function as µ = E(χ) and 
covariance function as ν(u, v) = cov{χ(u),χ(v)} . Let 
φj , j ≥ 1 denote the eigenfunctions of v corresponding to 
eigenvalues �j , j ≥ 1 . The j-th FPC of χ is defined as

According to the Karhunen–Loève expansion, it 
holds that χ(t)− µ(t) = ∞

j=1 ξjφj(t) , and the trunca-
tion with the first q terms 

∑q
j=1

ξjφj(t) minimizes the 
L2 distance between χ and any q-dimensional linear 

(1)ξj =

∫

τ

(χ(t)− µ(t))φj(t) dt

Fig. 1 Nugent scores in Rakai dataset. This figure records Nugent scores for 97 weekly visits of each of 184 women who participated in at least 
80% of weekly visits during two years. Remaining missing values have been imputed by linear interpolation. Each horizontal line corresponds 
to data from one woman. Each horizontal line is broken down into 97 colored intervals, where each interval indicates the Nugent score recorded 
in the corresponding weekly visit. Darker red indicates higher Nugent scores and more severe BV
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projection of χ [20]. Thus the first q FPC, ξ1, . . . , ξq are 
an optimal dimension reduction of χ [21].

Let i index a study subject and i = 1, ..., n . Let 
xi = (xi(t1), . . . , xi(tK )) be the observed discrete realiza-
tion of χ for subject i and at recording times t1, . . . , tK  
where K is the number of time recordings for each i [22].

Let µ̂(tk) =
1
n

∑n
i=1 xi(tk) be the estimated mean 

function at time tk and wk , k = 1, . . . ,K  denote the 
quadrature weights for the approximate integration 
[4, 23] of the integral in Eq. (1) over time t1, . . . , tK  and 
W = diag(w1, . . . ,wK ) . Let φ̂1, φ̂2, . . . be the orthonor-
mal eigenvectors of the weighted covariance matrix 
of the observed data: 1

n

∑n
i=1 x

′
ixiW  , associated with 

its eigenvalues arranged in decreasing order. The esti-
mate of φj(tk) , denoted by φ̂j(tk) , is the k-th entry of 
φ̂j , k ∈ {1, . . . ,K } . Then, the integral in Eq. (1) is numeri-
cally calculated and estimated from observed data 
xi, i = 1, . . . , n , as:

Review of distance functions in function spaces [4]
Let χi and χi′ be independent and identically distributed 
copies of the stochastic process χ . The function,

forms a semi-metric in the space of square-integrable 
stochastic processes for a fixed positive integer q.

For observed data xi = (xi(t1), . . . , xi(tK )) and 
xi′ = (xi′(t1), . . . , xi′(tK )) at times t1, ..., tK  , dq(xi, xi′) is 
estimated by,

(2)ξ̂ij =

K
∑

k=1

wk(xi(tk)− µ̂(tk))φ̂j(tk)

(3)

dq(χi,χi′) =

√

√

√

√

q
∑

j=1

(
∫

[χi(t)− χi′(t)]φj(t) dt

)2

Table 1 This table outlines the semi-annual covariates of interest that have been collected in the Rakai study

a : the proportion of weekly visits with sexual activity was calculated among women who were sexually active in the past 6-months. The median was 65%

Covariates Values Baseline Summary/Frequency (% of 184)

Nugent score at start of interval ( BV0) numeric value Median: 6, Interquartile: 3-8, Range: 0-10 Percent 
of Nugent score in: The range of 0 to 3: 28.8% 
Intermediate range of 4 to 6: 23.4% BV range 7 
to 10: 47.8%

HIV status with symptoms of AIDS negative 165 (89.7%)

positive without symptoms 15 (8.2%)

positive with symptoms 2 (1.1%)

Age at baseline < 20 years 37 (20.1%)

≥ 20 and < 25 years 49 (26.6%)

≥ 25 and < 30 years 49 (26.6%)

≥ 30 years 49 (26.6%)

Genital ulcer in past six months yes 8 (4.3%)

no 176 (95.7%)

Pregnancy test pregnant 30 (16.3%)

otherwise 154 (83.7%)

Source of bathing water protected with well or tap or bore hole 35 (19.0%)

partly protected being from uncovered wells 71 (38.6%)

unprotected and from rains or ponds 78 (42.4%)

Current family planning use birth control pills 14 (7.6%)

Injection or implant hormonal contraceptives 
(Depo injection/Norplant)

28 (15.2%)

none 142 (77.2%)

Sexual frequency no sex 21 (11.4%)

(proportion of weekly visits that the woman 
reported

less than median value of frequency 78 (42.4%) -

sex in the last week over the past 6-monthsa) greater than the median 85 (46.2%) -

Condom use in the past 6 months never 118(64.1%)

inconsistent 47 (25.5%)

always used or no sex 19 (10.3%)

Partner’s circumcision status circumcised 55 (29.9%)

not circumcised 127 (71.1%)
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The first q FPCs of χi and χi′ can be denoted as 
ξi = (ξi1, . . . , ξiq) and ξi′ = (ξi′1, . . . , ξi′q) . Their estimates 
are denoted by ξ̂i = (ξ̂i1, . . . , ξ̂iq) and ξ̂i′ = (ξ̂i′1, . . . , ξ̂i′q) . 
Following Eqs. (1) and (2), note that,

That is, the value of the semi-metric dq(χi,χi′) between 
χi and χi′ is identical to the Euclidean distance between 
the FPC vectors ξi and ξi′ and likewise for their estimates.

Functional data clustering algorithm using FPC [4]
Ferraty and Vieu [4] uses the proportions in small 
neighborhoods around the functional data points, 
defined using the semi-metric in Eq. (3) to hierarchi-
cally cluster the functional data. Let S = {χ1, . . . ,χn} 
denote a functional dataset with n subjects. Let 
pi,h = 1

n × card{χi′ ∈ S : dq(χi,χi′) < h} denote the 
small neighborhood proportion of radius h around 
the functional data point χi for subject i, where card 
denotes the cardinality of a set. The pi,h is estimated from 
observed data by p̂i,h = 1

n × card{x′i : d̂q(xi, xi′) < h} 
where q is the number of FPC used. The following sum-
marizes the steps of the algorithm. 

Step 1 Given a value of the neighborhood width h, 
evaluate the p̂i,h ’s and estimate the density for 
{p̂i,h : i = 1, 2, . . . , n} by standard density estimation 
methods [24]. Denote the density by fh.

Step 2 Find the neighborhood width ĥ that maximizes 
the entropy of fh . For the next step, consider f

ĥ
.

Step 3 Partition the p̂
i,ĥ

 ’s separated by the local minima of 
f
ĥ
 to obtain the different classes. That is, f

ĥ
 has C local 

minima at m1, ...,mC , then set the partitions to be 
S1 = {xi : p̂

i,ĥ
∈ (−∞,m1]}, S2 = {xi : p̂i,ĥ ∈ (m1,m2]},

..., SC = {xi : p̂
i,ĥ

∈ (mC ,∞)} to be the different classes 
from S.

Step 4 Accept or reject the partition above based on this 
criterion: For any given sample denoted as U, define 
the heterogeneity index: HI(U) =

d̂q (M1,U ,M2,U )

d̂q (M1,U ,0)+d̂q (M2,U ,0)
 where, 

M1,U and M2,U denotes the median, and the mode of 
samples in S, respectively. That is, HI(U) captures het-
erogeneity by the deviation of the median from the 
mode of the sample considered. Define the sub-sampled 
heterogeneity index, SHI(U) = 1

B

∑B
b=1HI(U

(b)) , 
where U (1), ...,U (B) are B randomly generated subsam-

(4)

d̂q(xi, xi′) =

√

√

√

√

√

q
∑

j=1

(

K
∑

k=1

wk(xi(tk)− xi′(tk))φ̂j(tk)

)2

(5)dq(χi,χi′) = ||ξi − ξi′ ||, d̂q(xi, xi′) = ||ξ̂i − ξ̂i′ ||

ples of U (each subsample can be of half the size of U 
and is randomly drawn from U without replacement). 
That is, SHI is average HI over B random subsamples, 
making it a robust measure of heterogeneity of U. For 
the observed sample S, define the partitioning hetero-
geneity index PHI(S; S1, ..., SC ) =

1

card(S)

∑

C

v=1 card(Sv)× SHI(Sv) . 
Define the splitting score SC(S; S1, ..., SC ) = SHI(S)−PHI(S;S1 ,...,SC )

SHI(S)
 . 

A decrease in the value of PHI or equivalently an 
increase in SC is desirable for the clustering because it 
increases intra-cluster homogeneity on an average 
over the clusters. For a given threshold, if the splitting 
score (SC) is above the threshold, partitioning is 
allowed, otherwise the parent sample is kept intact.

Step 5 If the partition is accepted in Step 4, then repeat 
Steps 1-4 using each of S1, . . . , SC in place of S to fur-
ther partition each of S1, . . . , SC.

The above method was applied on the Rakai dataset 
using the R code published by Ferraty and Vieu [4] using 
the default values of the tuning parameters and q = 2 
FPCs totally contributing to ≈ 66.45% of the variance of 
the original data (the 3rd FPC only improved percentage 
of variance explained by less than 5% and thus was not 
used). The tuning parameters were that the minimum 
sample size allowed for a cluster was 10; the set of small 
neighborhood width h for finding ĥ was taken to be the 
set of values of d̂q(xi, xi′) in S and started with the least 
value; the SHI was calculated based on B = 1000 ran-
domly drawn subsamples, and the threshold for the split-
ting score SC was 0.05.

However, the functional clustering algorithm only uses 
one data feature for hierarchical clustering: the small 
neighborhood proportion in a neighborhood around 
each functional data point. This feature essentially uses 
the distance information as measured by the semi-metric 
of functional data points and thus encodes intra-person 
variability. On the other hand, other features may also 
be informative, for example, the estimated values of the 
principal components of the data points themselves. This 
motivated the expanded clustering algorithm below.

Extending the clustering algorithm to incorporate multiple 
data features
Ferraty and Vieu’s methodology separates clusters by 
the minima of the density for the feature of small neigh-
borhood proportion ( f

ĥ
 ) and using this feature to clus-

ter hierarchically. Conceptually the algorithm can be 
extended by considering the density of other features 
such as the values of the FPC for each hierarchy of 
clustering.
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Algorithm 1 Adapted functional clustering algorithm over multiple features

The extended clustering algorithm is provided in Algo-
rithm  1. Steps 0-3 remain the same as the steps in Fer-
raty and Vieu’s original algorithm (see “Functional data 
clustering algorithm using FPC [4]”  section) and use 
the small neighborhood proportions calculated based 
on the distances of the functional data for clustering. In 
Step 4, a new data feature, the first FPC for a subject, is 
used to further partition each cluster resulted from Step 
3. The first FPC captures the greatest variance, followed 
by the second principal component and so on. There-
fore, the clustering can be conducted in a hierarchical 
manner while utilizing multiple data features. Statisti-
cally, whether a data feature is relevant in clustering can 
be assessed by whether using it can further partition the 
sample based on the splitting score (SC) criterion: if the 
SC is less than the cutoff value, using this data feature will 
not lead to further partitioning of the the clusters already 
obtained by using the previous feature(s).

Identifying risk factors after defining the patterns (clusters) 
using GEE
Exploratory analysis was further conducted to identify 
risk factors associated with each identified cluster. Since 
the exposure variables were measured every 6 months 
in the Rakai dataset (Table 1), we first split the two-year 
Nugent score time series of each subject into 6-months 
semiannual intervals. The Nugent score patterns over 
6-months intervals were classified using Algorithm  1. 
Subsequently, generalized logistic regression modeling 
was used to model the semiannual class memberships as 
a function of the corresponding semiannually collected 
covariates, including age at the study baseline, HIV sta-
tus at the beginning of the interval, and health status and 
sexual behaviors reported in the survey at the end of the 
interval (because the recall period was the past 6 months, 

e.g. whether there was genital ulcer in the past 6 months 
Table  1). The generalised estimating equation method 
[25] was used to account for the correlation within an 
individual due to the multiple semiannual intervals.

The generalized logistic regression is 
log(

πilc
πilC

) = β0c + β ′
cxil , where Yil is the class mem-

bership identified from the above clustering pro-
cess for subject i, (i = 1, ...,N ) at semiannual 
interval l (l = 1, 2, 3, 4) , xil is the covariates vector 
for subject i at interval l, and πitc = P(Yil = c) , 
c = 1, 2, ...,C  with C being the number of classes 
determined from the clustering process. The 
parameters were estimated by Generalized Esti-
mating Equations (GEE) method, using SAS GEN-
MOD Procedure.

Results
Patterns identified only using the feature of small 
neighborhood proportions for clustering
We first applied Ferraty & Vieu’s clustering method on 
the Nugent score time-series which spanned a 2-years 
of period with 184 subjects (see  “Methods” section). 
The clustering yielded 2 classes (See Fig.  2) with a SC 
of 0.1723. This is equivalent to using Algorithm  1 with 
only the feature of small neighborhood proportions . The 
resulting 2 classes are largely distinguished by their per-
sistence (or lack of ) in the magnitude of Nugent scores. 
The first identified class indicates large fluctuations of the 
Nugent scores, suggesting a lower persistence in either 
the normal or BV states; whereas the second identified 
class indicates higher persistence in one of the normal 
or BV state. Utilizing only the small neighborhood pro-
portion to cluster seemed to result in an overly crude 
clustering of BV longitudinal scores: as seen in Fig.  2, 
cluster 2 actually contains women who had consistently 
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high Nugent scores indicating a disease state, as well as 
women who had consistently low Nugent scores indi-
cating a disease free state. These two groups of women 
clearly belonged to distinct BV related disease processes, 
but they were not separated by using only the small 
neighborhood proportion to cluster the data.

Patterns identified using the extended clustering 
algorithm
Using the features of both the small neighborhood pro-
portions and also the values of the first FPC, apply-
ing Algorithm  1 further bifurcates each of the 2 classes 
obtained in “Patterns identified only using the feature of 
small neighborhood proportions for clustering”  section, 
yielding 4 classes in total (Fig. 3). The SC of the resulting 
4 classes is 0.4011, larger than the SC of 0.1723 for the 2 
classes when only using the small neighborhood propor-
tions (see the “Patterns identified only using the feature 
of small neighborhood proportions for clustering”  sec-
tion). A greater SC indicates lower intra-cluster heteroge-
neity and thus is desirable.

In Fig. 3, data of Class 1 demonstrate large fluctuation 
of Nugent scores which however are predominantly in 
the BV state (high Nugent scores); data of Class 2 also 
demonstrate large fluctuation of Nugent scores but pre-
dominantly the scores are in the normal state; data of 
Class 3 show a pattern of persistent BV state; and data 

of Class 4 show a pattern of persistent normal ranged 
Nugent scores. These classes represent distinct biologi-
cal risks to BV, representing women who had a lower 
risk of developing the disease (persistent low Nugent 
scores), women who had persistence of BV (persistently 
high Nugent scores), and those whose vaginal microbiota 
states fluctuated during the 2 years of follow-up.

Pattern specific risk factors
Algorithm  1 was applied on the semi-annual Nugent 
score series to classify Nugent score patterns over 6 
months. The identified patterns are shown in Fig. 4. The 
clustering results were similar to what was found earlier 
using the 2-year Nugent scores (Fig. 3), except that 3 clus-
ters (patterns) were identified due to a reduction of varia-
bility over time associated with the semi-annual intervals 
as compared to two years. The clusters constitute women 
with persistently low Nugent scores ( Fig.  4, Class A), 
women with persistently high Nugent scores indicating a 
persistent BV state (Fig.  4, Class C), and women whose 
Nugent scores fluctuated between low and high Nugent 
scores (Fig. 4, Class B). The SC of the clustering is 0.0950.

When Ferraty & Vieu’s algorithm with only the feature 
of small neighborhood proportions was used to cluster 
the semi-annual data, the SC of clustering was 0.0606, 
and similar to the clustering result when using the algo-
rithm on the 2-year data, 2 clusters were identified with 

Fig. 2 Clustering results of Ferraty & Vieu’s FDA method. This figure shows clusters obtained by Ferraty & Vieu’s FDA clustering method described 
in the “Functional data clustering algorithm using FPC [4]” section. Only the feature of small ball proportions was used for clustering, resulting in 2 
clusters. Cluster 1 (top panel) suggests more fluctuations of Nugent scores over time, and Cluster 2 suggests more stable Nugent scores. However, 
Cluster 2 (bottom panel) does not differentiate women with stable high Nugent scores (i.e. with BV) versus women with low Nugent scores (i.e. 
no BV) which clearly are two distinct biological states
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one cluster being of women with fluctuating Nugent 
scores (i.e Class B) and the other cluster being of women 
with stable Nugent scores. Applying Algorithm  1 and 
incorporating the first principal component as the sec-
ond data feature bifurcated the latter cluster into two 
clusters (Class C composed of women with stable high 
scores versus Class A composed of women with stable 
low scores), and increased the SC to 0.0950.

In the multinomial logistic regression model, we used 
the class with persistently low Nugent scores, Class A, as 
the reference group. The estimated odds ratios (OR) and 
their 95% confidence intervals based on the sandwich 
estimates for the standard errors and the p-values are 
presented in Table  2 for comparing the class of women 
with fluctuating Nuegent scores with the reference group 
and in Table  3 for comparing the class of women with 
persistently high Nugent scores with the reference group.

Discussion
As expected, higher Nugent score at the start of an inter-
val was significantly associated with higher odds of vagi-
nal microbiota fluctuation (Table  2) and BV persistence 
(Table  3). Younger age group of < 20 years was signifi-
cantly associated with higher odds of vaginal microbiota 
fluctuation and also higher odds of persistent BV. Unpro-
tected source for bathing water such as rains or ponds 
compared to protected source had a doubled odds of per-
sistence in BV microbiota (95%CI: 0.95 to 4.56, P-value 
0.07). These findings are consistent with those previously 
reported for this cohort [12]. In the current analysis, a 
woman’s partner’s being circumcised also was associated 
with lower odds of BV persistence in the woman (OR= 
0.62, 95%CI 0.37-1.04, P-value 0.07). This finding con-
forms to the knowledge that male circumcision reduces 

Fig. 3 Clustering results of Algorithm 1. These figures show the four classes (Class 1 to Class 4: top to bottom panels) obtained by our extended 
FDA clustering method (Algorithm 1) described in the “Functional data clustering algorithm using FPC [4]” section using the weekly Nugent scores 
over 2 years. Two data features were used: the small neighborhood proportions as in Ferraty & Vieu’s method and the first FPC



Page 9 of 13Biswas et al. BMC Medical Research Methodology          (2023) 23:251  

the prevalence of BV in the female partners’ by 40% con-
cluded from a randomized controlled trial of male cir-
cumcision from Uganda.

Use of injectable/Norplant hormonal contraceptives 
(mainly injectable depot medroxyprogesterone acetate 
[DMPA] in Rakai) for family planning increased the odds 

Fig. 4 Clusters in Nugent score semi-annual intervals. Three classes were identified using Nugent scores in semiannual intervals.The extended 
method (Algorithm 1) was applied. Class A shows a pattern of persistent normal ranged Nugent score; Class B indicates a pattern of fluctuating 
Nugent scores; and Class C indicates a pattern of persistent BV state, i.e. high Nugent scores
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of persistent BV in women (OR=1.76, 95% CI 0.95-3.24, 
P-value 0.07). In a previous analysis of this dataset [12], 
such hormonal contraception use was not detected as 
a potential risk factor for BV chronicity. This previous 
analysis defined the outcome of “BV chronicity” as the 
proportion of weekly Nugent scores that fell into the BV 
category (i.e. Nugent score > 7 ) during the 6-months 

intervals. This approach condensed the original series of 
weekly Nugent scores of a woman into a scalar measure 
and thus was not an efficient and optimal use of the data 
(this shortcoming was indeed the motivation of this cur-
rent study). Additionally, the scalar measure could not 
reflect the dynamics of vaginal microbiota or the intra-
person variability over time. In contrast, the current 

Table 2 Risk factors associated with Class B (fluctuating) compared to Class A (normal) using Multinomial Logistic GEE Regression

Covariates Comparisons Odds Ratio 95% CI p-value

Nugent score at start of interval ( BV0) Every unit increase in Nugent score 1.26 [1.17,1.34] <0.0001

Indicator Variables
HIV/AIDS status HIV+ with no symptoms vs. HIV- 1.56 [0.52,4.67] 0.43

HIV+ with symptoms vs. HIV- 0.32 [0.08,1.39] 0.13

Age at baseline (≥ 20,< 25) vs. < 20 0.37 [0.18,0.76] 0.007

(≥ 25,< 30) vs. < 20 0.43 [0.21,0.90] 0.025

≥ 30 vs. < 20 0.59 [0.28,1.24] 0.16

Genital ulcer in past six months yes vs. no 1.08 [0.31,3.79] 0.90

Pregnancy test pregnant vs. not pregnant 0.58 [0.27,1.26] 0.17

Source of bathing water partially protected vs. protected 0.74 [0.39,1.41] 0.36

unprotected vs. protected 0.841 [0.43, 1.64] 0.61

Current family planning use birth control pills vs. none 1.16 [0.49,2.78] 0.74

Injectable/Norplant vs. none 1.20 [0.68,2.13] 0.53

Sexual frequency < median vs. no sex 1.25 [0.53,2.94] 0.61

> median vs. no sex 1.376 [0.56,3.39] 0.49

Condom use inconsistent vs. always use or no sex 1.51 [0.84, 2.71] 0.17

never used vs. always use or no sex 0.99 [0.37, 2.66] 0.99

Partner’s circumcision status circumcised vs. not 0.79 [0.48,1.29] 0.34

Table 3 Risk factors associated with Class C (persistent BV) compared to Class A (normal) using Multinomial Logistic GEE Regression

Covariates Comparisons Odds Ratio 95% CI p-value

Nugent score at start of interval ( BV0) Every unit increase in Nugent score 1.68 [1.56,1.80] <0.0001

Indicator Variables
HIV/AIDS status HIV+ with no symptoms vs. HIV- 1.69 [0.53,5.38] 0.38

HIV+ with symptoms vs. HIV- 0.73 [0.22,2.43] 0.61

Age at baseline (≥ 20,< 25) vs. < 20 0.41 [0.17,1.01] 0.05

(≥ 25,< 30) vs. < 20 0.47 [0.21,1.09] 0.08

≥ 30 vs. < 20 0.52 [0.23,1.18] 0.12

Genital ulcer in past six months yes vs. no 0.51 [0.16,1.66] 0.27

Pregnancy test o pregnant vs. not pregnant 1.33 [0.65,2.72] 0.44

Source of bathing water partially protected vs. protected 1.28 [0.57,2.91] 0.54

unprotected vs. protected 2.08 [0.95, 4.56] 0.07

Current family planning use birth control pills vs. none 0.81 [0.27,2.40] 0.70

Injectable/Norplant vs. none 1.76 [0.95,3.24] 0.07

Sexual frequency < median vs. no sex 1.29 [0.59,2.82] 0.53

> median vs. no sex 1.19 [0.52,2.76] 0.68

Condom use inconsistent vs. always use or no sex 1.53 [0.80, 2.91] 0.20

never used vs. always use or no sex 1.31 [0.46, 3.73] 0.61

Partner’s circumcision status circumcised vs. not 0.62 [0.37,1.04] 0.07
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analysis used a data-driven approach to characterise the 
patterns of longitudinal Nugent scores and identified the 
association of injectable/implant hormonal contracep-
tive use with a persistent BV state. Injectable DMPA use 
has been reported to be associated with increased risk of 
HIV acquisition [26]. The identified biological mecha-
nisms from in-vitro studies include DMPA’s effect on 
microbiota and genital tract barrier function and tissue 
architecture [27]. Clinical studies using 16S rRNA gene 
sequencing or quantitative polymerase chain reaction 
have also reported DMPA use altered vaginal microbiota 
in black women [28, 29]. Our current identified associa-
tion between DMPA use with BV chronicity benefited 
from the data-driven approach that used the raw Nugent 
scores and the intra-person variability in the data.

These findings suggest that risk factors for shifts in 
the vaginal microbiota are multifactorial and potentially 
include factors that increase biologic susceptibility, envi-
ronmental exposures, and partner characteristics. Some 
factors may be modifiable and may lead to strategies for 
prevention and care of BV. Further studies are needed to 
elucidate the mechanism of how these risk factors may 
influence vaginal microbiota fluctuation and persistence 
of BV.

In prior analyses of this dataset, the raw Nugent scores 
were condensed into 3 categories (0-3 Normal; 4-6 Inter-
mediate; and 7-10 BV). Some studies summarized the 
longitudinal data into cross-sectional proportions of 
each category. This provided a summary measure of BV 
disease burden but prohibited the exploration of bio-
logical knowledge embedded in the intra-person vari-
ability in the Nugent scores and vaginal microbiota [9, 
10]. Another study [13] prespecified 3 subgroups based 
on visual inspection of the 2-year trichotomized Nugent 
score categories: the first group consisted of women who 
fluctuated between normal and intermediate states dur-
ing the 2 years; the first group consisted of women who 
persisted with intermediate vaginal microbiota state and 
BV; and the first group were women who transitioned 
across all 3 states. The clustering method presented here 
used the actual Nugent scores (0-10) in a data driven 
manner. This fuller use of the original numerical values 
further differentiated the group of women who transi-
tioned across all three states into those who generally had 
lower Nugent scores from those who transitioned across 
all three states but more often stayed with high Nugent 
score over the 2 years (Fig. 3). The latter subgroup may be 
associated with increased risk of other adverse outcomes.

Prior epidemiological studies of BV primarily relied on 
measurements of samples collected at one or a few time 
points every a few months apart [30, 31]. Several recent 
studies used daily or twice weekly sampled swabs from 
healthy women or women of high risk of BV over a 10 

to 16 weeks period to characterize vaginal microbes and 
transition dynamics of bacterial species in vaginal micro-
biota [32, 33]. The Rakai BV study enrolled a relatively 
large cohort of women and collected vaginal samples 
weekly for 2-years, allowing explorations of the intra-
person variability in vaginal microbiota and its role in the 
etiologic pathways of BV. But this study has important 
limitations. First, the covariates were measured semi-
annually whereas Nugent scores were measured weekly. 
We assessed the associations of the covariates with BV 
patterns in the corresponding semi-annual intervals. 
More frequent such as weekly observations of covari-
ates may allow a better understanding of the associations 
of hygienic and sex behavioral factors with BV status in 
women. Second, Nugent score does not provide informa-
tion on the bacterial composition in vaginal microbiota. 
Thus our analysis cannot provide insight on the poten-
tial role of changes in bacterial species on women’s BV 
status nor how hygienic and sex behavioral factors may 
influence the bacterial composition in vaginal micro-
biota. Studies involving profiling of bacterial composi-
tion of densely sampled vaginal samples have shown that 
the composition of bacterial species may change and the 
temporal dynamics of the microbiota was correlated with 
clinical BV stage [32, 33]. Another study used Markov 
transition models on quarterly sampled data of vaginal 
bacteria communities and identified specific bacteria 
species that may be be targeted by interventional strat-
egies to improve bacteria-associated reproductive health 
[31].

Frequently sampled longitudinal data have become 
increasingly available in recent years. Such data greatly 
expand the information from a single or a few time points 
of measurements of biomarkers and allow researchers to 
explore the clinical utility of the whole process of fluc-
tuations of biomarkers in reflecting a disease or health 
condition. We applied FDA methods to identify vaginal 
microbiota patterns using the Nugent scores. Compared 
to traditional longitudinal data methods, FDA is known 
to perform better in higher dimensions [34] and can be 
applied when data are collected at different intervals for 
different subjects [19]. In particular, building on Ferraty 
& Vieu’s functional clustering algorithm, our extended 
algorithm utilize more data features in the clustering. 
This resulted in a classification of the Nugent score pro-
cesses with improved clinical interpretability. Addition-
ally, the classes were identified in a data driven manner 
using the raw longitudinal Nugent scores and reflected 
homogeneous subgroups of women that shared similar 
intra-person variability patterns.

The original Ferraty & Vieu’s method uses the small 
ball proportions to cluster the functional data. Consid-
ering that the proportions have removed information 
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of the values themselves of the functional data, we 
extended Ferraty & Vieu’s algorithm by further cluster-
ing the functional data using other data features, such 
as the estimated first FPC itself for each subject. The 
extended algorithm provides a flexible framework of 
unsupervised learning of frequently sampled longitudi-
nal data to identify biologically or clinically meaningful 
patterns. The data features to be used in the extended 
algorithm are chosen by the user, and the number of 
features to consider should depend on the problem at 
hand. Using a large number of data features for clus-
tering may not be accepted by the splitting score cri-
terion, or the resulting clusters may not be clinically 
or biologically interpretable. Our extended algorithm 
uses a one-feature-at-a-time hierarchical approach 
instead of clustering using a set of features simultane-
ously. The latter may be over fitting the data and results 
in spurious clusters in the presence of many features. 
With the hierarchical approach, the extended clustering 
algorithm checks one feature at a time and determines 
whether the feature is informative for the clustering 
before proceeding to the next one. This allows inform-
ative features to be used in clustering and also allows 
users’ control of data features to ensure that the non-
supervised learning of data can generate scientifically 
interpretable subpopulations. For example, if the fre-
quently sampled longitudinal biomarker measurements 
pertain to a degenerative process, then the data feature 
may include a measure of the rate of decline of the bio-
marker measurements to inform the clustering process.

The clustering methods may also be adapted to char-
acterize disease processes using multivariate frequently 
sampled longitudinal data. For example, it may be 
applied to frequenly sampled vaginal microbiota data 
obtained from higher resolution tools using 16S rRNA 
gene amplicon sequencing to explore species-specific 
longitudinal patterns, which may allow identifications 
of specific pathogenic vaginal organisms with persis-
tent or fluctuating patterns. The original and extended 
clustering methods are model-free and do not require 
parametric distribution assumptions. Thus they can 
be applied to a wide variety of high dimensional time 
series obtained from other subject areas to study 
whether intra-person variability and other data features 
in longitudinal trajectories can identify different bio-
logic or clinical sub-populations.

Conclusion
When it is of interest to explore clinical patterns using 
densely sampled longitudinal data, the hierarchical func-
tional data clustering method can be used for fully data 

driven unsupervised clustering. The method was applied 
to the frequently sampled longitudinal Nugent scores to 
identify different patterns in the natural history of BV in 
a cohort of Ugandan women. Further risk factor analysis 
identified demographic and behavioral risk factors asso-
ciated with persistent BV burden in women. The hier-
archical functional data clustering method provides an 
exploratory data analysis approach for frequent longitu-
dinal data.
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