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Abstract 

Introduction Causal inference helps researchers and policy‑makers to evaluate public health interventions. When 
comparing interventions or public health programs by leveraging observational sensitive individual‑level data 
from populations crossing jurisdictional borders, a federated approach (as opposed to a pooling data approach) can 
be used. Approaching causal inference by re‑using routinely collected observational data across different regions 
in a federated manner, is challenging and guidance is currently lacking. With the aim of filling this gap and allowing 
a rapid response in the case of a next pandemic, a methodological framework to develop studies attempting causal 
inference using federated cross‑national sensitive observational data, is described and showcased within the Euro‑
pean BeYond‑COVID project.

Methods A framework for approaching federated causal inference by re‑using routinely collected observational 
data across different regions, based on principles of legal, organizational, semantic and technical interoperability, 
is proposed. The framework includes step‑by‑step guidance, from defining a research question, to establishing 
a causal model, identifying and specifying data requirements in a common data model, generating synthetic data, 
and developing an interoperable and reproducible analytical pipeline for distributed deployment. The conceptual 
and instrumental phase of the framework was demonstrated and an analytical pipeline implementing federated 
causal inference was prototyped using open‑source software in preparation for the assessment of real‑world effec‑
tiveness of SARS‑CoV‑2 primary vaccination in preventing infection in populations spanning different countries, inte‑
grating a data quality assessment, imputation of missing values, matching of exposed to unexposed individuals based 
on confounders identified in the causal model and a survival analysis within the matched population.
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Results The conceptual and instrumental phase of the proposed methodological framework was successfully 
demonstrated within the BY‑COVID project. Different Findable, Accessible, Interoperable and Reusable (FAIR) research 
objects were produced, such as a study protocol, a data management plan, a common data model, a synthetic data‑
set and an interoperable analytical pipeline.

Conclusions The framework provides a systematic approach to address federated cross‑national policy‑relevant 
causal research questions based on sensitive population, health and care data in a privacy‑preserving and interoper‑
able way. The methodology and derived research objects can be re‑used and contribute to pandemic preparedness.

Keywords Federated analysis, Causal inference, Real‑world data, Comparative effectiveness, Vaccines, COVID‑19, 
Pandemic preparedness

Background
Causal inference, the process of estimating a causal 
effect of interest (e.g., of a treatment or intervention on 
a health outcome), is a major interest in public health 
research. Identifying causal relationships can signal tar-
gets for public health policy (e.g., increase exposure to a 
beneficial determinant or treatment, or reduce exposure 
to a hazardous one) or allows the evaluation of public 
health interventions. Estimating causal effects for public 
health purposes entails the comparison of health out-
comes under different treatments or interventions (e.g., 
comparing the probability of acquiring an infection when 
vaccinated with the probability of acquiring an infec-
tion when not vaccinated). For inferring causality, rand-
omized controlled trials (RCTs), in which individuals are 
assigned randomly to one of the intervention groups, are 
recognized as the “gold standard” [1]. When individu-
als are randomly assigned to an intervention group, the 
groups are assumed to be exchangeable or “comparable”, 
meaning that differences in the outcome can be ascribed 
solely to the exposure of interest [1, 2]. However, it can 
be of interest to assess the effect of a treatment or inter-
vention in less controlled real-world settings, considering 
larger populations, obtained by less restrictive criteria for 
inclusion, to increase the external validity of the study 
[3]. Further, it is often not ethical or feasible (e.g., because 
of economic constraints) to perform an RCT. For these 
purposes, observational studies can be performed, lever-
aging “real-world” data sources, often obtained through 
the secondary use of routinely collected health, care and 
administrative data. When estimating causal effects using 
observational data, it is essential to consider different 
potential sources of bias, such as confounding, selection, 
and information bias, that can appear in natural environ-
ments uncontrolled by researchers [1]. The presence of 
confounders (i.e., variables that influence both the expo-
sure and outcome variable of interest) can result in non-
exchangeability of exposure groups, introduce spurious 
association and, in this way, distort the measured asso-
ciation between exposure and outcome from the causal 
effect of interest (i.e., differences in the outcome cannot 

completely be ascribed to the exposure of interest) [1, 2, 
4]. Statistical methods, such as confounder adjustment or 
matching, can be applied to limit confounding bias and 
to pursue exposure groups that are conditional exchange-
able (i.e., comparable) when exchangeability by design 
(as in an RCT) is not obtained. These methods generally 
require the availability of detailed patient information. 
Alternatively, selection bias represents bias introduced 
by mechanisms for selecting individuals into the analy-
sis. Selection bias can likewise lead to non-exchangeable 
exposure groups (i.e., compromised internal validity), as 
well as impaired generalizability of the study results (i.e., 
external validity) [1, 5]. Lastly, we refer to information 
bias as a distortion of the measured association resulting 
from errors in the measurement or classification of vari-
ables, such as the exposure, outcome, or covariates in the 
analysis. Hernán et al. (2022) [6] suggested that specify-
ing a hypothetical RCT that would allow the estimation 
of the causal effect of interest (a target trial) and emulat-
ing this target trial using the available observational data 
is beneficial for maintaining the elements of an RCT. For 
example, emulating randomization as specified in the tar-
get trial during the analysis may help to reduce the risk 
of confounding and increase the internal validity of the 
study [1, 7, 8].

A treatment or intervention can be applied to popula-
tions spanning different regions or countries, with the 
collected real-world observational data often stored 
decentralized in isolated environments. Integrating and 
analyzing these data from different locations and insti-
tutions, can support public health decision-making by 
providing more precise and generalizable estimates. 
A meta-analysis integrating evidence from different 
independent studies, for example, as maintained by the 
International Vaccine Access Center (IVAC) on the effec-
tiveness of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) vaccine primary series of the online 
VIEW-hub [9], can be conducted to obtain a pooled 
effect estimate. However, heterogeneity in the consid-
ered confounding factors, criteria for study participant 
selection, definitions of variables and adopted statistical 
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methods might exist across studies, limiting compa-
rability. When it is of interest to estimate causal effects 
and compare interventions or public health programs 
deployed across (particularly, national) borders, using 
observational sensitive individual-level data, a federated 
approach (as opposed to an approach using pooled data) 
can be used. Such a methodology, implying data visit-
ing, allows to approach causal inference in a privacy-pre-
serving and interoperable way, without sharing sensitive 
data or gathering them in a centralized location. When 
conducting federated research, interoperability chal-
lenges (i.e., obtaining consistent data from distributed 
data sources, reproducing an analysis, and comparing the 
results across the data sources), should be addressed. Dif-
ferent layers of interoperability were defined by the Euro-
pean Interoperability Framework (EIF), namely, Legal, 
Organizational, Semantic and Technical (LOST) inter-
operability [10, 11]. González-García et  al. (2021) [12] 
presented a methodology and recommendations on how 
to cope with challenges at the different layers of interop-
erability when conducting federated research. The cur-
rent work aims to build upon this pragmatic approach, 
extending it to a framework amenable to approach causal 
inference. Previously, technologies or infrastructures for 
distributed analysis, such as DataSHIELD [13, 14], the 
Personal Health Train (PHT) [15, 16], and VANTAGE6 
[17], have been proposed. However, to the best of our 
knowledge, guidance on the full methodological process 
to approach causal inference, including the specification 
of data requirements and guaranteeing interoperability 
when being confronted with a causal research question in 
federated research, is currently lacking.

The BeYond-COVID (BY-COVID) project (2021–2024) 
is a Horizon Europe funded project aiming to accelerate 
access to and linkage of SARS-CoV-2, coronavirus dis-
ease 2019 (COVID-19) and patient data, and increase 
preparedness for future pandemics within Europe [18]. 
The use cases defined within the BY-COVID project are 
aimed to ensure interoperability across national borders 
by enabling a federated approach complying with privacy 
and data protection regulations. This work conceptually 
describes the proposed methodology and prepares its 
application to a policy-relevant research question (i.e., 
investigating the real-world effectiveness of the SARS-
CoV-2 primary vaccination program in populations 
spanning different countries), aiming to facilitate a rapid 
response in the case of a next pandemic.

Methods
A methodological framework for federated causal infer-
ence research by re-using routinely collected observa-
tional data across different regions, was constructed 
based on the principles of interoperability at Legal (i.e., 

privacy-by-design), Organizational (i.e., analysis coordi-
nation), Semantic (i.e., built upon a common data model) 
and Technical (i.e., via the distribution of analyses and a 
reproducible environment) level [11], Open Science (i.e., 
transparent and accessible processes and knowledge) 
[19, 20] and international cooperation driven by popu-
lation-level research questions. The framework expands 
methodologies to leverage population health data for 
federated policy-oriented research proposed within the 
“Information for Action” Joint Action (JA-InfAct) [12, 21] 
and Population Health Information Research Infrastruc-
ture (PHIRI) project [22], allowing it to address causal 
research questions, through applying existing methodol-
ogies (e.g., the use of Directed Acyclic Graphs) and build-
ing on literature, experience and expertise.

The methodological framework
The developed methodological framework is described 
in this section. The framework comprises guidelines in 
the form of the following steps: (1) defining the research 
question, (2) establishing a causal model using Directed 
Acyclic Graphs (DAGs), (3) translating the causal model 
into data requirements using a Common Data Model 
(CDM), (4) generating synthetic data, supporting script 
development and testing, (5) developing an interoperable 
analytical pipeline using synthetic data, (6) extracting, 
linking, and transforming individual-level data within 
each node to comply with the CDM specification and 
information requirements, (7) distributed deployment 
of the analytical pipeline (i.e., federated analysis), and (8) 
meta-analysis of the local results (see Fig. 1). Step 1 to 5 
are part of a ‘conceptual and instrumental phase’ within 
the framework and can be conducted without access to 
real-world data, while steps 6 and 7 involve the extrac-
tion, transformation and analysis of real-world data 
within the jurisdiction of each of the participants to 
reach step 8 and produce comparable results to inform 
policy. Going through the steps of the conceptual and 
instrumental phase of the framework requires profound 
knowledge about real-world data.

The proposed framework requires close collaboration 
between a coordinating research team (also referred to 
as the ‘Coordination Node’) and institutions hosting 
or being able to acquire access to the required sensi-
tive individual-level data (also referred to as ‘Participant 
Nodes’), to guarantee organizational interoperability (see 
Fig.  1). The Coordination Node is responsible for lead-
ing the entire process, promoting the collaboration of the 
participants in the conceptual and instrumental phase of 
the framework and producing the documentation (i.e., 
research objects such as the CDM, the synthetic dataset, 
the analysis scripts of the interoperable analytical pipe-
line, etc.) supporting the data linkage, preparation and 
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the deployment of the analytical pipeline. In the sections 
below, a detailed description of each step is provided.

Step 1: defining the research question
To start, it is essential to precisely define the research 
question that the study aims to answer. To guide the for-
mulation of the research question, one can follow the 
PICO(T) strategy frequently used in clinical research, 
identifying (1) the patient, problem, population, or 
cohort of study, (2) the intervention or exposure, (3) the 
comparison or control, (4) the outcome(s) and, option-
ally (5) the time frame [23–25]. The research question 
directly feeds into a causal model, study design and infor-
mation requirements.

Step 2: establishing a causal model using Directed Acyclic 
Graphs (DAGs)
To estimate the causal effect of interest for the defined 
exposure-outcome relationship, exchangeable exposure 
groups should be pursued, thereby emulating randomi-
zation of the exposure as in an RCT [26]. Approaching 
exchangeability requires the adjustment for all known 
factors confounding the relationship between exposure 
and outcome. For the identification of these factors, 
causal models, such as graphical DAGs, can be used as an 
instrument to collaborate and map conditions to advance 
towards causal inference. DAGs provide a clear graphi-
cal way to identify confounding bias and other potential 
sources of bias under the described assumptions, and 
present a way to determine the smallest set of variables to 

condition on to draw up to a causal association (a ‘mini-
mal sufficient adjustment set’) by using the ‘backdoor cri-
terion’ (i.e., the criterion holds for a set of variables, if all 
backdoor paths between the exposure and outcome are 
closed by conditioning on these variables and if none of 
the variables is a descendent of the exposure) [1]. They 
map the knowledge and assumptions of researchers 
about the causal relationship between the exposure and 
outcome, and give an explicit view on the assumed rela-
tionships [27–29]. This way, DAGs increase transparency 
and facilitate discussion between researchers. The DAG-
itty web application or corresponding R package ‘dagitty’ 
can be used to construct and analyze DAGs [30]. Guid-
ance on the construction of DAGs and the identifica-
tion of a minimal sufficient adjustment set can be found 
elsewhere [28, 29, 31]. The assumption of ‘no unmeas-
ured confounding’ to identify the causal effect of interest 
demands appropriately measured confounders and cor-
rect statistical inclusion. It is important to consider the 
possibility of unmeasured or omitted confounding (e.g., 
due to limitations of surveillance systems or the human 
understanding of causal relationships respectively) [32].

Step 3: translating the causal model into data requirements
Once agreed upon, a causal model should translate the 
research question into data requirements detailing syn-
tactic and semantic considerations to achieve interop-
erability and enable sound comparability between the 
Participant Nodes within the federation. These data 
requirements are captured in a CDM. A customizable 

Fig. 1 Visual representation of the proposed methodological framework
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template for building a CDM is available in Additional 
File 1. All nodes in the DAG (e.g., variables measuring 
the exposure, outcome and the minimal sufficient adjust-
ment set, as well as variables required to achieve second-
ary objectives of the study or to perform supplementary 
or exploratory analyses) should be captured within the 
model description of the CDM, irrespective of their 
inclusion in the minimal sufficient adjustment set. Varia-
ble labeling must be consistent and follow a pre-specified 
convention (e.g., Snake Case, Camel Case) [33, 34]. Vari-
able labeling must not hinder the analysis, and therefore 
the variables should not start with reserved characters or 
numbers. Furthermore, variable labeling must include 
information on variable type for easier identification 
while interactively exploring the data. For example, the 
following convention can be used: ‘cd’ for categorical var-
iables, ‘nm’ for numerical variables, ‘bl’ for binary/logical 
variables, ‘dt’ for date variables, and ‘id’ for the primary 
(and secondary) key of the entity. Each of the variables 
should be characterized within the model description of 
the CDM in a detailed manner, including (1) the model 
entity, (2) the variable label, (2) a description of the vari-
able, (3) the encoding system, (4) the variable format and 
type, (5) the units of measurement, (6) the requirement 
level, (7) the variable-level validation rules, (8) the vari-
able properties (observed/calculated), and (9) the pos-
sible data sources. The variable format can be expressed 
differently depending on the data types enabled in each 
scripting language, however, can commonly be defined as 
‘integer’, ‘double’ or ‘float’ for a number, ‘string’ or ‘charac-
ter’ for an alphanumeric, ‘logical’ or ‘binary’ for TRUE or 
FALSE and ‘date’ or ‘timestamp’ for a date. The require-
ment level (i.e., required, recommended or optional) 
denotes the impact of complete absence of informa-
tion on that variable on achieving the purposes of the 
study. In studies aiming to approach causal inference, 
the required variables in the CDM should correspond 
to those measuring exposure, outcome and the minimal 
sufficient adjustment set required to close all backdoor 
paths identified in the DAG. As such, not having any 
information (complete missingness) on a variable in the 
minimal sufficient adjustment set, impedes reaching the 
study objectives by introducing bias and hindering causal 
interpretation of obtained estimates. Depending on the 
context and planned analyses, a variable considered to 
be required can be allowed to have a certain degree of 
values missing. Complete missingness of recommended 
variables could harm the secondary objectives of a study 
(i.e., planned sensitivity, subgroup analyses, or simi-
lar), while complete missingness of optional variables 
might impede supplementary or explorative analyses. 
Specifying possible data source(s) and comments are 
out of the scope of the variable description, but can offer 

additional information to facilitate the extraction, link-
age and transformation procedures, and management of 
the data at origin during step 6. If different entities (e.g., 
person, area, test, vaccination dose) are needed to cover 
the requirements captured in the DAG, a model descrip-
tion per entity should be provided. Further, a variable 
capturing information on a certain (co)morbidity might 
demand the specification of crosswalks (i.e., mapping 
to different classification systems) to ensure the cover-
age of the definition within different Participant Nodes 
using different disease classification systems at origin 
(i.e., semantic interoperability). The data model specifica-
tion should additionally contain an unambiguous cohort 
description, including the specification of eligibility cri-
teria of the study population and the start and end date 
of the study period. Further, in order to make the data 
model discoverable for other researchers, a structured 
metadata file should be provided.

Step 4: generation of simulated synthetic data
The generation of synthetic data, representing the speci-
fications from the CDM, can be instrumental to develop 
the interoperable analytical scripts and can serve to 
exemplify the required data for the federated analysis. 
Synthetic data can be simulated by simply capturing the 
technical and syntactic requirements as specified in the 
CDM and using non-informative mathematical distri-
butions, thereby avoiding exposure of the real sensitive 
data during the conceptual and instrumental phase of the 
framework and promoting the development and testing 
of the analytical scripts while managing the data access 
application process. Nonetheless, simulated data can be 
enhanced with expert information on the topic to reflect 
the expected distributions of the actual data based on 
published healthcare statistics or prior research. Alterna-
tively, when access to real data is possible and a sufficient 
degree of anonymization can be assured, synthetic data 
can be modelled based on the real data (i.e., data driven), 
preserving its underlying distributions, relationships and 
statistical properties with the specifications defined in 
the CDM.

Step 5: developing an interoperable analytical pipeline
Once the data requirements are specified and a synthetic 
dataset is generated, an analytical pipeline for distributed 
deployment can be developed. The analytics are depend-
ent on the specified research question and can apply 
different methods to address biases (e.g., adjusting for 
identified confounders [1, 35], controlling for selection 
bias [36]) and handle missing data [37–39]. Further, there 
are various ways to investigate the presence of biases in 
the results, such as selection and unmeasured or omitted 
confounder bias, and assess the sensitivity of the results 
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to the applied methods and assumptions in different sen-
sitivity analyses. Nonetheless, irrespective of these spe-
cific analytical methods, certain elements common to any 
federated study should be contained within the pipeline. 
The first step in the analytical pipeline consists of a com-
prehensive Data Quality Assessment (DQA), including 
information on the completeness, uniqueness, and integ-
rity [40]. Next, compliance with the CDM specification 
should be checked, by testing the input data against a 
set of data validation rules. Further, descriptive statistics 
can be produced, providing characteristics of the study 
population. Population characteristics can be used to 
improve interpretation of the results and detect potential 
biases, along with the results from the DQA and valida-
tion procedure. Finally, as federated research relies on 
the distribution of scripts for the analyses and the local 
deployment and execution of the analyses at each par-
ticipant’s system, it requires extensive documentation of 
all functionality and implemented decisions during the 
development of outputs of the analytical pipeline. All 
this documentation is required for interpretation of the 
local outputs, which are later used in the meta-analysis. 
The analytical pipeline should only produce aggregated 
results that have lost all sensitive properties, i.e., compli-
ant with disclosure policies.

Step 6: extraction, linkage and transformation procedures 
within the participant nodes
We defined ‘Participant Nodes’ as institutions contrib-
uting to the investigation of the research question, host-
ing or being able to acquire access to individual-level 
real-world population, health and care data. Each Par-
ticipant Node is responsible for the data access applica-
tion process, requesting access to analyze the required 
data. When access to the data necessary for the research 
in question is granted, linkage of different data sources 
needed to comply with the specified data requirements 
should be performed by the data controllers (i.e., can be 
the Participant Node or another institution). The Par-
ticipant Nodes are responsible for processing the data 
following the guidelines provided by the CDM specifica-
tion, in this way preparing the data for the analysis. Per-
fect adherence to the CDM specification cannot always 
be achieved with the available data, however should be 
pursued, particularly for the cohort selection criteria, the 
syntactic model and the required variables.

Step 7: distributed deployment of the analytical pipeline
The interoperable analytical pipeline should subsequently 
be distributed and deployed within a secured process-
ing environment of each Participant Node. It requires as 
input the linked and transformed data complying with 
the CDM specification. Adherence of these input data 

to the CDM should be informed throughout the analyti-
cal pipeline through informative errors (i.e., in the event 
that the input file format is not as expected, or the input 
file header does not correspond to the expected variables’ 
names and order), and through the output of the DQA 
and the validation assessment. The analytical pipeline 
can be provided as single or multiple scripts implement-
ing the statistical analysis using auditable open-source 
software or can be containerized (e.g., using a Docker 
container [41, 42]), providing a fixed environment deal-
ing with system and software dependencies, thus ensur-
ing reproducibility by providing a sandbox that can be 
deployed and run isolated from the Participant Node’s 
systems [12, 43]. Containerization also enables easy pipe-
line distribution as container images can be published in 
an open repository facilitating versioning and collabo-
rative improvement. Technologies offered by the PHT 
[15, 16], DataSHIELD [13, 14], and VANTAGE6 [17] can 
alternatively provide a solution to distribute analysis code 
to different Participant Nodes.

Step 8: Meta‑analysis of the local results
To integrate results across different populations, the 
aggregated non-sensitive statistics produced as local 
outputs of the analytical pipeline should be pooled by 
the Coordination Node and a meta-analysis should be 
performed. By only sharing non-sensitive aggregated 
results, compliance with General Data Protection Regu-
lation (GDPR) legislation and legal interoperability is 
ensured. The type of aggregated statistics (e.g., propen-
sity scores, standardized risks, average treatment effects) 
that are shared and pooled, and the methodology used 
to integrate these estimates, will depend on the defined 
research question and should be detailed in the relevant 
research object (e.g., Statistical Analysis Plan). As indi-
cated previously, some fixed outputs common to any 
federated study (e.g., documentation of the functional-
ity and implemented decisions during the development 
of outputs, results from a DQA, validation assessment 
and descriptive analysis) should also be collected by the 
Coordination Node, thereby improving the interpreta-
tion of the results. In addition to the main results, results 
from several sensitivity analyses, investigating the pres-
ence of biases and sensitivity of the results to certain 
methods, should be shared with the Coordination Node.

An illustrative example
The conceptual and instrumental phase (steps 1 to 5) of 
the proposed methodological framework for federated 
causal inference (re-)using observational data sources 
was demonstrated within the BY-COVID project by pro-
totyping a workflow which can be used to assess the real-
world effectiveness of SARS-CoV-2 primary vaccination 
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as compared to partial or no vaccination in preventing 
SARS-CoV-2 infection in populations spanning different 
countries. In the current manuscript, we showcase the 
different steps of this initial phase of the methodological 
framework, preparing for the subsequent implementa-
tion of the proposed methodology to respond to a policy-
relevant research question. For developing the workflow, 
only open-source software, such as DAGitty [30], R and 
DuckDB [44], was used.

Results
Here, we showcase the conceptual and instrumental 
phase of the proposed methodological approach as estab-
lished within the BY-COVID project’s use case. Steps 1 to 
4 and the related research objects are presented in Fig. 2.

To start, a research question was defined following the 
PICOT strategy (step 1), namely, we aim to assess the 
real-world effectiveness of a primary vaccination sched-
ule as compared to partial or no vaccination in preventing 
SARS-CoV-2 infection, in populations spanning national 
borders [45], with the purpose of evaluating the effective-
ness of the basic vaccination campaign. Individuals (age 5 
to 115, resident of the participating country) vaccinated 
with at least one dose of the SARS-CoV-2 vaccine (any 
of the available brands), or eligible to be vaccinated and 
with a documented positive diagnosis (irrespective of the 
type of test) for a SARS-CoV-2 infection during the data 
extraction period, are eligible for inclusion. Individuals 
with a documented confirmed infection before complet-
ing the primary vaccination schedule (i.e., enrolment), 
or before January 1, 2021 (SARS-CoV-2 vaccine roll-
out) for those not having completed a primary vaccina-
tion schedule (controls), will be excluded from the study 
population. A DAG corresponding to the research ques-
tion was produced and a ‘minimal sufficient adjustment’ 
set was identified using the DAGitty web application [30] 

(step 2). Nodes and edges within the DAG were defined 
as assumptions based on relationships described in the 
literature. Once an initial DAG was drafted, field experts 
participating in the BY-COVID project were invited 
to discuss and adapt the captured assumptions where 
needed. The following DAG nodes present a minimal suf-
ficient adjustment set, conditional on the assumptions 
that were made: Age, Comorbidities, Country, Essential 
worker, Foreign, Immune status, Institutionalized people, 
Pregnancy, Previous infection, Residence area and Sex. A 
Quarto notebook was developed (see file vaccine_effec-
tiveness_causal_model_v.1.1.0.qmd or a later version as 
available in the Zenodo publication [46]), generating an 
interactive report that visualizes the DAG together with 
information on the research project and the identified 
minimal sufficient adjustment set. Figure  3, displaying 
the constructed DAG, illustrates how the digital objects 
that are consecutively produced during the conceptual 
and instrumental phase of the proposed methodological 
approach relate to each other. The DAG was translated 
into data requirements using a CDM (step 3), opera-
tionalizing all the nodes in the DAG. Additional indi-
vidual- and area-level variables were specified to achieve 
secondary objectives of the study and to perform sup-
plementary or exploratory analysis (e.g., variables vari-
ant_cd or socecon_lvl_area_nm). Variables were labeled 
following the Snake Case naming convention. The CDM 
consists of an Excel file (see file vaccine_effectiveness_
data_model_specification_v.1.1.0.xlsx or a later version 
as available in the Zenodo publication [46]) including 
a tab with a cohort description, a tab with the model 
description (characterization of variables), and tabs with 
a detailed description of certain variables (e.g., comor-
bidities requiring crosswalks). International classifica-
tion systems were used when specifying the required 
encoding of variables and when specifying crosswalks 

Fig. 2 Overview of the executed steps and produced research objects during the implementation of the proposed methodological approach, 
step 1 to 4, preparing for the assessment of the real‑world effectiveness of a primary vaccination schedule as compared to partial or no vaccination 
in preventing SARS‑CoV‑2 infection, in populations spanning national borders
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(e.g., IDC-10, IDC-9, and SNOMED-CT for classifying 
comorbidities). The structure of the CDM is presented 
within Fig. 3. Compliance to the requirements captured 
in this CDM can be achieved by performing a full join 
of the registered individuals in the COVID-19 cases and 
vaccination datasets and the individual-level linkage to 
additional data sources, such as patient administrative 
information (e.g., from insurance registries, health sys-
tem users-databases, and mortality registration data) 
and information on patient comorbidities (e.g., from 
Electronic Health Records) within the Participant Nodes 
(which is foreseen in step 6). A metadata description of 
the CDM was provided using the Schema.org vocabulary.

A synthetic dataset (see file vaccines_effectiveness_syn-
thetic_dataset_pop_650k_v.1.1.0.csv or a later version 
as available in the Zenodo publication [46]) was subse-
quently generated (step 4), translating the CDM specifica-
tion into a Python script parameterized to simulate data, 
considering several known population-level parameters 
for the COVID epidemic waves (see file by-covid_wp5_
baseline_ generate_synthetic_data_v.1.1.0.ipynb or a 
later version as available in the Zenodo publication [46]). 
Within this Python script we made use of the Python 
package ‘Faker’ [47]. An exploratory data analysis (EDA) 
was performed on the synthetic data, exploring different 
features of the data (i.e., type inference, alerts, uniqueness, 
outlier values, missing data, univariate analysis) to assess 

its compliance with the CDM (see file vaccine_effective-
ness_synthetic_dataset_eda_v.1.1.0.html or a later ver-
sion as available in the Zenodo publication [46]). Based 
on the EDA, we observe that the generated synthetic data 
correctly capture the syntactic and technical specifica-
tions provided by the CDM. Particularly, the variables in 
the synthetic data, their labels, encoding, format and type 
match those specified in the CDM. Variables correspond-
ing to nodes in the minimal sufficient adjustment set have 
no (e.g., age_nm and sex_cd) or a limited proportion of 
(e.g., residence_area_cd with 2% missing) missing values.

Subsequently, an analytical pipeline was developed 
and tested with the support of the synthetic data (step 
5) using the R statistical programming language as 
sequential Quarto documents (.qmd files) reflecting 
and reporting the outputs of different modules: thus, 
(1) DQA of the original input data, (2) validation (i.e., 
applying logic validation rules) of the original input 
data to check compliance with the CDM, (3) imputation 
of missing data where required, (4) iterative matching 
of the exposed to unexposed individuals and a balance 
assessment of the matched population, (5) a descriptive 
analysis of the matched and unmatched study popula-
tion, and (6) a survival analysis in the matched study 
population (see the GitHub repository for methodo-
logical details [48]). A graphical overview of the ana-
lytical pipeline is presented in Fig.  4. Each module of 

Fig. 3 The causal model (using a DAG), Common Data Model (CDM) and synthetic data, and how they relate to each other. The DAG, capturing 
assumptions on factors and relationships when assessing the real‑world effectiveness of a primary vaccination schedule as compared to partial 
or no vaccination in preventing SARS‑CoV‑2 infection in populations spanning national borders, is visualized. The structure of the CDM 
and synthetic data, as constructed based on the drafted causal model, is presented
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the analysis produces an interactive report, includ-
ing documentation allowing to trace back to decisions 
made along the way and interpreting the results. The 
DQA script (1_DQA.qmd) embedded in the analyti-
cal pipeline was roughly inspired by the data profiling 
produced by the ydata-profiling Python library [49, 50], 
usually considered an industry standard for Explora-
tory Data Analysis in Python, and output contains 
descriptive dataset statistics and a basic profile of the 
dataset as a whole (among others containing a variable 
count, a row count, a basic missing data profile, and 
some alerts regarding the cardinality, missingness or 
anomaly of certain variables). The DQA also contains 
a univariate descriptive analysis of each variable in the 
dataset, providing summary statistics, information on 
the categories of the categorical variables, and basic 
information on the distribution of the continuous vari-
ables. Validation of the data, i.e., checking compliance 
of the data to validation rules captured in the CDM and 
exclusion of non-compliant data for further analysis, is 
captured within the script 2_validation.qmd. An algo-
rithm capturing decisions on how to deal with missing 
values in the imported dataset was developed in script 
3_imputation.qmd, implementing the imputation of 
values, listwise deletion or exclusion of matching vari-
ables depending on the characteristics of the data. The 
script 4_matching.qmd implements the daily matching 
of exposed to unexposed individuals on variables corre-
sponding to nodes in the minimal sufficient adjustment 
set following the causal model, thereby attempting to 
close non-causal backdoor paths and limit bias. After 
describing the study population and providing crude 
estimates in script 5_descriptives.qmd, a survival anal-
ysis is captured within script 6_survival-analysis.qmd, 
visualizing survival over time by producing Kaplan-
Meier curves and estimating the average treatment 
effect (ATE). A detailed documentation of the statisti-
cal methods, as well as a README file guiding users 
on the script deployment, accompanies the statistical 

scripts in the GitHub repository [48]. DuckDB, a light-
weight database system, is used to increase the speed of 
running the workflow by enhancing performance when 
dealing with large amounts of data and complex ana-
lytical queries.

The DAG, CDM and synthetic dataset, together with 
all supporting research objects (see Fig.  2), were pub-
lished on Zenodo [46]. Further, the latter plus additional 
digital research objects produced along the way (i.e., a 
study protocol [45], a data management plan (DMP) [51], 
and an interoperable analytical pipeline) were collected 
together in a GitHub Repository [48]. A Research Object 
Crate (RO-Crate) [52] was generated to package these 
objects together with their metadata and specified rela-
tionships, acting in accordance with the FAIR (Findable, 
Accessible, Interoperable, and Reusable) data principles 
[53]. This way, the digital research objects are persist-
ing and shared with the wider community, and as such 
remain available for feedback from field experts.

Discussion
We present a methodological framework, providing a 
systematic approach to address policy-relevant causal 
research questions based on federated cross-national sen-
sitive observational data in a privacy-preserving way and 
addressing challenges at different layers of interoperabil-
ity. In this way, the current manuscript aims to provide 
guidance on the full methodological process to approach 
causal inference in federated research, which is currently 
lacking. This approach facilitates the comparison and 
integration of causal estimates obtained from distributed 
analyses through approaching homogeneity in the consid-
ered confounders, criteria for study participant selection, 
definitions of variables and adopted statistical methods. 
The conceptual and instrumental phase of the proposed 
methodological framework, consisting of different con-
secutive steps, was successfully demonstrated within a 
Use Case of the European BY-COVID project, thereby 
preparing the subsequent assessment of SARS-CoV-2 

Fig. 4 Graphical overview of the developed analytical pipeline, consisting of different subsequent modules, each producing an interactive report. 
Implementation of step 5 of the proposed methodological approach to assess the real‑world effectiveness of a primary vaccination schedule 
as compared to partial or no vaccination in preventing SARS‑CoV‑2 infection, in populations spanning national borders
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vaccine effectiveness in preventing infection in a popula-
tion crossing national borders and prototyping a workflow 
that is standard for causal population health research. By 
going through these steps, different challenges and limita-
tions of the proposed methodology were identified. These 
challenges, together with recommendations on how to 
address them, are described in the following sections.

Challenges and recommendations in addressing 
the emulation of an RCT using federated sensitive 
cross‑border observational data
Estimation of the causal effect of interest can be approached 
by emulating an RCT, as suggested by Hernán et al. (2022) 
[6], thereby mimicking randomization by conditioning on 
confounders and controlling for other potential biases. 
Crucial in this process is the identification of the set of 
confounders for which adjustment during the analysis is 
required to approach causal association under the assump-
tions captured in the causal model. However, this is a non-
trivial task given that not all underlying mechanisms may 
be known [54]. Theoretical identification of confounding 
paths and other biases was based on the assumptions of the 
researchers on the data-generating processes (e.g., method 
of participant selection and variable measurement, or 
relationships between variables), which were in turn built 
upon available theory and expert knowledge at the time of 
analysis. Further, detailed patient information is required 
to adjust for the identified confounders and the necessary 
data might not be available in all Participant Nodes. When 
this is the case, it may result in the presence of residual con-
founding bias in the obtained causal effect estimates, ham-
pering both the internal and external validity of the study 
[55–57]. Moreover, taking into account potential biases 
when conducting causal inference using observational 
data results in complex analytical procedures which gen-
erally demand several human decision points. This raises 
the question whether analytical procedures to approach a 
complex causal research question can be fully automated. 
Sensitivity analyses can be implemented to assess the pres-
ence of biases, and sensitivity of the results to the methods 
implemented for confounder adjustment.

Recommendation 1 The use of DAGs is recom-
mended to build causal models, transparently displaying 
assumptions, aiding the identification of a minimal suf-
ficient adjustment set (i.e., set variables for which you are 
required to adjust to estimate the causal effect of interest 
under the described assumptions), and in this way feed-
ing into the specification of data requirements. DAGs are 
easy-to-use graphical instruments, facilitating explicit 
specification of assumptions. The DAGitty web applica-
tion provides a practical tool to create and edit DAGs, 
and to identify the minimal sufficient adjustment set.

Recommendation 2 By enabling field experts to pro-
vide feedback on the assumptions and iteratively updat-
ing the DAG when new information becomes available 
(i.e., building the causal model as a collaborative effort), 
theoretical identification of confounders and other 
sources of bias can be optimized. As such, we encourage 
making the constructed causal model publicly available, 
working on collaborative platforms (e.g., GitHub), and 
providing occasions (e.g., workshops) for field experts to 
evaluate it.

Recommendation 3 Acknowledging the limitations to 
a causal interpretation of the results can be addressed by 
including an assessment of the data quality at each step 
of the analytical process. In addition to a general DQA 
and validation assessment, quality evaluations specific 
to the performed analytics can be performed. For exam-
ple, when matching based on identified confounders is 
performed to obtain comparable intervention groups, 
an assessment of covariate balance is conducted and 
reported thereafter. In addition, every point of automated 
decision making should be documented in the output of 
the analytical pipeline to allow for a meaningful interpre-
tation of the obtained results. For instance, automated 
decisions on whether or not to impute missing values or 
perform listwise deletion, are reported in an interactive 
report. Quarto [58], an open-source tool, provides an 
efficient way to produce rich interactive outputs, regis-
tering the latter information.

Challenges and recommendations on the different layers 
of interoperability (LOST) when conducting federated 
causal research
Legal interoperability
Legal constraints based on privacy and data protection reg-
ulations (GDPR) can block the re-use of sensitive personal 
data for population health research across (national) bor-
ders. Implementing a federated analysis approach where 
sensitive data stays under the jurisdiction and governance 
of data holders (i.e., data visiting principle) offers a solution. 
However, some steps in the proposed methodology may 
still pose legal challenges. Data-driven methods for devel-
oping synthetic data [59] might give rise to concerns of re-
identification and require access of the Coordination Node 
to real data. Further, for individual Participant Nodes to 
comply with the CDM specification, linkage of and access 
to the required data sources for the research in question 
should be authorized. Access to sensitive real-world health 
data is in many European countries granted by an author-
izing body, such as the national Data Protection Authority 
(DPA) or Research Ethics Committee (REC), based on the 
evaluation of a study protocol and data management plan. 
However, no standard process for applying for data access 
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is available at this time in Europe, preventing the use of a 
uniform approach.

Recommendation 4 Building a CDM, specifying data 
requirements, is recommended to comply with the prin-
ciples of data minimization. In this way, we can limit 
the collection of sensitive information to what is strictly 
relevant and necessary for the purpose. By including a 
requirement level in the description of variables speci-
fied in the CDM, it can be indicated which variables are 
essential to close backdoor paths identified in the DAG.

Recommendation 5  To facilitate a rapid data access 
application process, it is recommended for the Coordi-
nation Node to provide the Participant Nodes with the 
necessary tools, i.e., produce and share a comprehensive 
study protocol and give guidance for the development 
of a research DMP. A study protocol provides a plan of 
action and contains among others the study objectives 
and planned methodology for conducting the study. The 
study protocol additionally facilitates compliance with 
purpose minimization principles. Guidelines for writing 
a scientific study protocol can be consulted elsewhere 
[60]. For the development and publishing of a DMP, use 
of Argos’ services [61, 62] can be recommended.

Recommendation 6  As data-driven methods (i.e., 
based on real-world data) for developing synthetic data 
might have some weaknesses in terms of legal interoper-
ability, we advise the manual development of synthetic 
data, without requiring access to real data [59], captur-
ing the structure, syntactic and semantic requirements as 
specified in the CDM and reflecting true distributions by 
using known population-level parameters.

Organizational interoperability
To achieve organizational interoperability and reach 
common goals, organizations should define and align 
responsibilities, processes, and expectations [63, 64]. A 
diversity of theoretical backgrounds of researchers in the 
federated network was observed, resulting in the need 
for building a common ground. Further, unambiguously 
defining data requirements, which is essential to obtain 
uniform data across different federations, was addition-
ally found to be a difficult task. An approach to collabora-
tively address the causal research question was required.

Recommendation 7  Clearly assigning responsibili-
ties (i.e., allocating the role of Coordination versus Par-
ticipant Node), documenting processes and exchanging 
relevant information (i.e., publishing and sharing a 
research protocol, DMP, and digital research objects), 
and facilitating interactions within the federated network 
(e.g., using a collaboration platform) is recommended 
to achieve organizational interoperability. It is the role 
of the Coordination Node to supervise and synchronize 
the activities executed by the Participant Nodes, and to 

provide information and support to establish a common 
knowledge on the process and required involvement. For 
example, in the demonstrated phase of the framework a 
theoretical overview on DAGs was given by the Coor-
dination Node to participating partners in the form of a 
workshop. Regular contact with the Participant Nodes 
is required throughout the process, but more intensely 
when agreeing on the research question and defining the 
CDM specification. This allows the Participant Nodes to 
put forward ambiguities and requests for clarification. 
Transparency of the process, making research objects 
produced in every step openly available, is recommended 
to enhance trust and allow for providing expert-knowl-
edge and user-based feedback. Use of a collaborative and 
version control platform, such as GitHub, enables collab-
oration with several partners.

Semantic interoperability
Semantic interoperability indicates the consistency in 
meaning of exchanged data among organizations [65], 
enabling the interpretation of data independently of the 
partner involved. When working across borders, differ-
ent Participant Nodes can have distinct codebooks and 
use different classification systems. Mapping a definition 
to different classification systems and identifying intersec-
tions between these classification systems (i.e., specifying 
crosswalks), is not always straightforward. Further, defini-
tions of variables and cohorts can be ambiguous and open 
to interpretation.

Recommendation 8  The construction of a CDM is 
recommended to ensure a uniform syntactic structure 
(i.e., format and grammar) and meaning (i.e., semantics) 
of elements of the distributed data used to address the 
specified cross-border research question. To improve 
compliance with data requirements and consistency 
between distributed datasets, involving collaborators 
within the nodes in reviewing the specifications captured 
in the CDM is recommended. Based on this evaluation, 
ambiguities can be eliminated and the specification of 
crosswalks, mapping definitions to different classification 
systems, can be optimized.

Technical interoperability
A critical part of deploying a reproducible analytical pipe-
line, is dealing with dependencies of the pipeline, ensur-
ing consistent deployment independent from the system 
in which it is executed, and in this way ensuring technical 
interoperability. Packaging the analytical pipeline created in 
the prototyped workflow within a container (i.e., an isolated 
portable execution environment including analytical code), 
such as a Docker container, presents a way for easy trans-
mission of scripts, easy management of dependencies and 
allows for consistent execution of the analyses in different 
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premises, decoupled from the local system. However, use 
of container technology might not be feasible due to a lack 
of support for Docker within certain operating systems or 
other organizational barriers to deployment. Further, the 
functioning of the analytical pipeline code relies heavily 
on the ability of the Participant Nodes to comply with the 
CDM specification. When the input data of the analytical 
pipeline does not conform with the specified semantic and 
syntactic requirements, the process will fail before gener-
ating the required output statistics. Efficiency challenges 
were also encountered when inferring causality for the 
entire population of a country or region, requiring the han-
dling of large volumes of data.

Recommendation 9 When transferring and deploying 
an interoperable analytical pipeline, the use of existing 
technological solutions to deal with the required depend-
encies and allowing deployment of the analytical process 
consistently and independently from the local execu-
tion system (e.g., Docker containers), is recommended. 
When deploying a container is not feasible within a Par-
ticipant Node’s system, several alternative strategies can 
be adopted, such as deploying the Docker within a vir-
tual machine, deploying the Docker container within a 
research environment provided by a trusted third party, 
or manual installation of the required dependencies and 
manual execution of the analysis scripts.

Recommendation 10  To facilitate rapid deployment 
in the Participant Nodes, it is recommended to provide 
users deploying the analytical pipeline with feedback 
based on error logs when compliance with the structure 
and syntactic requirements captured in the CDM is lack-
ing for the input data and the process is failing. Further, 
it is recommended to check the distributed input data 
against a set of logical validation rules, examining com-
pliance to the specifications captured in the CDM. This 
can be implemented as one of the sequential steps in the 
analytical pipeline.

Recommendation 11  To deal with efficiency chal-
lenges when handling large volumes of data, it can be 
recommended to implement efficient programming 
strategies [66, 67], to parallelize heavy and repetitive 
computations where this increases throughput, and work 
with data management solutions, such as DuckDB [44].

Challenges and recommendations related to the reuse 
of digital objects
There is an increasing demand for researchers to docu-
ment and share the data and research objects support-
ing their scientific conclusions, to increase transparency, 
facilitate collaboration, and allow subsequent replica-
tion, integration and reuse by the community [53]. In 
public health, this can be essential in the response 
to emerging public health threats (e.g., a pandemic). 

However, processes might not always be well docu-
mented, researchers might not be aware of the benefits 
of sharing their data or research objects (e.g., avoiding 
duplication, greater visibility), or potentially can’t locate 
appropriate repositories.

Recommendation 12  To facilitate the exchange and 
reuse of the digital research objects of the workflow and 
in this way enabling an accelerated response in the case 
of a new pandemic, it is recommended to publish these 
objects following the FAIR principles. To make your 
object Findable, rich metadata should be provided. Mak-
ing the digital objects Accessible, means that they have to 
be retrievable when access is allowed. For this purpose, 
the objects can be shared with rich metadata in open 
repositories like Zenodo. In the context of an intercon-
nected workflow, RO-Crate [52] provides an alterna-
tive approach to package research objects together with 
their metadata, allowing the indication of relationships 
between entities. Further, the objects should be made 
Interoperable, by using standards and controlled vocabu-
laries, and Reusable, by providing clear documentation 
(e.g., a README) [53].

Conclusion and future perspectives
The proposed methodological framework provides guid-
ance in the form of a systematic approach to address 
federated cross-national causal research questions in a pri-
vacy-preserving way, while tackling challenges at different 
layers of interoperability. Additionally, the conceptual and 
instrumental phase of the methodological framework was 
demonstrated in the current work, thereby prototyping a 
standard workflow for causal population health research. 
Describing the methodological framework, publishing 
the produced research objects (e.g., causal model, CDM 
and synthetic data) and prototyping a workflow using 
open-source tools available for reuse, allows researchers 
to respond more rapidly to newly emerging public health 
research questions and in this way contributes to pan-
demic preparedness. Future planned work in the context 
of the BY-COVID project entails the implementation of 
the proposed methodology and the actual assessment of 
SARS-CoV-2 vaccine effectiveness in preventing infection 
in a population crossing national borders. This proof-of-
concept will evaluate the value of the proposed frame-
work in terms of drawing conclusions on causality for the 
specified research question, the linkage of heterogeneous 
data sources and data transformation by the Participant 
Nodes to comply with the specified data requirements, the 
deployment of the developed analytical pipeline in a dis-
tributed manner across different Participant Nodes, and 
the pooling of these results for a meta-analysis. Further 
research is needed to test the implications of the imple-
mentation of alternative statistical methods for causal 
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inference using a federated research approach, although 
the framework enables the use of any method currently 
available. Upgrading the proposed methodological frame-
work and applying it to new policy-relevant questions in 
emerging public and population health issues can be con-
sidered an important research priority in the field of fed-
erated causal inference.
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