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Abstract 

We enhance the Bayesian Mendelian Randomization (MR) framework of Berzuini et al. (Biostatistics 21(1):86–101, 
2018) by allowing for interval null causal hypotheses, where values of the causal effect parameter that fall 
within a user-specified interval of “practical equivalence” (ROPE) (Kruschke, Adv Methods Pract Psychol Sci 1(2):270–80, 
2018) are regarded as equivalent to “no effect”. We motivate this move in the context of MR analysis. In this approach, 
the decision over the hypothesis test is taken on the basis of the Bayesian posterior odds for the causal effect param-
eter falling within the ROPE. We allow the causal effect parameter to have a mixture prior, with components corre-
sponding to the null and the alternative hypothesis. Inference is performed via Markov chain Monte Carlo (MCMC) 
methods. We speed up the calculations by fitting to the data a simpler model than the intended, "true", one. We 
recover a set of samples from the “true” posterior distribution by weighted importance resampling of the MCMC-
generated samples. From the final samples we obtain a simulation consistent estimate of the desired posterior odds, 
and ultimately of the Bayes factor for the interval-valued null hypothesis, H0, vs H1 . In those situations where the pos-
terior odds is neither large nor small enough, we allow for an uncertain outcome of the test decision, thereby moving 
to a ternary decision logic. Finally, we present an approach to calibration of the proposed method via loss function. 
We illustrate the method with the aid of a study of the causal effect of obesity on risk of juvenile myocardial infarction 
based on a unique prospective dataset.

Keywords Mendelian randomization, Region of practical equivalence, Interval null hypothesis, Ternary decision logic, 
Loss function calibration, Juvenile myocardial infarction

Introduction
The causal effect of an exposure on an outcome can, 
under certain assumptions, be assessed from observa-
tional data by using measured variation in genes as an 

instrumental variable. This is called a Mendelian Rand-
omization (MR) analysis (Katan [1]; Smith and Ebrahim 
[2]; Lawlor et al. [3]; Jeffrey [4]). We approach MR via a 
parametric model of an assumed data generating process, 
where the unknown magnitude of the causal effect is rep-
resented by a parameter, β . At least initially, we assume 
β to be a scalar. In this context, the null hypothesis H0 
of non-existence of the causal effect is often represented 
by β taking a particular value that with no loss of gen-
erality we take to be 0. In this case we have a point null 
causal hypothesis and a diffuse alternative hypothesis 
H1 : β �= 0.
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It is however possible to replace the point null causal 
hypothesis with an interval null causal hypothesis 
H0 :|| β || ≤ T  , corresponding to the alternative hypoth-
esis H1 :|| β || > T  . In this case the user must specify a 
positive T in such a way that causal effect values within 
[−T ,T ] can be regarded as practically equivalent to 
zero. The justification for introducing the [−T ,T ] inter-
val is similar to that of the Region of Practical Equiva-
lence (ROPE) of Kruschke [5], and we shall therefore use 
“ROPE” to refer to that interval. By regarding values of 
the causal effect that are “too close” to 0 as equivalent to 
0, the ROPE approach protects us from a problematic 
aspect of point null hypothesis testing, namely, that it will 
always reject the null as the sample size tends to infinity, 
due to inevitable departures of the model from “truth”. 
Use of the ROPE will protect us from this phenomenon 
by avoiding statistically significant but artefactual, and 
typically minuscule, estimates of the effect. These occur 
in MR analysis due to MR models being often a rough 
approximation of an underlying process, and further-
more relying on untestable assumptions. By using ROPE, 
we reduce the risk of an MR analysis leading to a causal 
discovery claim in the presence of only scant evidence 
in favour of the alternative, as well as the risk of the null 
hypothesis being accepted in spite of the data being com-
patible with a (possibly important) causal effect. The 
ROPE approach is discussed by a number of authors, 
including Stanton [6]; Kelter [7]; Kelter [8]; Liao et al. [9]; 
Linde et al. [10] and Stevens and Hagar [11].

Not only are we standing in favour of interval null 
(as opposed to point null) hypotheses in MR, but also 
of a Bayesian (as opposed to a frequentist) approach to 
hypothesis testing, main reasons being its ability to use 
information about the relative levels of evidence for both 
the null and alternative hypotheses (Berger and Sellke 
[12]) and its freedom from asymptotics. Motivated by the 
above considerations, we combine the strengths of Bayes-
ian hypothesis testing with those of ROPE within the 
Bayesian MR framework of Berzuini et  al. [13], further 
refined by Zou et al. [14].

We entertain a parametric model of the assumed data 
generating process with the causal parameter β drawn 
from a mixture prior distribution. One component of 
which, with fixed weight π0 , represents the distribution 
of β under H0 , which we take to be a flat distribution with 
no support outside the ROPE. The second component of 
the mixture, with fixed weight (1− π0) , represents the 
distribution of β under H1 , which we take to be a con-
tinuous normal distribution with mean 0. Parameter π0 
is the user-assigned prior probability for the null hypoth-
esis. Inference computations are made by using Markov 
chain Monte Carlo (MCMC) methods of simulation. By 
combining MCMC with importance sampling, we are 

allowed to fit the data to a simpler (and incorrect) model, 
where β has an “importance” continuous prior distribu-
tion. Weighted resampling of the output posterior sam-
ples will then recover a set of samples from the posterior 
of the true model. Based on the proportion of samples 
falling within the ROPE we calculate approximations to 
the posterior probabilities of β falling inside and outside 
the ROPE, and from these we get a simulation-consist-
ent estimate of the posterior odds in favour of the null 
and, ultimately, a simulation-consistent estimate of the 
Bayes factor for H0 vs H1 , as a basis for the test decision. 
A formal discussion of relationships between our method 
and standard Bayes factor calculations is available from 
the Authors. As common in Bayes factor analysis, when-
ever the posterior odds is neither large nor small enough, 
indicating less-than-strong evidence in favour of either 
hypothesis, we declare the test decision “uncertain”, 
thereby moving from a binary to a ternary decision logic.

Finally, for purposes of decision rule calibration, we intro-
duce a loss function that measures the "cost"  incurred by 
each possible combination of a decision outcome and true 
hypothesis. We use this for model parameter tuning and 
comparison of a classical and a Bayesian approach to MR.

We illustrate the methods with the aid of a MR study of 
the effect of obesity on risk of juvenile myocardial infarc-
tion, on the basis of a unique set of data from patients hos-
pitalized for myocardial infarction between 40 and 45 years 
of age and healthy controls.

Methods
Bayesian Mendelian randomization model
Suppose we wish to assess the putative causal effect 
of a scalar exposure X on a scalar outcome Y, by using 
information provided by a set Z ≡ (Z1, . . . ,ZJ ) of 
genetic  instrumental variables (IVs, or instruments), 
typically single nucleotide polymorphisms (SNPs). A 
directed acyclic graph (DAG) representation of the pro-
posed model for this task is shown in Fig. 1.

Suppose, for the time being, that each individual in the 
sample comes with a completely observed set of variables 
(X ,Y ,Z) . Without infringing the argument’s general validity, 
let Y be a binary variable. Let U denote a scalar summary of 
the unobserved confounders of the relationship between X 
and Y. Within a Bayesian framework, if we assume standard-
ised (Z,X) variables and linear additive dependencies (but 
we could consider interaction between the effects of the {Z} 
on X), then a possible parametrization of the model is:

(1)U ∼ N (0, 0.1),

(2)X | Z,U ∼ N

J

k=1

αkZk + δXU , σ 2
X ,
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where the symbol ∼ stands for “is distributed as” and 
expit(a) ≡ ea

1+ea . The symbol N(a,  b) denotes normal 
distribution with mean a and variance b, and σX is the 
standard deviation of an independent random pertur-
bation of X. This model is identifiable except for the 
δ  parameters being estimable only  through their prod-
uct. Of inferential interest is the causal effect of the expo-
sure X on the outcome Y, as quantified by parameter β , 
with β = 0 corresponding to the causal effect having zero 
magnitude.  The vector parameter α = (α1,α2, . . . ,αJ ) 
represents the strengths of the pairwise associations (not 
necessarily causal)  between instruments and exposure. 
This model is adapted from Berzuini et al. [13] and Zou 
et al. [14].

As is common in statistics, the DAG can be inter-
preted as a way of coding conditional independence 
relationships that are implicit in the model equations. 
These relationships are conveniently expressed by using 
the conditional independence notation of Dawid [15], 
where A ⊥⊥ B | C reads: “A is independent of B, given 
C”, asserting that the conditional distribution of the ran-
dom variable A, given the value of the random variable C, 
does not further depend on B. Note that A is marginally 
independent of B when C is empty, denoted as A ⊥⊥ B . 
Our model equations and Fig.  1 are consistent with the 
following two conditions: 

1. Z ⊥⊥ U : confounder independence
2. Y ⊥⊥ Z | (X ,U) : exclusion-restriction.

(3)Y | X ,U ∼ Bernoulli(expit(ω + βX + δYU)),

Condition 1 states that each of the instrumental vari-
ables included in Z is independent of U. This condition 
is utterly untestable, due to U being unobserved. Con-
dition 2 states that there is no association between Z 
and Y other than that mediated by X, and can be at best 
only partially tested. An additional condition is that 
association between each IV in Z and X is not null. This 
is not strictly required for identifiability, as the model 
is identifiable when only one component of Z is asso-
ciated with X, and is motivated by our concern that in 
the presence of a small sample a multitude of irrelevant 
instruments may create a bias-inducing association 
between Z and U, thereby violating one of the above 
assumptions.

Prior specifications required to complete the Bayes-
ian formulation of the model are discussed at length 
in Berzuini et  al. [13]. In particular, we shall hereafter 
take β to be independent from the remaining param-
eters in the prior. In our simulations, we have taken σX 
to follow a priori an inverse-gamma distribution, σX ∼ 
Inv-Gamma(3, 2), and each component of α to be inde-
pendently normally distributed with mean 0.5 and stand-
ard deviation 0.2:

The prior for β will be discussed in the Causal discovery 
decision rule based on ROPE posterior odds and Impor-
tance sampling calculation of the posterior odds sections.

Region of practical equivalence (ROPE)
Having specified the model Eqs. (1-3), one would often 
define a “point” null hypothesis β = 0 . As previously 
mentioned, this choice has drawbacks. One of them is 
that with this choice the subspace of data generating pro-
cesses corresponding to a “non-existent” causal effect, ie 
β = 0 , is singular with respect to the full space of data 
generating processes defined by the model, so that if we fit 
a model with a continuous prior for β , the posterior prob-
ability of a nonexistent causal effect will be zero. When 
inference computations are performed via Markov chain 
Monte Carlo (MCMC) simulation (Metropolis et al. [16]), 
the probability of the chain visiting the point-space β = 0 
will, in this case, be zero, which prevents us from calcu-
lating and comparing posterior probabilities for the “non-
existence” and for “existence” hypotheses on the basis of 
the MCMC-generated samples. This problem disappears 
if we define an interval-valued null hypothesis, that is, by 
allowing the user to specify a real positive T, and:

α =
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Fig. 1 Directed acyclic graph (DAG) representation of the Mendelian 
randomisation model we consider throughout the paper. 
The strength of the X → Y  arrow, corresponding to the unknown 
magnitude of the causal effect of interest, is represented 
in the model equations by the unknown parameter β
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where without loss of generality we have taken the 
[−T ,T ] interval, called ROPE, to be symmetric with 
respect to zero. With this choice, if we assign an appro-
priate prior distribution to β (and to the remaining model 
parameters)  then the proportion of  times the MCMC 
chain visits the ROPE will provide us with a simulation-
consistent estimate of the posterior probability for H0 , as 
a basis for the hypothesis test decision. We shall claim a 
“discovery” when the posterior probability of β falling in 
the ROPE does not exceed a specified threshold. In  the 
Importance sampling calculation of the posterior odds 
section, β is given a mixture prior that allows the user to 
assign a prior probability mass for β falling  within the 
ROPE, ie, for the null causal hypothesis.

The value of T should in principle be chosen in such a 
way that ROPE contains values of β that have small enough 
absolute magnitudes to be devoid of practical relevance 
(Kruschke [5]). This may be straightforward if we are able to 
come up with a realistic range of values for the causal effect 
β . One such situation occurs when the outcome model is 
a logistic regression, as in Eq.  3. This is, for example, the 
case in our illustrative study, where the exposure variable, 
body mass index (BMI), has been standardised to have 
unit variance, and β represents the coefficient of this vari-
able in a logistic regression model of the binary outcome, 
with no effect interactions on a multiplicative scale. In such 
a setting, biological insight will suggest a realistic range of 
values for β . For example in our illustrative study, where β 
represents the causal effect of standardised BMI on occur-
rence of juvenile myocardial infarction (JMI), a value of, 
say, β = 0.1 implies that a one-standard-deviation change 
in BMI moves the probability of JMI from 0.993 to 0.994, or 
from 0.524 to 0.549, or from 0.109 to 0.119. In this case we 
may be willing to judge these changes “negligible” and set 
T = 0.1 . There is always, of course, the possibility to assess 
the sensitivity of the results to changes in T. In the Simu-
lation experiment section, we calibrate T with respect to 
the data and to the model prior distribution. The use of an 
interval null hypothesis is intended to attenuate the risk of 
artefactually significant estimates of the causal effect.

Causal discovery decision rule based on ROPE posterior 
odds
  Once  the model has been specified according to 
Eqs. (1-3), complete with a prior specification for β 
and the remaining unknown parameters and for the 
prior  probability of H0  being true (details given later) 
we  would run MCMC (see Betancourt [17]) in the 

H0 : −T ≤ β ≤ T ,

H1 : β /∈ [−T ,T ],

space of the unknown model parameters, and then 
focus on the posterior samples for β . Relevant quanti-
ties are the proportion V1 of sampled values of β fall-
ing outside the ROPE, and the proportion V0 of values 
falling inside the ROPE. The V0

V1
 ratio provides a simu-

lation consistent approximation to the posterior odds 
of β falling inside the ROPE and of the Bayes factor 
for H0 vs H1 , as a basis for taking the test decision, for 
example in accord with  the following ternary Causal 
Discovery Decision Rule (CDDR) (Schönbrodt and 
Wagenmakers [18]):

• If V0
V1

> 10 , accept the non-existence (of the causal 
effect) hypothesis with confidence;

• If V0
V1

< 0.1 , accept the existence hypothesis (and 
claim a causal discovery) with confidence;

• If 0.1 ≤
V0
V1

≤ 10 , conclude in favour of an uncertain 
evidence of a causal effect (uncertain outcome of the 
decision).

Our chosen thresholds (0.1, 10) are not carved in stone. 
Not unlike the nominal threshold for the frequentist 
p-value, they will generally depend on the context. Our 
provision of an “uncertain” outcome of the decision will 
later allow us to construct a (loss function based) meas-
ure of performance of the decision rule that captures 
the difference between the loss due to  rejecting a true 
hypothesis in favour of “uncertain outcome” and the 
loss due to accepting a false hypothesis.

Let us now discuss the prior distribution for the 
causal effect magnitude β . As mentioned previously, 
one possibility is  to assign β a mixture prior distribu-
tion, that puts a π0 probability on β falling in the ROPE 
according to a rectangular distribution, and a comple-
mentary, (1− π0) , probability on this parameter being 
drawn from a locally uninformative continuous dis-
tribution that we, without loss of generality, assume 
to be normal. The parameter π0 can be interpreted as 
the prior probability for H0 , with π0 = 0.5 expressing 
prior ignorance about the existence of a causal effect. 
Our previous considerations about the choice of the 
threshold T are relevant here. Details about the pro-
posed inference computation procedure are given in 
the next subsection.

Importance sampling calculation of the posterior odds
The posterior samples of β can be conveniently gener-
ated by using the following mixture prior resampling 
scheme. Let θ denote the full set of unknown quantities 
in the model (including parameters and missing data 
values) except the causal effect β . The idea is to assume 
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prior independence of β  and θ  , and then  apply MCMC 
to a model where the “true” (mixture) prior for β , which 
we denote as ptrue(β) , is replaced by a (computationally 
more convenient) continuous prior denoted as pused(β) . 
A sample S of values of (β , θ) will thus be generated from 
the “incorrect” posterior distribution

where the symbol ∝ stands for “proportional to” and D 
denotes the data.

The idea is then to exploit principles of importance 
sampling in order to correct for the fact that we are sam-
pling (4) instead of the correct posterior. This is described 
in the following.

The true posterior probability for (β , θ) is given, up 
to a proportionality constant we do not need to com-
pute, by

 which can be re-written as

where

Let S denote a set of K samples of (β , θ),

generated from the “incorrect” posterior distribu-
tion πused(β , θ | D) . A reweighted resampling of S with 
replacement, with the weight of each kth sample, ω[k] , 
obtained by evaluating ω(β) at it, ω[k] ≡ ω

(
β[k]

)
 , will , by 

virtue of (5), yield a set of samples of (β , θ) we can think 
of as generated from the correct posterior. In particular, 
it will yield a set of posterior samples for β which we can 
use according to the CDDR of the preceding subsection 
to determine the test decision outcome.

Let  ptrue(β) take  the form of a mixture of a 
locally uninformative normal distribution, say 
N (0, 102) , and a uniform density over [−T ,T ].  Let   
then the "incorrect" prior for β, which we have denoted   
as pused(β) , be N (0, 102) . Then:

(4)πused(β , θ | D) ∝ p(D | β , θ) pused(β) p(θ)

π true(β , θ | D) ∝ p(D | β , θ) ptrue(β) p(θ).

(5)

π true(β , θ | D) ∝ p(D | β , θ) pused(β) p(θ)
ptrue(β)

pused(β)

∝ πused(β , θ | D) ω(β),

ω(β) ≡
ptrue(β)

pused(β)
.

S ≡

{
β[k], θ [k]

}
, k = 1, . . . ,K ,

ω[k] =
(1− π0) · N (β[k] | 0, 102)+ π0 ·Unif

(
β[k] | −T ,T

)

N
(
β[k] | 0, 102

) .

where Unif (q | −T ,T ) denotes the probability density at 
a real point q under a rectangular (uniform) distribution 
with support (−T ,T ) . For a sample β[k] falling outside 
[−T ,T ] this weight will be 0.5. For a sample β[k] falling 
inside [−T ,T ] and with 

π0 = 0.5 it will be 
0.5+ 1

4·T ·N (β[k]|0,102) . Hence samples falling outside the 
interval will be downweighted with respect to the sam-
ples inside, the downweighting being the more pro-
nounced the smaller the interval.

Calibration
Hypothesis test decision procedures should be evalu-
ated, more precisely calibrated, in accord with the prin-
ciples of decision-theory, by using some measure of the 
expected loss. We shall consider ternary decisions with 
possible outcomes “accept the hypothesis H1 of existence 
of the causal effect”, “accept the hypothesis H0 of absence 
of the causal effect” and “uncertain outcome”. Let L(β ,A) 
denote the loss incurred when the true value of the causal 
parameter is β and the chosen decision outcome is A. Let 
this function be defined as

where β∗ /∈ [−T ,T ].
The choice of a, with 0 ≤ a ≤ 1 , will depend on the 

applicative context. Large values of a will be appropriate 
if more conservative discoveries are desired at the cost of 
more decisions being held in a limbo.

The next section describes a simulation experiment 
where we compare results of a frequentist and of a Bayes-
ian MR analysis of the same data, by letting the priors 
vary during the experiment. In each of the simulated sce-
narios, the comparison is based on the expected loss:

with the probabilities p(. | β = .) estimated by simula-
tion. The first and last terms in the expression of L will be 
zero in the frequentist case. The intention in the experi-
ment will by no means be to prove that one of the two 
inference paradigms  is superior, but rather that use of 
a Bayesian approach with a ternary decision rule might 
often be a good idea, and that one reason for this is that 

L(β = 0,H0 accepted with confidence) = 0,
L(β = 0, uncertain outcome) = a,
L(β = 0,H1 accepted with confidence) = 1,
L(β = β∗,H0 accepted with confidence) = 1,
L(β = β∗, uncertain outcome) = a,
L(β = β∗,H1 accepted with confidence) = 0,

Expected L = p(uncertain outcome | β = 0)× Iβ=0 × a

+ p(H1 accepted with confidence | β = 0)× Iβ=0

+ p(H0 accepted with confidence | β = β∗)× Iβ=β∗

+ p(uncertain outcome | β = β∗)× Iβ=β∗ × a.
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the frequentist method (but not the Bayesian one) is gen-
erally “handicapped” by its inability to allow for an uncer-
tain outcome.

Simulation experiment
We are now going to describe a simulation experiment 
where the expected loss criterion of the preceding sec-
tion is used to compare performances of a frequentist 
and of a Bayesian MR method in realistic data analysis 
scenarios. By allowing for randomly missing values of 
the exposure variable, we shall factor into the experiment 
the ability of the Bayesian approach to coherently han-
dle missing data, as discussed elsewhere (Zou et al. [14]). 
This is motivated by the fact that certain MR analysis sit-
uations, e.g. involving overlapping samples (see Zou et al. 
[14]), may be characterized by a high proportion of miss-
ing data values.

Experiment design
We simulated situations where the following two datasets 
are jointly analysed:

• Dataset A: collected from sample individuals with 
complete observations for (Z,X ,Y );

• Dataset B: collected from individuals with completely 
observed values for Z and Y, and completely missing 
values of X.

We assumed no overlap, i.e., no individuals shared 
between A and B. Let the symbol D1 denote the com-
bined dataset A ∪ B . In the special case where B is 
empty, dataset D1 lends itself to standard one-sample 
MR analysis. Analysis of D1 will otherwise fall in the 
“one-sample MR with missing X-data” category. With 
reference to Eqs. (1)-(3), we considered 18 different 
configurations:

• the rate of missingness of X: (80%, 40%, 0%)
• the strength of the α = (α1,α2, . . . ,αJ ) coefficients, 

assumed to be the same for all IVs: (0.3 , 0.1 , 0.05)
• the magnitude of the causal effect β : (0.3, 0)

In total,  3× 3× 2 = 18 scenarios were simulated. 
Throughout the experiment, parameters δX and δY  were 
set to 1 and the number J of instruments was set to 15. 
Two hundred datasets were simulated under each sepa-
rate scenario, for a total of 3,600 datasets simulated dur-
ing the experiment. Each of these 3,600 datasets was 
generated by the following sequence of steps: 

1. simulate 1000 independent individuals character-
ized by realistic realizations of Z and then, on the 

basis of the Zs, generate for each individual val-
ues of X and Y in accord with Eqs. (1)-(3). Call the 
resulting dataset H;

2. randomly sample nA individuals from H , without 
replacement, and let the selected individuals, each 
with a completely observed ( Z,X ,Y  ) vector, form the 
dataset that we have previously labelled as A;

3. randomly sample nB individuals from H \ A and take 
each of them to be characterized by observed ( Z,Y  ), 
with their corresponding values of X treated as miss-
ing. Let these selected individuals form the dataset 
that we have previously labelled as B. At this point, 
we were ready to apply MR to data D1 = A

⋃
B.

The sample size of D1 was set to be 400 throughout the 
experiment. Parameter nB was controlled by the rate of 
missingness of X for the relevant scenario. For example, 
for a rate of missingness of X of 80%, we had nA = 80 
and nB = 320 . In the special case of a 0% rate of miss-
ingness of X, it was D1 ≡ A . MCMC computations were 
performed with the aid of the probabilistic programming 
language Stan that also incorporates variational infer-
ence methods (Stan Development Team [19, 20]). Miss-
ing data imputation and causal effect estimation were 
performed simultaneously via MCMC, by exploiting the 
substantial equivalence of unknown model parameters 
and missing values in Bayesian analysis.

We compared our Bayesian method with the follow-
ing frequentist approach to two-sample MR: inverse-vari-
ance weighted (IVW) estimation (Burgess and Thompson 
[21], Bowden et al. [22]). Application of IVW required the 
observed values of Y in Dataset A to be discarded to comply 
with the frequentist two-sample analysis mechanism. After 
each frequentist MR analysis of a simulated dataset, the 
null causal hypothesis H0 : β = 0 was accepted iff the 95% 
confidence interval for β contained the null value 0. The 
alternative hypothesis H1 : β �= 0 was otherwise accepted.

As far as the Bayesian analysis of each simulated data-
set is concerned, we used the previously discussed model 
and computational procedure and CDDR decision rule to 
determine the outcome of the test. At each new simula-
tion run, the threshold T and parameter a were randomly 
drawn from uniform distributions T ∼ Unif

(
10−2, 10−1

)
 

and a ∼ Unif (0, 0.6) in order to assess sensitivity of per-
formance to changes in these parameters. The informa-
tion generated by the above procedure allowed us to 
compute the expected losses for the MR methods under 
comparison, a high expected loss implying a high rate of 
false positives/negatives.

Experiment results
Figure  2 displays the results, when  β = 0 , of the fre-
quentist (IVW) and Bayesian MR for each combination 
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of IV strength and missing rate. The flat grey surface in 
each panel depicts the loss of the frequentist MR and 
the coloured surface the loss of the Bayesian method. 
Unsurprisingly, the average loss incurred by the fre-
quentist approach does not appear to depend on the 
values of T or a, as these parameters are not involved 
in the frequentist decision rule.

Our Bayesian method showed a lower loss almost 
uniformly across the configurations, with the aver-
age  loss decreasing with an increase in IV strength. 
There were noticeable fluctuations of the loss when 
T was small. This is due to calculation of the pos-
terior odds, as estimated by V0

V1
,  becoming rather 

unstable when the number of samples of β falling in 
[−T ,T ] becomes small.

When β = 0.3 , our Bayesian method resulted in no 
loss when α = 0.3 (Fig. 3), showing a positive impact of 
a  higher IV strength on decision  performance. This is 
because no posterior samples fell in [−T ,T ] for all differ-
ent values of T. As IV strength decreased, the posterior 
distribution had a higher spread and some samples fell in 
the tolerance interval for a large T, and we started to see 
a loss from the Bayesian method. When T continued to 

increase, the wider tolerance  interval  went on receiving 
more samples, leading to a higher loss. When the level of 
IV strength decreased, the loss increased in our method. 
However, our method still performed consistently better 
than the frequentist.

Is obesity a strong cause of juvenile myocardial 
infarction?
With the improvement of living standards, recent dec-
ades have witnessed a dramatic increase in prevalence 
of obesity. A common measure of obesity is the body 
mass index (BMI), defined as the weight in kilograms 
divided by the square of the height in meters. A high 
value of BMI is taken to indicate an excess of body 
fat. Studies have demonstrated that obesity acts as a 
major causal risk factor for cardiovascular disease and 
hypertension. To the best of our knowledge, no stud-
ies have examined these links that focuses on occur-
rence of MI at an early age, sometimes called juvenile 
myocardial infarction (JMI). Yet, early age is where 
the influence of genetics on cardiovascular events is at 
its highest, which makes a MR analysis of the causes 
of early-age MI most appealing and less vulnerable to 

Fig. 2 Loss of the frequentist (grey) and our Bayesian MR with binary Y when β = 0 for different combinations of missing rate of X (80%, 40% 
and 0%) and IV strength (0.3, 0.1 and 0.05), based on 200 simulated datasets per combination. Loss is pictured for different values of the threshold, T, 
and of the score a 
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biases. Motivated by these considerations, our study 
focuses on the causal effect of BMI on occurrence of a 
MI before age 45.

Our analysis was based on data from an Italian study of 
the genetics of infarction (Berzuini et al. [23]). JMI cases 
were ascertained on the basis of hospitalization for acute 
myocardial infarction between ages 40 and 45, between 
calendar years 1996 and 2002. The recorded values of 
BMI, measured after occurrence of JMI, were considered 
representative of pre-JMI obesity level.

One caveat in the analysis we are going to describe is 
that post-JMI BMI levels may reflect recent changes in 
the patient’s lifestyle and behaviour, resulting in rather 
weak genetic associations with BMI and, as a conse-
quence, in higher vulnerability to bias.

We adopted the model described by Eqs. (1)-(3), with 
uninformative priors with respect to the parameter 
region of posterior importance. This was characterized 
by a logistic regression dependence of the binary out-
come on the exposure,  as in the referenced equations, 

Fig. 3 Loss of the frequentist (grey flat surfaces) and our Bayesian MR (coloured curves) with binary Y when β = 0.3 (outside the tolerance interval). 
Panels represent different combinations of the missing rate of X ( 80%, 40% and 0% ) and the IV strength (0.3, 0.1 and 0.05). 200 datasets were 
simulated for each of these scenarios

Fig. 4 MR model with 360 instrumental variables, ( IV1 , IV2 , ..., IV360 ), 
used in our illustrative study to assess the causal effect of BMI 
on juvenile myocardial infarction (JMI). Observed values of 5 potential 
confounders (sex, smoking status, alcohol consumption, cocaine 
consumption and age), were included in the model (see main text). 
The model assumes there are no associations between IVs and JMI 
other than those mediated by BMI
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Fig. 5 Estimated causal effect of standardized BMI on JMI, based on the Bayesian Mendelian randomization analysis we have performed data 
from our illustrative study. (a) Posterior distribution curve for causal parameter β with posterior mean 0.303 and 95% credible interval (0.069, 0.550). 
(b) Bayesian posterior parameter trace plot for β
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conditional on the following potential confounders: sex 
(Male/Female), smoking status (Yes/No), alcohol con-
sumption (Yes/No), cocaine consumption (Yes/No) and 
age. A graphical representation of the model is shown 
in Fig. 4. The narrow age range of the event in our study 
attenuates problems introduced by censoring, and jus-
tifies our choice of representing disease outcome as a 
binary variable (1: had MI, 0: did not have MI) in our 
analysis.

The single nucleotide polymorphisms (SNPs) asso-
ciated with BMI were identified based on the datasets 
from genome-wide association study (GWAS) of the 
UK Biobank1 ( P ≤ 5× 10−8 ). Through the command-
line program Plink (Purcell and Chang [24]), as many 
as 360 independent ( r2 < 0.001 ) SNPs were selected 
and then used as instruments for assessment of obe-
sity causal effect on JMI. SNPs were coded as 3 valued 
(0,  1,  2) counts of the minor allele, after appropriate 
cross-study harmonization. In total, 521 independ-
ent individuals were studied in the illustrative analysis 
based on our Bayesian method. Values of BMI were 
standardised (mean 0, standard deviation 1) prior to 
analysis.

We ran the Markov chain in the space of the model 
unknowns (model parameters and missing BMI val-
ues). The chain was 20,000 iterations long, the last 
5,000 iterations being used for purposes of infer-
ence. Figure  5 shows posterior density plot (Panel (a)) 
and Bayesian posterior parameter trace plot (Panel 
(b)) for the causal effect of standardized BMI on JMI. 
The trace in (b) indicates reasonably good mixing of 
the chain, with R̂ = 1.002 . For each of the thresholds 
(0.02, 0.04, 0.06, 0.08) for T, after the mixture prior resa-
mpling discussed in Importance sampling calculation 
of the posterior odds section, we had 0.1 <

V0
V1

< 10 . In 
spite of the 95% credible interval for β lying entirely in 
the positive real axis, we therefore conclude in favour 
of uncertain evidence of a causal effect of genetically 
induced changes in obesity on JMI.

Discussion
In our approach to Bayesian MR analysis, the hypoth-
esis H0 of non-existence of the causal effect of interest is 
represented by a user-specified interval of values of the 
causal effect, which we may refer to by using the estab-
lished term “region of practical equivalence” (ROPE). 
Importance sampling technology is used to approximate 
the posterior odds of the causal effect falling inside this 
interval. A sufficiently large value of this posterior odds 
will lead to acceptance of the null no-effect hypothesis, 
whereas a sufficiently small value will lead to acceptance 

of the alternative hypothesis, and to a causal discovery 
claim. A third, “uncertain”, decision outcome is avail-
able for situations where the posterior odds is neither 
large nor small enough, indicating scarce data support to 
either hypothesis. The uncertain outcome has been intro-
duced to reduce chances of placing undue confidence in 
a hypothesis that is only weakly supported from the data. 
We have incorporated this ternary test decision logic into 
the Bayesian MR framework proposed by Berzuini et  al. 
[13] and further refined by Zou et  al. [14]. The decision 
rule can be calibrated via simulation by acting on the dif-
ferential weighting parameters of a loss function.

In a simulation experiment, we have compared our method 
with a standard MR method in terms of expected loss, by 
allowing loss function parameters to vary within reason-
ably wide intervals. The experiment suggests that, within 
the examined scenarios, our method outperforms standard 
MR, and this may be due to the latter being handicapped by 
inability to accommodate decision uncertainty. We consider 
our proposed method as a contribution to research on more 
reproducible MR analysis.

We have applied our proposed method to a MR study of 
the causal effect of obesity on juvenile myocardial infarction, 
based on a unique dataset. The study concludes in favour of 
an uncertain evidence of a non-null causal effect.
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