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Abstract 

Objective  To predict the influencing factors of neonatal pneumonia in pregnant women with diabetes mellitus 
using a Bayesian network model. By examining the intricate network connections between the numerous variables 
given by Bayesian networks (BN), this study aims to compare the prediction effect of the Bayesian network model 
and to analyze the influencing factors directly associated to neonatal pneumonia.

Method  Through the structure learning algorithms of BN, Naive Bayesian (NB), Tree Augmented Naive Bayes (TAN), 
and k-Dependence Bayesian Classifier (KDB), complex networks connecting variables were presented and their pre-
dictive abilities were tested. The BN model and three machine learning models computed using the R bnlean pack-
age were also compared in the data set.

Results  In constraint-based algorithms, three algorithms had different presentation DAGs. KDB had a better predic-
tion effect than NB and TAN, and it achieved higher AUC compared with TAN. Among three machine learning modes, 
Support Vector Machine showed a accuracy rate of 91.04% and 67.88% of precision, which was lower than TAN 
(92.70%; 72.10%).

Conclusion  KDB was applicable, and it can detect the dependencies between variables, identify more potential asso-
ciations and track changes between variables and outcome.

Keywords  Bayesian networks, Neonatal pneumonia, Naive Bayes network, Tree Augmented Naive Bayes model, 
K-Dependence Bayesian Classifier

Introduction
Gestational diabetes mellitus (GDM) is a common 
chronic disease of pregnancy that affects the health of 
tens of millions of women worldwide each year [1, 2]. 
During pregnancy, women experience disturbances in 
insulin secretion, leading to abnormal glucose metabo-
lism, persistently elevated blood glucose levels and 

ultimately gestational diabetes mellitus, which is usu-
ally associated with adverse pregnancy outcomes [3, 4]. 
As well as affecting the mother’s own health, GDM can 
cause adverse pregnancy outcomes such as neonatal 
pneumonia [5, 6]. According to WHO and the Maternal 
Child Epidemiology Estimation (MCEE) group, a child 
will die from pneumonia every 43  s in 2020. Neonatal 
pneumonia is a serious threat to the health of newborn 
babies, and the disease can easily progress to respiratory 
failure or sepsis and other conditions, ultimately leading 
to neonatal death [7]. Therefore, it is very important to 
diagnose neonatal pneumonia in pregnant women with 
diabetes [8]. The current research focuses on the effect 
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of neonatal ventilators on neonatal pneumonia, and the 
prediction models used are mainly logistic regression 
model [9].

How to classify efficiently and accurately has always 
been a problem in disease prediction. Common clas-
sification algorithms include Bayesian network [10], 
K-nearest neighbour algorithm [11] and decision tree 
[12]. Researchers take advantage of Bayesian network 
and machine learning methods to predict amyotrophic 
lateral sclerosis, and Bayesian network produced the best 
results [13]. However, by applying these models, it is diffi-
cult to reveal the potential information of neonatal pneu-
monia of gestational diabetes, which is a complex disease 
affected by multiple factors. Although many scholars at 
home and abroad have studied the effects of gestational 
diabetes on maternal and infant perinatal outcomes, the 
method of Bayesian network (BN) model has not been 
applied to gestational diabetes complicated with neonatal 
pneumonia.

Bayesian network is an effective hotspot method that 
has been applied to disease data mining research in 
recent years. Bayesian network has several advantages 
that make it a promising tool for these purposes. It is 
an uncertain causal relationship model that organically 
combines directed acyclic graph with probability theory, 
which represents directly and intuitively. Integrating data 
into the model in the form of conditional probability can 
deal with various uncertainties and incomplete informa-
tion. In addition, the Bayesian network can predict the 
effectiveness of an intervention strategy by introducing 
new evidence, which is an important and unique advan-
tage over other methods [14].

As it is shown [13, 15], BN is very useful for prediction 
and diagnosis, which is very important in disease inter-
ventions because they are usually expensive and their 
effects can only be observed in the long term. BN has the 
properties to be very useful in predicting the effective-
ness of different strategies and selecting the best among 
them. Currently there are many advances in Bayesian 
classifiers such as Naive Bayes (NB), TAN and so on. 
Naive Bayes (NB) is one of the simplest and most efficient 
BNs due to the independence of hypothetical features. 
The independence hypothesis between features is usually 
not true, so relaxing the independence hypothesis and 
expanding the dependency of the Bayesian network has 
become the main improvement of Naive Bayes, among 
which the more successful algorithms are Tree-Aug-
mented Naive Bayes (TAN) and k-Dependence Bayesian 
Classifier (KDB) [16].

In this study, three Bayesian network models, 
namely Naive Bayes, Tree Augmented Naive Bayes and 
k-Dependence Bayesian Classifier are used to predict 
the risk of neonatal pneumonia in pregnancy diabetes. 

The prediction accuracy and recall rate are compared 
internally and externally with three machine learning 
models such as Decision Tree (DT), Random Forest (RF) 
and Support Vector Machine (SVM). At the same time, 
Bayesian networks known as Directed Acyclic Graphs 
(DAGs) are analysed to find the advantages, disadvan-
tages and scope of Bayesian network models.

Materials and methods
Data
A total of 2008 pregnant women with diabetes who 
gave birth at Shunde Women and Children’s Hospital 
of Guangdong Medical University between June 2019 
and June 2021 were included: 305 pregnant mothers 
whose babies had neonatal pneumonia (case group), and 
1703 who did not have neonatal pneumonia (control 
group). Written informed consent was obtained from all 
recruited participants or their legal guardians, and this 
study was approved by the Ethics Committee of Foshan 
Women’s and Children’s Hospital of Guangdong Medical 
University (SDFYMC001).

Univariate analysis of variables
The chi-squared test was performed on the categorical 
variables. The 13 variables included in the model were 
age (age), two-hour postprandial glucose (pbg), parity (p), 
gestational hypertension (hdop), preterm birth (ptb), pre-
term rupture of membranes (prom), macrosomia (ms), 
neonatal respiratory distress syndrome (nrds), neonatal 
jaundice (nnj), postpartum haemorrhage (pph), neona-
tal asphyxia (na) and neonatal growth restriction (ngr). 
Mann–Whitney U test was performed on the rank vari-
ables and 4 variables were included in the model: number 
of pregnancies (g), amniotic fluid volume (afv), amniotic 
fluid cleanliness (afc) and C-reactive protein (crp).

Software and programs
In the study, our first step is to perform a BN analysis to 
build a causal graphical model in the form of a directed 
acyclic graph (DAG), which represents the relationships 
between all the variables of interest [17]. Bayesian networks 
can be constructed using structure learning algorithms, 
which can be categorised into two main groups: constraint-
based and score-based methods. In this article, three types 
of constraint-based learning algorithms were used with the 
R package bnlearn [18]. In order to ensure that the result-
ing network was stable, we performed bootstrapping by 
extracting 1000 samples with replacement, computing 
a network for each sample, and then averaging them to 
obtain the resulting network. The study then performed 
an analysis of the intercorrelation between the feature vari-
ables before selecting an appropriate Bayesian method. As 
expected, Naive Bayes (NB), Tree-augmented Naive Bayes 
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(TAN) and K-Dependence Bayesian Classifier (KDB) were 
then selected to build the BN. However, NB is used in the 
study for parameter learning due to its hypothesis [19, 20]. 
At the same time, its performance is compared with three 
types of machine learning methods, Random Forest, SVM 
and DT. The Netica software package developed by Norsys 
Software Corporation was used to perform TAN [21, 22]. 
A schematic diagram of methodology is shown in Fig. 1:

Bayesian network
Bayesian network (BN)
.Bayesian networks (BNs), also known as probabilistic 
directed acyclic graphs (DAGs), are directed networks 
accompanied by probabilistic links between edges. A graph 
is a DAG if all the links (edges) have directions, but none 
of the nodes go directly to itself or through a path to itself 
(a circle) [23]. Bayesian networks are able to connect prob-
ability distributions on a finite set of random variables. 
Directed edges represent statistical or causal dependencies 
between variables [24]. For example, given an edge X → Y, X 
is the parent node of Y and Y is the child node. Each node, 
e.g. Xi, has a conditional probability distribution that quan-
tifies the effect of the parent on the child node. In general, 
the joint conditional probability distribution of any combi-
nation of random variables is simplified to formula (1).

The parent nodes of a particular node are its immediate 
predecessors within the network. These parent nodes of 

(1)P(x1, x2, xn) =
n
i=1P(xi|Parents(xi) )

a particular node are its immediate predecessors within 
the network. These parent nodes are the variables that 
directly influence the associated node. In Bayesian net-
works, the term “parent node set” refers to the aggrega-
tion of all the parent nodes that influence a particular 
node. A node has several parents, which together form a 
set of parents. Ancestor nodes, on the other hand, include 
all parent nodes, their parent nodes, and so on, forming a 
lineage of dependencies tracing back to the most distant 
nodes in the network. The concept of a “Markov Blanket” 
is the minimal set of nodes that contains all the infor-
mation necessary to specify the conditional probability 
distribution of a given node, given its parent and child 
nodes. The high dimensionality of the data has led to the 
development of several learning algorithms that focus 
on reducing computational complexity while still learn-
ing the correct network. On the one hand, among sev-
eral structure learning algorithms [25], constraint-based 
learning algorithms consist of growth-shrink, fast.iamb 
and mmpc etc. and it provides a free implementation of 
some of these structure learning algorithms along with 
the conditional independence tests and network scores 
used to construct the Bayesian network. The resulting 
models are often interpreted as causal models.

Naive Bayes
Naive Bayesian is a simple, stable, easy-to-implement 
Bayesian algorithm with better classification efficiency 
based on the assumption that each feature condition 

Fig. 1  A schematic diagram of methodology
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is independent of each other [19]. Its algorithm is as 
follows:

①	Supposing that x = {a1, a2, · · ·, am} is an item to be 
classified, and each ai is a characteristic attribute of x;

②	A set of categories C =
{

y1, y2, · · ·, yn
}

; 
③	Calculate the conditional probability of each feature, 

namely: 
	 P

(

y1|x
)

,P
(

y2|x
)

, · · ·,P
(

yn|x
)

;
④	Take the maximum conditional probability: 
	 P

(

yk |x
)

= max
{

P
(

y1|x
)

,P
(

y2|x
)

, · · ·,P
(

yn|x
)}

  ; 
then x ∈ yk.

The calculation process of conditional probability is as 
follows:

①	Establish a sample data set as a training sample set.
②	Calculate the conditional probability of each eigen-

value under each category 
	 P

(

ai
∣

∣yj
)(

1 ≤ i ≤ m, 1 ≤ j ≤ n
)

③	Assuming that all attributes are independent of each 
other, then according to Bayes’ theorem we have 
drawn formula (2):

Since the denominator is a constant, the largest numer-
ator is needed taken, adding to that each attribute is inde-
pendent of each other, there are shown in formula (3):

When attribute events are independent of each other, 
the accuracy of Naive Bayesian classification is very good. 
Figure 2 shows the structure of NB. In reality, each fea-
ture variable is often not conditionally independent, but 
has a dependency relationship, which limits Naive Bayes-
ian classification ability.

Tree Augmented Naive Bayes (TAN)
Tree Augmented Naive Bayes (TAN) is a type of Bayes-
ian network that is an improvement on NB. It assumes 
that the relationships between attribute variables con-
form to a qualified tree structure. The basic concept is 
to break the independence assumption of NB and allow 
dependencies between categorical variables, but a cat-
egorical variable is allowed to have a dependency with at 
most one other categorical variable. This dependency is 

(2)P
(

y1|x
)

=
P
(

x
∣

∣yi
)

P
(

yi
)

P(x)

(3)P
(

x
∣

∣yi
)

P
(

yi
)

= P
(

a1
∣

∣yi
)

P
(

a2
∣

∣yi
)

· · · P
(

am
∣

∣yi
)

= P
(

yi
)
∏m

j=1P
(

aj
∣

∣yi
)

represented by a tree structure [26]. Figure 3 shows the 
structure of TAN.

Construction of Tree Augmented Naive Bayes Net-
work (TAN) contains two parts, structure learning and 
parameter learning:

①	Xj provides information for Xi when C is known, 
represented by mutual information. Calculate Xi of 
attribute C according to the data set of training set.

In formula (4), P
(

xi, xj , c
)

 represents the probability of 
occurrence of features xi、xj , and category c , and loga-

rithms are used to avoid numerical issues. The formula 
log

(

P
(

xi, xj|c
)

/P(xi|c )P
(

xj|c
))

 is used to calculate the 
mutual information between features xi and xj , which 
measures their dependence. If features xi and xj are 
independent, then P

(

xi, xj|c
)

 equals P(xi|c )×P
(

xj|c
)

 , 
and the mutual information is 0. If features xi and xj 
are dependent, then P

(

xi, xj|c
)

 is not equal to P(xi|c )
×P

(

xj|c
)

 , and the mutual information is greater than 0.

②	The maximum weight span tree is established by 
using the conditional mutual information of the node 
pair as the weight of the edge. First, sort the edges 
according to their weights, and then select the edges 
in order. After each edge is selected, check whether 
the tree contains cycles. If it contains cycles, delete 
the edge and select the next edge. The resulting tree 
is the maximum weight span tree. Finally, take a node 

(4)

I
(

Xi,Xj|C
)

=
∑

xi ,xj ,c
P
(

xi, xj , c
)

× log
P
(

xi, xj|c
)

P(xi|c )P
(

xj|c
)

Fig. 2  The structure of NB
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as the starting point, and the direction of leaving the 
node is used as the direction of the edge in the tree;

③	Add class node as parent node for all attribute nodes;
④	Calculate the joint probability of each classification 

node to get the TAN classifier.

K‑Dependence Bayesian Classifier(KDB)
KDB is also an improvement on the assumption of 
conditional independence of the Naive Bayes [27, 28]. 
Compared with TAN and NB, KDB allows high-order 
conditional dependencies between attributes, further 
alleviating dependencies between attributes. KDB sort 
the attributes based on MI (Xi;Y ) , then add them to 
the network in turn, and according to CMI (Xi;Xi|Y ) 
selects K attributes as its parent node. As a result, KDB 
can make better use of the information in the dataset and 
can perform better. KDB further frees up the limitations 
of TAN, allowing an attribute to have up to k attributes 
as its parent node. In general, k(1≦k≦n-1) is determined 
before building the model, and the structure diagram is 
shown in Fig. 4, k = 2. However, k can be freely adjusted, 
which makes KDB extremely flexible and malleable. 
Assume that the attribute order is {X1,…, Xn}, by compar-
ing MI, Xi will choose min(i − 1,k) features with the high-
est CMI values from the first  i − 1  candidates. The joint 
probability for KDB proves to be formula (5):

Model evaluation
Firstly, this study uses the changes of node parameter 
values in two Bayesian network models to evaluate 
their applicable conditions. Secondly, each sample can 

(5)PKDB(x, c) = P(c)
∏

n

i=1P(xi|c,πxi
)

be divided into four cases: true positive (TP), false posi-
tive (FP), true negative (TN), and false negative (FN) 
according to the combination of its real category and 
the prediction category of each model, so that TP, FP, 
TN, FN represent their corresponding sample cases, 

Fig. 3  The structure of TAN

Fig. 4  The structure of KDB (k = 2)
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and the “confusion matrix” of the classification results 
can be obtained, as shown in the Table 1.

The authenticity of each model was evaluated by 
evaluation indicators such as accuracy, sensitiv-
ity, specificity, positive predictive value, and nega-
tive predictive value. Among it, accuracy = (TP + TN)/
(TP + FN + FP + TN), sensitivity = TP/(TP + FN), speci-
ficity = TN/(FP + TN), positive predictive value = FP/
(TP + FP) and negative predictive value = FN/(TN + FN).

Results
The results of the constraint‑based learning algorithm
Constraint-based learning algorithm. Even while all 
the algorithms produce network structures that are 
remarkably similar and agree on the arc direction (as 
shown in Fig.  5), there are notable differences: The 
graph’s layout shows that mechanics and variables 
are crucial to the overall assessment of the test, in all 
models the analysis and statistics scores are condition-
ally independent of each other. Fast.iamb has 23/14 
of directed/undirected arcs while Growth-Shrink has 
29/8 of directed/undirected arcs; mmpc learns the 
underlying structure of the Bayesian network with all 
the arcs undirected. The red line depicts the variation 
between fast .iamb and growth-shrink . However, 
demonstrating the real connections between variables 
is difficult.

Table 1  Confusion matrix

True value

Positive Negative

Predicted value

  Positive TP FN

  Negative FP TN

Fig. 5  The Growth-Shrink network structure (top left) and the network structures learned by fast.iamb (top right), mmpc (bottom left)
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Building a Naive Bayesian network model
Multivariate correlation analysis was conducted on all 
the varibales. Then we developed separate NB and evalu-
ate the contributions of ptb, crp, nrds, ngr, afv, and prom 
in neonatal pneumonia. Factual or reference status is 
introduced to show the counterfactual condition with 
or without a patient-specific factor regarding its impact 
on neonatal pneumonia (node “np”)  respectively. In the 
complex correlation analysis model (np ~ ptb + crp + 
nrds + ngr + afv + prom, R2≧0.6), indicating the good-
ness of the model as well as np [13]. The relationship 
among patient-specific factors and neonatal pneumo-
nia in an NB is fixed, and among them nodes represent 
these factors and neonatal pneumonia, directed arcs 
denote dependent relationship between each factor and 
the stage. Although NB is based on the assumption of 
independence among all features, we build a NB in this 

dataset by R. When the test set samples (30% of the data) 
are imported to verify the prediction performance of 
the model, Naive Bayesian has accuracy rate of 92.20% 
and achieves the performance with ROC of 94.64%. The 
results are shown in Table 2. Relatively simple structure 
may result from underfitting rather than overfitting may 
help to improve the classification performance of learn-
ing algorithm.

Build Tree Augmented Naive Bayes (TAN)
The data was divided into the training set and the test set 
in a ratio of 7:3 and the Tree Augmented Naive Bayes was 
learned and tested on Netica software, as shown in Fig. 6.

As we can see, TAN allows a dependency between an 
attribute variable, so more information can be obtained 
by looking at the conditional probability table of the 
node. Take the example of neonatal jaundice (nnj), as 

Table 2  Prediction performance of Naive Bayesian

Prediction

Neonatal pneumonia

Measured sick normal recall rate(%) precision rate(%) accuracy rate(%) F1-score(%)

Neonatal pneumonia

  sick 61 25 73.4 70.9 92.20 72.12

  normal 22 495

Fig. 6  Tree Augmented Naive Bayes (TAN)
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shown in Fig.  7. The data in Fig.  6 represent the cor-
responding changes in the parameters of neonatal 
jaundice (nnj) under different conditions of neonatal 
pneumonia (np) and amniotic fluid cleanliness (afc) in 
the two parent nodes connected to it. If a patient has 
neonatal pneumonia (np) and amniotic fluid cleanli-
ness (afc) is the first level, the probability of occurrence 
of neonatal jaundice (nnj) is 89.7% and the probabil-
ity of non-occurrence is 10. 3%; if the patient does not 
develop neonatal pneumonia (np), but amniotic fluid 
cleanliness (afc) is the third level, the probability of 
neonatal jaundice is 27.27% and the probability of non-
occurrence is 72.72%. Thus, neonates from neonatal 
jaundice populations are more likely to have amniotic 
fluid cleanliness and neonatal pneumonia.

The test set are imported into the model in the TAN 
to verify the prediction performance. The results are 
shown in Table  3. TAN has accuracy rate of 92.7%, 
a recall rate of 68.6% and a precision rate of 74.68%. 
Besides, TAN achieves the performance with ROC of 
93.78%.

Build K‑Dependence Bayesian Classifier (KDB)
The algorithms KDB were developed in C +  + using the 
NetBeans IDE compiler + GCC. The data was divided 
into the training set and the test set in a ratio of 7:3. 
KDB treats training set as a target and build general BN. 
When  k = 2, KDB can represent 0 + 1 + 2⋯ + 2 = 33 con-
ditional dependencies, while TAN only needs to repre-
sent 16 conditional dependencies, shown in Fig. 8. In this 
data, KDB (0.95 ± 0.09) achieves higher AUC compared 
with TAN (0.95 ± 0.10). As a result, the KDB does fit the 
testing instance much better than TAN.

The comparison of modes performance
The data were split 7:3 into training and test sets. Data 
analysis was performed in the R environment (R Foun-
dation for Statistical Computing, Beagle Scouts, version 
4.3.1., https://​cran.r-​proje​ct.​org/​src/​base/R-4, using the 
KlaR, rRpart, randonForest, pROC and e1071 librar-
ies). Three machine learning methods were used to con-
struct the prediction model for neonatal pneumonia 
and the predictive performance of these three models is 

Fig. 7  Conditional probabilities of neonatal jaundice (nnj)

Table 3  Prediction performance of TAN

Prediction

Neonatal pneumonia

Measured sick normal recall rate(%) precision rate(%) accuracy rate (%) F1-score(%)

Neonatal pneumonia

  sick 62 24 75.60 72.10 92.70 73.81

  normal 20 497

https://cran.r-project.org/src/base/R-4
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compared. Table 4 describes the performance of the pre-
diction models considered. The Support Vector Machine 
( AUC, 0.957) achieved the accuracy rate of 91.04%. 
However, there is no difference between Decision Tree 
and Random Forest (AUC, 0.951).

Discussion
In this study, we first applied structure learning algo-
rithms and created a directed acyclic graph (DAG) for 
neonatal pneumonia. Although it appeared that neona-
tal pneumonia was more likely to affect linked variables, 
it provided a new way to understand the aetiology and 

generate hypotheses about potential causal symptom 
structures and identify factors that may bridge neona-
tal pneumonia. Secondly, the influence of the pregnant 
population on the outcome of neonatal pneumonia was 
investigated. The naive Bayesian learnt that preterm 
birth, C-reactive protein, neonatal growth restriction, 
neonatal respiratory distress syndrome, amniotic fluid 
volume and premature rupture of membranes have a 
greater impact on the outcome of neonatal pneumonia. 
As a result, it has a predictive performance of 92.20% 
for neonatal pneumonia. On the other hand, Tree Aug-
mented Naive Bayes found that age was associated with 

Fig. 8  Conditional dependencies between attributes are shown (KDB)

Table 4  Model performance

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

Decision Tree 90.71 69.51 64.77 65.59

Support Vector Machine 91.04 67.88 90.29 77.49

Random Forest 90.71 75.27 67.96 71.43
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pregnancies and the index of C-reactive protein affect-
ing neonatal pneumonia. At the same time, pregnan-
cies affect parity and amniotic fluid volume, circularly 
increasing the risk of macrosomia. The performance of 
KDB appears to be slightly higher than that of TAN, but 
the difference is very small. In addition, we were inter-
ested in building machine learning models to predict the 
occurrence of neonatal pneumonia and make a compari-
son with Bayesian network models. Although the sup-
port vector machine showed a better area under the ROC 
curve, it is still lower than the Bayesian network model 
[29].

As for the factors of neonatal pneumonia, studies 
have reported that the blood glucose level of pregnant 
women can affect fetal development, leading to adverse 
pregnancy outcomes such as macrosomia and prema-
ture rupture of membranes [30–33], as shown in KDB 
(pbg → age → ms). It can be seen that if the mother con-
tinues to have high blood glucose levels, this will affect 
the health of the newborn. This is because high blood 
glucose levels can reduce leukocyte phagocytosis and 
chemotaxis in pregnant women, which increases the 
risk of urinary tract and reproductive tract infections, 
thereby increasing the risk of premature rupture of mem-
branes (age → pbg → prom) in the Bayesian network of 
KDB [34]. Studies have shown that in the gestational 
diabetes population, the rate of neonatal pneumonia 
is lower in the well-controlled group than in the poorly 
controlled group [29]. Specifically, pregnant women and 
fetuses have a special relationship in which any physical 
changes in the mother will affect the fetus and even affect 
its future growth and development (pbg → hdop → ngr in 
KDB). Neonatal gestational diabetes affects neonatal lung 
development, neonatal lung maturation and associated 
lung diseases (np → pbg; np → hdop in TAN), with a high 
incidence of neonatal pneumonia, neonatal respiratory 
distress syndrome and bronchopulmonary dysplasia in 
gestational diabetes patients [34, 35].

Compared with the traditional regression model, the 
Bayesian network model can handle large sample data. 
While compared with machine learning with poor inter-
pretability [36], the Bayesian networks built on the coef-
ficients reveal some patterns of disease variables, which 
have the potential to help diagnose the disease [23].The 
Bayesian network returns a DAG that identifies the direc-
tion of prediction and potential causal influence among 
factors in the absence of a randomised controlled experi-
ment, but cross-sectional data cannot confirm to the 
true situation. Furthermore, in a DAG, activation flows 
in only one direction, never returning to the node of ori-
gin. Therefore, there are no important variables influ-
encing associations between risk factors that have been 
omitted from the DAG. Furthermore, such instability in 

the direction of the edge may suggest bidirectionality of 
influence, considering that in 51% of the bootstrapped 
samples the edge points from factor X to factor Y, and 
in 49% of the bootstrapped samples from factor Y to fac-
tor X [27]. In research, TAN can observe the dependen-
cies between attribute variables and reveal the strength 
of their dependencies, although the naive Bayesian has 
higher restrictions that require variables to be independ-
ent of each other.

When it comes to K-dependence Bayesian classifiers, 
it has been proposed to mine dependency relationships 
from the data. For KDB, all features are indiscriminately 
conditionally dependent on at most k parent features, 
even if the conditional dependencies are very weak. 
KDB provides the “average network” to express signifi-
cant dependencies, so it cannot apply to all cases. At the 
same time, KDB cannot accurately describe the depend-
ency relationships in different patient records [37]. How-
ever, KDB has satisfactory classification accuracy when 
dealing with large samples. In addition, KDB uses a sin-
gle parameter k to determine the number of parents for 
each feature, thus controlling the complexity of the struc-
ture [38]. In the study, the full network structure with 16 
attributes is too complex (32 arcs or conditional depend-
encies) to explain, so we only select a substructure to 
clarify. The disadvantage of KDB in terms of extensibil-
ity is obvious. As shown in Fig. 8, the value afv (amniotic 
fluid volume) is a precondition of the value afc (amniotic 
fluid cleanliness). If they appear as co-parents of some 
other attribute, e.g. crp (C-reactive protein), the condi-
tional probability P(crp|afv, afc, np) will approximate the 
estimate of P(crp|afc, y) and afv (amniotic fluid volume) 
cannot provide valuable information on amniotic fluid 
cleanliness.

The limitation of this study is that only 16 variables 
were included into the model, and many variables that 
were not statistically significant were excluded. In fact, 
many influencing factors must be considered in the 
application. At the same time, these variables may have 
collinearity problems, and subsequent research can 
also consider combining principal component analysis 
or factor analysis to reduce the dimensionality of vari-
ables. Some continuous variables are discretized, which 
leads to the waste of data information. In this paper, 
constraint-based learning algrithms may be useful to 
compare different network structures for the same data, 
to verify the goodness of fit of the learned network with 
respect to a particular score function where our future 
work will focus on. Since the structures is not evident 
in the Max–Min Hill-Climbing (MMHC)  hybrid  algo-
rithm, and some hybrid  algorithms such as MMPC-
Tabu, Fast.iamb-Tabu and Inter.iamb-Tabu. However, 
we should look at it in a dialectical way where the 
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ML models in another set of datasets is to test model 
accuracies, whether it is consistent or not relies on 
one dataset [38]. Our next step is to assess their per-
formance and make a comparison between the widely 
used Bayesian network algorithm  on more generated 
datasets, and explore a new hybrid Bayesian network 
method.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​023-​02070-9.

Additional file 1: Figure S1. Bayesian network with MMHC[1]. Figure S2. 
Bayesian network with Fast.iamb-Tabu[1]. Figure S3. Bayesian network 
with Inter.iamb-Tabu[1]. Figure S4. Bayesian network with MMHC.Tabu[1]. 
Figure S5. Bayesian network (hill climbing, directed acyclic graph)[2]. 
Figure S6. Bayesian network (Scutari & Nagarajan’s (2013) method)[2-4].

Acknowledgements
In carrying out this research project, we sincerely acknowledge all the 
support from clinical doctors of Foshan Women’s and Children’s Hospital of 
Guangdong Medical Universitywho gave me a lot of explanation of clininal 
treatment and experience.

Authors’ contributions
LIN Yue designed the study, led the writing of the article and made analysis 
of data. CHEN JiaShen and Zhong Ni collected the data. Zhang ao revised the 
version the article. Pan Haiyan is charge of supervision. All authors critically 
revised the article and approved the final version of the article.

Authors’ information
Lin Yue, famale, 26 years old by far, a Master majored in Epidemiology and 
Health Statistics of public health in GuangDong Medical University. She has 
been working on Chronic epidemiology and applying programmes of chronic 
diseases like diabetes and Chronic Obstructive Pulmonary Disease.

Funding
General Project of Humanities and Social Science Research (NO: 21YJC910007); 
Dongguan Social Development Science and Technology Key Project (NO: 
20231800936252); Funding for innovation strategies for college students (NO: 
pdjh2023b0240).

Availability of data and materials
All data generated or analysed during this study are included in this published 
article.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in 
accordance with the the Ethics Committee of Foshan Women’s and Children’s 
Hospital of Guangdong Medical University. Informed consent was obtained 
from all subjects and/or their legal guardian(s) and this study was approved by 
the Ethics Committee of Foshan Women’s and Children’s Hospital of Guang-
dong Medical University (SDFYMC001).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 6 April 2023   Accepted: 13 October 2023

References
	1.	 Zhu Y, Zhang C. Prevalence of gestational diabetes and risk of progression 

to type 2 diabetes: a global perspective. Curr Diab Rep. 2016;16:7.
	2.	 Saravanan P, Diabetes in Pregnancy Working Group, Maternal Medicine 

Clinical Study Group, Royal College of Obstetricians and Gynaecologists, 
UK. Gestational diabetes: opportunities for improving maternal and child 
health. Lancet Diabetes Endocrinol. 2020;8:793–800.

	3.	 Hartling L, Dryden DM, Guthrie A, Muise M, Vandermeer B, Donovan L. 
Benefits and harms of treating gestational diabetes mellitus: a systematic 
review and meta-analysis for the U.S. Preventive Services Task Force 
and the National Institutes of Health Office of Medical Applications of 
Research. Ann Intern Med. 2013;159:123–9.

	4.	 McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. 
Gestational diabetes mellitus. Nat Rev Dis Primers. 2019;5:47.

	5.	 Balsells M, García-Patterson A, Gich I, Corcoy R. Maternal and fetal out-
come in women with type 2 versus type 1 diabetes mellitus: a systematic 
review and metaanalysis. J Clin Endocrinol Metab. 2009;94:4284–91.

	6.	 Murphy HR, Steel SA, Roland JM, et al. East Anglia Study Group for 
Improving Pregnancy Outcomes in Women with Diabetes (EASIPOD). 
Obstetric and perinatal outcomes in pregnancies complicated by Type 1 
and Type 2 diabetes: influences of glycaemic control, obesity and social 
disadvantage. Diabet Med. 2011;28:1060–7.

	7.	 Farrar D, Simmonds M, Bryant M, et al. Hyperglycaemia and risk of 
adverse perinatal outcomes: systematic review and meta-analysis. Obstet 
Anesthes Dig. 2017;37:64–5.

	8.	 Ye W, Luo C, Huang J, Li C, Liu Z, Liu F. Gestational diabetes mellitus and 
adverse pregnancy outcomes: systematic review and meta-analysis. BMJ. 
2022;377:e067946.

	9.	 Omran A, Ali Y, Abdalla MO, El-Sharkawy S, Rezk AR, Khashana A. Salivary 
interleukin-6 and C-reactive protein/mean platelet volume ratio in 
the diagnosis of late-onset neonatal pneumonia. J Immunol Res. 
2021;18(2021):8495889.

	10.	 Kline JA, Novobilski AJ, Kabrhel C, Richman PB, Courtney DM. Derivation 
and validation of a Bayesian network to predict pretest probability of 
venous thromboembolism. Ann Emerg Med. 2005;45(3):282–90.

	11.	 Zhu M, Chen W, Hirdes JP, Stolee P. The K-nearest neighbor algorithm 
predicted rehabilitation potential better than current clinical assessment 
protocol. J Clin Epidemiol. 2007;60(10):1015–21.

	12.	 Suner A, Çelikoğlu CC, Dicle O, Sökmen S. Sequential decision tree using 
the analytic hierarchy process for decision support in rectal cancer. Artif 
Intell Med. 2012;56(1):59–68.

	13.	 Karaboga HA, Gunel A, Korkut SV, Demir I, Celik R. Bayesian network 
as a decision tool for predicting ALS disease. Brain Sci. 2021;11(2):150 
Published 2021 Jan 23.

	14.	 Stewart GB, Mengersen K, Meader N. Potential uses of Bayesian networks 
as tools for synthesis of systematic reviews of complex interventions. Res 
Synth Methods. 2014;5(1):1–12.

	15.	 Seixas FL, Zadrozny B, Laks J, Conci A, MuchaluatSaade DC. A Bayes-
ian network decision model for supporting the diagnosis of dementia, 
Alzheimer׳s disease and mild cognitive impairment. Comput Biol Med. 
2014;51:140–58.

	16.	 Sahami M. Learning limited dependence Bayesian classifiers[C]. In: 
Proceedings of knowledge discovery and data mining (International 
Conference). 1996;96(1):335-338.

	17.	 Chattopadhyay S, Sahu SK. “A predictive stressor-integrated model of sui-
cide right from one’s birth: a Bayesian approach.” J Med Imaging Health 
Inform. 2012;2(2):125–31.

	18.	 Fuster-Parra P, Yañez AM, López-González A, Aguiló A, Bennasar-Veny 
M. Identifying risk factors of developing type 2 diabetes from an adult 
population with initial prediabetes using a Bayesian network. Front Public 
Health. 2023;10:1035025 Published 2023 Jan 12.

	19.	 Luo Y, Carretta H, Lee I, LeBlanc G, Sinha D, Rust G. Naïve Bayesian 
network-based contribution analysis of tumor biology and healthcare 
factors to racial disparity in breast cancer stage-at-diagnosis. Health Inf 
Sci Syst. 2021;9(1):35.

	20.	 Peng Y, Cheng L, Jiang Y, Zhu S. Examining Bayesian network mod-
eling in identification of dangerous driving behavior. PLoS ONE. 
2021;16(8):e0252484.

	21.	 Jing C, Gang T, Yong L, et al. Bayesian network based Netica for respira-
tory diseases. 2018.

https://doi.org/10.1186/s12874-023-02070-9
https://doi.org/10.1186/s12874-023-02070-9


Page 12 of 12Lin et al. BMC Medical Research Methodology          (2023) 23:249 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	22.	 Zhang H, Huang X, Han S, et al. Gaussian Bayesian network comparisons 
with graph ordering unknown. Comput Stat Data Anal. 2021;157:107156.

	23.	 McNally RJ, Mair P, Mugno BL, Riemann BC. Co-morbid obsessive-com-
pulsive disorder and depression: a Bayesian network approach. Psychol 
Med. 2017;47(7):1204–14.

	24.	 Pearl J. Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference. San Francisco: Morgan Kaufmann; 1988.

	25.	 Long Y, Wang L, Sun M. Structure extension of tree-augmented naive 
bayes. Entropy (Basel). 2019;21(8):721.

	26.	 Liu Y, Wang L, Sun M. Efficient heuristics for structure learning 
of k-dependence Bayesian classifier. Entropy (Basel). 2018;20(12):897 
Published 2018 Nov 22.

	27.	 Wang L, Liu Y, Mammadov M, Sun M, Qi S. Discriminative structure 
learning of bayesian network classifiers from training dataset and testing 
instance. Entropy (Basel). 2019;21(5):489.

	28.	 Chattopadhyay S, Davis RM, Menezes DD, Singh G, Acharya UR, Tamura T. 
“Application of Bayesian classifier for the diagnosis of dental pain.” J Med 
Syst. 2012;36:1425–39. https://​doi.​org/​10.​1007/​s10916-​010-​9604-y.

	29.	 Zhao E, Zhang Y, Zeng X, Liu B. Association between maternal diabetes 
mellitus and the risk of congenital malformations: a meta-analysis of 
cohort studies. Drug Discov Ther. 2015;9:274–81.

	30.	 Chen L, Yang T, Chen L, et al. Risk of congenital heart defects in offspring 
exposed to maternal diabetes mellitus: an updated systematic review 
and meta-analysis. Arch Gynecol Obstet. 2019;300:1491–506.

	31.	 He XJ, Qin FY, Hu CL, Zhu M, Tian CQ, Li L. Is gestational diabetes mel-
litus an independent risk factor for macrosomia: a meta-analysis? Arch 
Gynecol Obstet. 2015;291:729–35.

	32.	 Tabrizi R, Asemi Z, Lankarani KB, et al. Gestational diabetes mellitus in 
association with macrosomia in Iran: a meta-analysis. J Diabetes Metab 
Disord. 2019;18:41–50.

	33.	 Farrar D, Simmonds M, Bryant M, et al. Hyperglycaemia and risk of 
adverse perinatal outcomes: systematic review and meta-analysis. BMJ. 
2016;354:i4694.

	34.	 Li Y, Wang W, Zhang D. Maternal diabetes mellitus and risk of neo-
natal respiratory distress syndrome: a meta-analysis. Acta Diabetol. 
2019;56:729–40.

	35.	 Phan LT, Oh C, He T, Manavalan B. A comprehensive revisit of the 
machine-learning tools developed for the identification of enhancers in 
the human genome. Proteomics. 2023;23(13–14):e2200409.

	36.	 Ma Y, Shen J, Zhao Z, et al. What can facial movements reveal? Depression 
recognition and analysis based on optical flow using Bayesian networks 
[published online ahead of print, 2023 Aug 15]. IEEE Trans Neural Syst 
Rehabil Eng. 2023;PP. https://​doi.​org/​10.​1109/​TNSRE.​2023.​33053​51.

	37.	 Lou H, Wang L, Duan D, Yang C, Mammadov M. RDE: A novel approach 
to improve the classification performance and expressivity of KDB. PLoS 
ONE. 2018;13(7):e0199822.

	38.	 Chattopadhyay S, Rajput SS, Prajesh AR. “Testing Bayesian classifiers on 
adult depression data: a study to handle uncertainty related to its grad-
ing.” J Med Imaging Health Inform. 2013;3(4):607–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s10916-010-9604-y
https://doi.org/10.1109/TNSRE.2023.3305351

	A Bayesian network perspective on neonatal pneumonia in pregnant women with diabetes mellitus
	Abstract 
	Objective 
	Method 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Data
	Univariate analysis of variables
	Software and programs

	Bayesian network
	Bayesian network (BN)
	Naive Bayes
	Tree Augmented Naive Bayes (TAN)
	K-Dependence Bayesian Classifier(KDB)
	Model evaluation

	Results
	The results of the constraint-based learning algorithm
	Building a Naive Bayesian network model
	Build Tree Augmented Naive Bayes (TAN)
	Build K-Dependence Bayesian Classifier (KDB)
	The comparison of modes performance

	Discussion
	Anchor 25
	Acknowledgements
	References


