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Abstract 

Background Looking for treatment-by-subset interaction on a right-censored outcome based on observational data 
using propensity-score (PS) modeling is of interest. However, there are still issues regarding its implementation, nota-
bly when the subsets are very imbalanced in terms of prognostic features and treatment prevalence.

Methods We conducted a simulation study to compare two main PS estimation strategies, performed either once on 
the whole sample (“across subset”) or in each subset separately (“within subsets”). Several PS models and estimands 
are also investigated. We then illustrated those approaches on the motivating example, namely, evaluating the ben-
efits of facial nerve resection in patients with parotid cancer in contact with the nerve, according to pretreatment 
facial palsy.

Results Our simulation study demonstrated that both strategies provide close results in terms of bias and variance 
of the estimated treatment effect, with a slight advantage for the “across subsets” strategy in very small samples, 
provided that interaction terms between the subset variable and other covariates influencing the choice of treatment 
are incorporated. PS matching without replacement resulted in biased estimates and should be avoided in the case 
of very imbalanced subsets.

Conclusions When assessing heterogeneity in the treatment effect in small samples, the “across subsets” strategy 
of PS estimation is preferred. Then, either a PS matching with replacement or a weighting method must be used 
to estimate the average treatment effect in the treated or in the overlap population. In contrast, PS matching with-
out replacement should be avoided in this setting.
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Background
Randomized controlled trials remain the gold stand-
ard for evaluating treatment effects. However, there 
are several situations where they are challenging to 
conduct for technical, ethical, or feasibility reasons 
[1]. This challenge is particularly evident in the surgi-
cal field, where comparative studies, often complex 
to design, face difficulties in inclusion, with patients 
and surgeons reluctant to randomize because of a 
strong prior belief in the superiority of one treatment 
over another [2]. Such a difficulty of randomization is 
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similarly observed when evaluating drug effects in rare 
diseases such in oncology or in vulnerable populations 
- such as pregnant women, fetuses, neonates, children, 
prisoners, persons with physical handicaps or mental 
disabilities, and disadvantaged persons (“the Belmont 
report”) [3].

Thus, in these fields, observational studies are fre-
quently used. However, they are subject to many sources 
of bias because the baseline characteristics of patients 
receiving the different therapeutic modalities may differ 
widely regarding important prognostic factors, illustrat-
ing the confounding-by-indication bias from nonrandom 
treatment allocation. These biases should be properly 
addressed to avoid biasing the treatment estimate [4]. 
Multivariable regression has been widely used to that 
end. However, it is at risk of overfitting in the case of 
insufficient observations relative to the number of covari-
ates. To overcome these limitations, in 1983, Rosenbaum 
and Rubin proposed the use of a propensity score (PS), 
corresponding to the individual probability of receiving 
the treatment as a function of the measured confounders 
[5]. Samples are matched or weighted [6] to minimize the 
discrepancies in observed confounders between treat-
ment groups; in other words, individuals are assigned 
“balancing” weights, derived from their PS, to under- 
or overrepresent the characteristics of their treatment 
group compared to the other group. Under the assump-
tions of consistency, exchangeability, positivity, no inter-
ference, and correct model specification, causal estimates 
of treatment effect can be provided [7]. Although other 
causal inference approaches such as g-computation, tar-
geted maximum likelihood estimation, and/or a dou-
bly robust estimator may outperform the propensity 
score-based approaches [8], the propensity score-based 
approaches are still the most popular ones in the medi-
cal literature. This is even more prominent in the surgical 
setting, where 83.8% of such studies have been reported 
to use PS matching [9].

Whichever the setting, clinicians and surgeons often 
have a strong belief regarding which subset of patients 
may benefit from which treatment. We considered 
the question of facial nerve resection in patients with 
parotid cancer as an illustrative example. Facial func-
tion weakness is often used as a surrogate of facial 
nerve involvement, resulting in the choice of nerve 
resection [10, 11]. However, Park et  al. recently dem-
onstrated that approximately 1/3 of patients with pre-
operative facial weakness do not exhibit any perineural 
invasion on final pathologic examination [12], so facial 
nerve sparing could be considered even in this situa-
tion. Moreover, facial nerve sacrifice has been reported 
to significantly reduce the quality of life, despite facial 
nerve reconstruction [13]. Thus, whether the facial 

nerve should be resected in all patients with parotid 
tumors abutting the facial nerve or only in those with 
facial palsy is a matter of debate.

From a statistical point of view, this issue raises the 
concern of treatment-by-subset interaction when using 
propensity score approaches (where, in the example 
above facial nerve resection and no resection are the two 
“treatment” groups, and facial palsy or no facial palsy 
are the two “subsets”). One issue is whether the PS esti-
mation should be performed once for the whole sample 
before performing any subset analyses (“across subsets” 
strategy) or within each subset separately (“within sub-
sets” strategy). Indeed, while in theory, the true PS bal-
ances the distribution of covariates between subsets, in 
practice, this action occurs only with a large number of 
patients (reported above 1,000) and events [14]. Thus, 
the balance between covariates could be improved by 
estimating the PS in each subset, although this approach 
may increase the variance in the estimate, with potential 
numerical issues if there are few patients in one subset 
[15]. Otherwise, there are uncertainties concerning the 
extrapolation of these results when the subsets are very 
unbalanced, and few studies have considered right-cen-
sored outcomes [16].

To address these issues of estimating the PS before 
assessing treatment-by-subset interactions on a right-
censored outcome on observational data, we conducted 
a simulation study for the case when the subsets are very 
imbalanced in terms of prognostic features and treat-
ment prevalence. We then illustrated those approaches 
on the motivating example.

Motivating example
To illustrate the problem, we used data from an obser-
vational prospective multicenter cohort of a French 
national network, focusing on rare head and neck can-
cers, the Réseau d’expertise français sur les cancers 
ORL rares (REFCOR) database. Patients were included 
between 2009 and 2021 at the time of diagnosis and then 
followed prospectively. Inclusion was carried out by each 
center using a standardized questionnaire. In accordance 
with French law, their data were anonymized, and all 
patients signed an informed consent form.

Only patients diagnosed with a primary histologically 
proven parotid cancer who were surgically treated and 
included in the REFCOR database were included. To 
address the objectives of this work, we selected patients 
with a tumor that was in close contact with the nerve. 
Surgical reports were reviewed to assess the relationships 
between the facial nerve and the tumor, and close contact 
was defined as a contact with at least one of the following 
three criteria: 
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1 strong adhesion with the nerve described by the sur-
geon

2 peri-neural invasion described by the pathologist
3 inframillimeter surgical margin as defined by the 

pathologist.

Patients with a metastasis located in the parotid gland, 
patients without any follow-up data, and patients treated 
for recurrence were excluded. To resume the progno-
sis of each patient, we used a validated prognostic score 
for parotid cancers, developed by Vander Poorten et  al. 
[17, 18], classifying patients into 4 groups representing 
increased risk of poor survival.

Surgical treatment was performed according to local 
recommendations after discussion in a multidisciplinary 
tumor board meeting. For the current study, the treat-
ment of interest was facial nerve resection, defined as 
resection of the facial nerve trunk or one of its main divi-
sions, for carcinologic purposes.

The primary outcome was overall survival (OS), 
defined as the time from surgery to death or the last visit. 
The secondary outcome was disease-free survival (DFS), 
defined as the time from surgery to death or recurrence 
(local, regional, or distant) or to the last visit. Survival 
times longer than 5 years were right-censored.

A total of 707 patients from 21 centers were included in 
this study (see flow chart in Supplementary Fig. 1, Addi-
tional file 1). Among these patients, 300 had a tumor in 
contact with the nerve, including 178 who benefited from 
a facial nerve resection. Comparison of these 178 patients 
with facial nerve resection with those 122 patients who 
did not have any nerve resection revealed marked dif-
ferences across groups in key prognostic factors, as 
measured by standardized mean differences (SMDs), 
of which all but one were above 10% (Table 1). Patients 
who underwent facial nerve resection had deleterious 
outcomes in terms of both OS and DFS (see Additional 
file 4). Two hundred (66.7%) patients with no FN paresis, 
compared to 87 (29%) who had pretreatment facial weak-
ness, differed from most prognostic factors, with SMDs 
above 20% (Table 2). Therefore, estimating treatment-by-
subset interaction required a propensity score approach 
to correct for such a potential confounding by indication 
bias.

Simulation study
We aim to evaluate from observational data a subset-
by-treatment interaction on right-censored data using 
propensity score methods. To specifically evaluate the 
empirical performances of the two “across” and “within” 
subsets strategies, we performed a Monte-Carlo simula-
tion study. We generated data close to the REFCOR set-
ting, where patients with facial palsy, the smaller group 

of the sample, received mostly (in 80% of cases) a facial 
nerve resection and may have benefit more to that resec-
tion than those without (the majority of the sample but 
who only received a nerves resection in 40% of cases).

We thus considered a population partitioned into two 
subsets (S = 1, 2) of different sizes, with a potential heter-
ogeneity in treatment effect across the subsets. Similarly 
to the REFCOR study, we considered the treatment effect 
possibly restricted to the smaller subset, but where the 
treatment has been widely preferred.

Data generation‑generating mechanisms
We considered a population partitioned into two 
subsets S(= 1, 2) of potential differential influence 
on a right-censored outcome (where large times 

Table 1 Baseline characteristics of the population according to 
facial nerve resection

FN Facial nerve, SMD Standardized mean difference, SD Standard deviation, 
cN+ Clinically involved lymph nodes, M1 Metastasis

REFCOR cohort: No resection FN resection SMD

n 122 178

Pretreatment facial palsy (%) 10 ( 8.3) 77 (46.4) 0.946

Age at diagnosis (mean (SD)) 57.18 (18.65) 64.16 (14.05) 0.423

Male sex (%) 67 (54.9) 114 (64.0) 0.187

Tumoral size (mm) 28.34 (18.02) 32.34 (15.56) 0.238

Log(Tumoral size) 3.17 (0.65) 3.35 (0.55) 0.311

Extraparenchymal extension (%) 38 (32.8) 78 (55.3) 0.467

Skin or bone invasion (%) 10 ( 8.6) 20 (14.2) 0.176

cN+ (%) 34 (27.9) 68 (38.2) 0.221

M1 (%) 5 ( 4.1) 15 ( 8.4) 0.179

Grade (%) 0.676

I 44 (38.6) 24 (14.1)

II 19 (16.7) 18 (10.6)

III 51 (44.7) 128 (75.3)

Deep lobe tumor (%) 35 (28.7) 47 (28.1) 0.012

Adenoid cystic carcinoma (%) 18 (14.8) 19 (10.7) 0.123

Total parotidectomy (%) 101 (82.8) 166 (94.3) 0.368

Neck dissection (%) 88 (74.6) 161 (94.2) 0.560

Radiotherapy (%) 86 (72.3) 150 (85.2) 0.321

Chemotherapy (%) 16 (13.6) 48 (27.9) 0.360

Surgical margin (%) 0.236

Negative 23 (20.0) 43 (26.1)

Positive 63 (54.8) 95 (57.6)

Close 29 (25.2) 27 (16.4)

Vander Poorten score (mean (SD)) 5.15 (1.17) 5.98 (1.01) 0.763

Prognostic index (%) 0.859

1 13 (15.7) 2 ( 1.9)

2 26 (31.3) 13 (12.1)

3 20 (24.1) 26 (24.3)

4 24 (28.9) 66 (61.7)
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indicate improved outcomes), with a proportion of 
p(S = 1) = 0.25 patients in the subset 1 (the smaller 
subset).

We simulated samples of n=3,000 patients, with a set 
of continuous ( X1 and X2 ) covariates using independent 
normal distributions of mean 0 and standard deviation of 
1, and seven binary ( X3, . . . ,X10 ) covariates using inde-
pendent Bernoulli distributions, with parameter equal to 
0.5. Covariates had a strong, moderate or no association, 
first with outcome, and second with treatment allocation 
(Table 3).

For subject i = 1, . . . , n , we generated his(her) belong-
ing to subset S = 1 , from a Bernoulli Si ∼ B(0.25) distri-
bution, then generated the treatment group, Zi ∼ B(pi) 
with logit(pi) = β0|S +

10
j=1 βj|S .xj,i , where β0|S=1 was set 

at 0.3 and β0|S=2 = −1.9 to obtain P(Zi = 1|S = 1) ≈ 0.8 
and P(Zi = 1|S = 2) ≈ 0.4 (close to the REFCOR 

proportions of treated patients in each subset); and 
βj|S denote the different covariate effects on treatment 
allocation.

Each survival outcome Ti was then gen-
erated an exponential distribution with 

Table 2 Characteristics of the population according to pretreatment facial nerve function

SMD Standardized mean difference, SD Standard deviation, cN+ Clinically involved lymph nodes, M1 Metastasis

Normal facial function Pretreatment facial palsy SMD

n 200 87

Facial nerve resection (%) 89 (44.5) 77 (88.5) 1.054

Age at diagnosis (mean (SD)) 60.21 (17.68) 64.34 (13.11) 0.266

Male sex (%) 112 (56.0) 60 (69.0) 0.270

Tumoral size (mm) 29.95 (17.10) 31.97 (15.31) 0.124

Log(Tumoral size) 3.24 (0.64) 3.36 (0.48) 0.219

Extraparenchymal extension (%) 78 (40.0) 33 (62.3) 0.457

Skin or bone invasion (%) 17 ( 8.7) 11 (20.8) 0.345

cN+ (%) 58 (29.0) 37 (42.5) 0.285

M1 (%) 9 ( 4.5) 11 (12.6) 0.294

Grade (%) 0.725

I 60 (31.4) 5 ( 6.2)

II 28 (14.7) 9 (11.2)

III 103 (53.9) 66 (82.5)

Deep lobe tumor (%) 53 (26.9) 25 (30.5) 0.079

Adenoid cystic carcinoma (%) 24 (12.0) 11 (12.6) 0.020

Total parotidectomy (%) 177 (88.5) 80 (92.0) 0.117

Neck dissection (%) 163 (83.6) 77 (92.8) 0.287

Radiotherapy (%) 150 (76.9) 76 (87.4) 0.275

Chemotherapy (%) 31 (16.1) 30 (35.7) 0.460

Surgical margin (%) 0.448

Negative 50 (26.7) 14 (17.3)

Positive 92 (49.2) 57 (70.4)

Close 45 (24.1) 10 (12.3)

Vander Poorten score (mean (SD)) 5.28 (1.03) 6.66 (0.79) 1.504

Prognostic index (%) 1.342

1 15 (10.3) 0 ( 0.0)

2 39 (26.9) 0 ( 0.0)

3 40 (27.6) 6 (14.6)

4 51 (35.2) 35 (85.4)

Table 3 Covariates included in the simulation as a function of 
their association with treatment allocation and outcome

Strong, moderate and absence of impact were set by parameter values of log 2 , 
log 1.3 and log 1 , respectively

Outcome Treatment allocation

Absent Moderate Strong

Absent X3 X1

Moderate X9|S = 1 X2 ; X5 X7 ; X9|S = 2

Strong X4|S = 2 ; X6 X8 X4|S = 1 ; X10
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hazard depending on the treatment Zi , covariates 
(xji, j = 1, . . . , 10) and subset Si of the patient, given by 
�i = �0.exp[θS .Zi + αS .Si +

∑10
j=1 αj .xj,i] , where the base-

line hazard, �0 , was set to 0.005, and the conditional 
treatment effects in subsets 1 and 2 at θS=1 and θS=2 , 
respectively, while αS denote the effect of the subset on 
the outcome, and αj denote the covariates effect on the 
outcome (Table  3). Strong, moderate and no impact 
were set by parameter values of log 2, log 1.3 and log 1 , 
respectively.

We simulated an independent censoring time for each 
patient using a uniform distribution U = [1, 150] , where 
patients with a censoring time below the time-to-event, 
or above 60, were administratively right-censored.

Several scenarios were investigated, depending on the 
impact of the subsets on the outcome ( αS=1 and αS=2 ), 
that is without treatment effect and treatment-by-sub-
set interaction (Table  4). We then assessed the influ-
ence of sample size (n, from 500 to 5,000), proportions 
of patients in each subset ( p(S = 1)) , relative risks to be 
treated in each subset ( β0|S=1 and β0|S=2 ), and impact of 
covariates on the outcome ( αj).

Estimand/target of analysis
True causal marginal treatment effect in the treated, 
as measured on the log HR scale, were computed for 
each scenario in each subset S = 1, 2 , using a sample of 
1,000,000 individuals.

Methods
In looking for treatment-by-subset interaction, two strat-
egies of analysis regarding the PS estimation were con-
sidered and applied to each dataset. First, the “across 
subsets” strategy was used, which consisted of estimat-
ing a single PS from the whole sample but incorporating 
the subset indicator and potential interaction terms into 
the PS. Second, we applied the “within subsets” strat-
egy, which consisted of estimating the PS in each subset 
separately.

Regardless of the strategy, several PS methods were 
applied, targeting the average treatment effect in the 
treated group (ATT) and then the average treatment 
effect in the overlap (ATO). Thus, we first performed 
PS matching without replacement using a 1-to-1 near-
est neighbor matching algorithm, with a caliper set to 
0.2, then to 0.1 standard deviations of the logit of the PS 
[19]. The hazard ratio (HR) of an event was then esti-
mated from a Cox model with a robust estimator of the 
variance. In a second approach, we allowed replacement 
in the untreated group, calculating the variance in the 
estimator based on the Austin and Caufri estimator [20]. 
We also used a PS weighting approach, with standardized 
mortality ratio weights (SMRWs) [21] after stabilization 
[22] and with a bootstraped variance estimation [23], and 
then with overlap weights [24], with a robust estimation 
of the standard errors to account for weighting.

To evaluate the influence of the PS model, we used dif-
ferent models for PS estimation. “True PS” was defined 
as multivariable logistic regression including true con-
founders (variables affecting both treatment allocation 
and outcome) and interaction terms between the subset 
and variables with different effects on treatment alloca-
tion (X4 and X9). We further included X6 for the “PS with 
a prognostic variable”, X1 for the “PS with an instrumen-
tal variable”, interaction terms with X2, X5, X7 and X10 
for the “PS with all interaction terms”, and we omitted all 
interaction terms for the “PS without interaction term”.

Performance measures
To assess the performances of these methods, nsim = 
1,000 independent replications of each scenario were 
performed, corresponding to a < 1% Monte Carlo stand-
ard error, for a coverage of 95% [25].

Over those replications, we computed the mean bias, 
defined as the average difference between the esti-
mated treatment effect and the true marginal treatment 
effect, and the coverage of the 95% confidence interval, 
defined as the percent of time the true treatment effect 
was included in the 95% confidence interval. We also 
reported the 95% confidence interval of the bias estima-
tion, using the Monte Carlo standard error, and recorded 
the frequency of non-convergence issues.

The simulation study and analyses for the applied 
example were performed in R version 4.1.3 using the 
“survival”, “survey”, “simsurv”, “ggplot2”, “survminer”, 
“tableone”, “mice”, “MatchIt”, “MatchThem”, “WeightIt”, 
“cobalt”, “boot”, “VIM” and “forestplot” packages.

Results
We first considered samples of n = 3, 000 individuals. In 
Scenario 1, where some treatment-by-subset interaction 
was introduced, both the “across subsets” and “within 

Table 4 Summary of the main scenarios

ε ranged from 0 down to -2

Scenario Treatment effect Interaction

on the log HR scale

Subset 2 Subset 1 treatment‑by‑subset

αS=2 αS=1

Sc1 0 -0.7 yes

Sc2 0 ε depending on ε

Sc3 ε ε no

Sc4 0 0 no
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subsets” strategies yielded similar results, except using 
the “across subsets” approach when no interaction term 
was included in the PS model. Using this PS model, an 
important bias in the estimation of the treatment effect 
and impaired coverage in subset 1 were observed (Fig. 1). 
As expected, the inclusion of an instrumental variable in 
the PS model increased the variance in the estimation 
(Fig. 1 and Supplementary Fig. 3, Additional file 3). Bias 
in the estimated effect was higher in subset 1 than in sub-
set 2 and was proportional to the treatment effect (Fig. 2).

Using PS matching, caliper set at 0.1 gave similar 
results. We further show only results with the caliper set 
at 0.2 standard deviations of the logit of the PS. PS match-
ing without replacement resulted in greater amounts 

of bias than the other approaches. This result can be 
explained by the discarding of treated patients because of 
the lack of comparative untreated patients. This bias was 
thus inversely proportional to the proportion of treated 
patients who could be matched in both strategies and 
inversely proportional to the relative number of compar-
ative untreated patients (Fig.  3). When the relative risk 
to be treated increased in the small subset (subset 1), the 
“across subsets” strategy was significantly biased com-
pared to the “within subsets” strategy using PS matching 
without replacement; however, this bias was controlled 
with replacement or PS-weighting methods (Supple-
mentary Fig. 4B, Additional file 3). Given the importance 
of this bias, PS matching without replacement was not 

Fig. 1 Comparison of strategies according to the PS model in Scenario 1. Comparison of “across subsets” or “within subsets” strategy in terms 
of the mean absolute bias (A), variance (B) and the coverage of the 95% CI (C) according to the PS model. S1 = subset 1; S2 = subset 2
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represented in the following simulations. The results of 
the simulations with this method can be found in Sup-
plementary Fig. 5, Additional file 3.

When sample size decreased down to n = 300 , con-
vergence issues occurred, notably using SMRW, while 
variance inflated using other methods, especially with 
the “within subets” strategy, which also reflects a con-
vergence problem even if an estimation of the treatment 
effect could be obtained (Supplementary Figs. 6-8, Addi-
tional file 3). When the sample size increased from 300 to 
5,000, results were poorly affected, except that PS match-
ing without replacement achieved a decrease in variance 
while the bias persisted, resulting in a lowered cover-
age probability of confidence interval (Supplementary 

Fig.  9, Additional file  3), while type I error rate slightly 
decreased (Supplementary Fig. 5, Additional file 3). Oth-
erwise, results were not markedly impacted by the size of 
the subsets (Supplementary Fig. 10, Additional file 3), the 
prognostic value of the subsets (Supplementary Fig.  11, 
Additional file  3), or by the treatment prevalence (Sup-
plementary Fig. 4, Additional file 3).

When a non-observed confounder was generated, 
all methods were biased, as expected. Bias was propor-
tional to the impact of confounders on the outcome and 
inversely proportional to its correlation with an observed 
covariate (Fig. 4). This also resulted in a decrease of the 
coverage probability of the confidence interval, more pro-
nounced with the “within subsets” approach. Overall, the 
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overlap weighting and matching with replacement were 
slightly more robust than the SMRW weighting.

In the absence of treatment-by-subset interactions, 
whichever there was a treatment effect or not (Sce-
narios 3 and 4), type I error of the Gail & Simon inter-
action quantitative test was maintained (Supplementary 
Fig. 12, Additional file 3). However, the “across subsets” 
strategy appeared to be slightly more powerful for detect-
ing an interaction in small samples (Fig.  5 C). Weight-
ing methods (overlap weighting and SMRW weighting) 
also seemed to be more powerful than PS matching with 
replacement (Fig. 5).

Revisited motivating example
Methods
We applied similar methods as in the simulation study. 
The PS, defined as the probability of receiving a nerve 
resection, was estimated by a multivariable logis-
tic regression model, including age at diagnosis, sex, 
tumor size (with log transformation), extraparenchymal 

invasion, skin or bone invasion, cN status, M stage, histo-
logical grade, histological type (adenoid cystic carcinoma 
or not), whether a total parotidectomy was performed, 
and whether a neck dissection was performed. These 
variables were chosen because of their known prognos-
tic value and were measured before or at the time of the 
treatment choice. The T stage was not included in this 
main analysis because facial nerve invasion classifies the 
tumor as T4, thus almost consistently resulting in the 
resection of the facial nerve.

Regardless of the approach, in the matched or in the 
weighted pseudopopulations, the quality of the balance 
between the treatment groups was measured using the 
SMDs of potential confounders and of PS and based on 
the overlap coefficients (OVL) [26].

Interaction terms and/or quadratic terms were incor-
porated into the PS until a satisfactory balance was 
achieved. To display the SMDs in both subsets for each 
confounder, the connect-S plot proposed by Yang et  al. 
[27] was used.

Fig. 3 Bias in the estimation of the treatment effect under PS matching without replacement using the “across subsets” or the “within subsets” 
strategy, according to the treatment prevalence (A), the relative risk to be treated in subset 1 (B) and the treatment effect in subset 1 (C) (Scenario 1)
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To address missing data, we performed multiple impu-
tation with chained equations. We imputed 33 datasets, 
with 20 iterations, using an imputation model including 
important variables, the estimated cumulative baseline 
hazard based on the Nelson-Aalen estimator and inter-
action terms between the Nelson-Aalen estimator and 
covariates [28] (details are provided in Additional file 2). 
To account for multiple imputations, variances in esti-
mated treatment effects were calculated by bootstrap 
[29], except for matching without replacement [30].

Results
All PS models are described in Additional file 5. For the 
“across subsets” strategy, we additionally included in the 

PS model multiple interaction terms between the subset 
of interest (pretreatment facial palsy) and the prognostic 
covariates, whose effect on treatment choice was poten-
tially modified by the existence of preoperative facial 
palsy (i.e., tumor grade, adenoid cystic carcinoma, extra-
parenchymal invasion, and bone or skin invasion).

Balances of covariates across treatment groups in 
each subset were more easily achieved with the “across 
subsets” strategy (Fig.  6 and Supplementary Figs.  11 
to 14, Additional file 5) than with the “within subsets” 
strategy (Fig. 7 and Supplementary Fig. 15 to 22). Com-
pared to the “within subsets” strategy, in the facial 
palsy subset, the “across subsets” strategy allowed us 
to include 18-22% more patients with PS weighting 
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Fig. 4 Simulations with an unknown confounder. Comparison of the “across subsets” or “within subsets” strategy in terms of bias (A), variance (B) 
and coverage (C) in the estimation of the treatment’s effect according to the presence of an unknown confounder (Scenario 1)
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Fig. 5 Power of the interaction test. Comparison of the power of the Gail and Simon quantitative interaction test by the number of patients (A) 
(Scenario 1) or the treatment effect (B and C) (Scenario 2). The number of patients is set to n=3000 in B and n=300 in C (Scenario 1). Robust estimate 
of variance was used for SMRW weighting when n = 300 , rather than bootstrapping, due to the importance of convergence problems that made it 
impratical to compute it
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methods (means of 201.5 and 17.2 for weighted patients 
with SMRW and overlap weights, respectively, vs. 
164.8 and 14.6 for the “within subsets” strategy), 62% 
more patients with the PS matching method (means 
of 22.4 vs. 13.8 patients) and 85% more patients with 

PS matching with replacement (means of 152.8 vs. 82.4 
patients) (Fig. 8).

The treatment effects in both subsets obtained with 
the different PS-based methods are summarized in Fig. 8 
for OS and DFS. No treatment-by-subset interaction was 

Fig. 6 REFCOR data: Connect-S-plot with the “across subsets” approach. Connect-S plot representing standardized mean differences (SMDs) 
between treatment groups in the “across subsets” approach, in the original dataset ("naive estimation") and according to the PS-based method
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found regardless of the PS estimation strategy and the PS 
method with the recommended methods, but the inter-
action was significant when using the biased “across” 
method without an interaction term, using PS weighting 
methods. We used previously simulated data to obtain 
further insights into these results. To demonstrate a dif-
ference in our illustrative example, we used the Gail & 
Simon interaction quantitative test, which showed that 
1,300 to 2,000 patients would have been required to dem-
onstrate an interaction between subset 1 with log(HR) = 
-0.7 and subset 2 with log(HR) = 0 on the outcome, with 
a power of 80%. Otherwise, a log (HR) of -2 to -3 in sub-
set 1 was also needed, depending on methods, to demon-
strate an interaction with only 300 patients (Fig. 5).

Discussion
In this study, we considered the issue of using propen-
sity scores to estimate the heterogeneity in the treat-
ment effect across baseline subsets. To address this issue, 
two strategies for estimating the propensity score were 
compared.

The first strategy consisted of estimating the propensity 
score on the whole sample, incorporating the subset vari-
able, to create either a matched population or a pseudo 
population according to the PS-based method used. The 
treatment-by-subset interaction was then studied in the 
resulting whole matched or weighted sample. This strat-
egy is theoretically valid because when the population 
is balanced on the true propensity score, the subsets are 
also theoretically balanced on treatment groups, as pre-
viously demonstrated [31]. However, in real life, the true 
propensity score is not known and must be estimated 
from the sample. This strategy can therefore lead to a 
poor balance between treatment groups in the covariates 
within subsets or even to a worsening of this imbalance 
[15]. In our illustrative case, this strategy afforded a good 
balance of covariates overall, although some imbalances 
persisted across treatment groups in the subsets (Figs. 6 
and 7). Expectedly, most persisted differences were found 
in the small subset of patients with facial palsy (ranging 
from 93 original observations down to 17 in the overlap 
population with the “across subsets” strategy and 15 with 
the “within subsets” strategy).

Fig. 7 REFCOR data: Connect-S-plot with the “within subsets” approach. Connect-S-plot representing standardized mean differences (SMDs) 
between treatment groups in the “within subsets” approach in the original dataset (first two lines) and according to the PS-based method
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The second strategy consisted of estimating the pro-
pensity score within the subsets, separately. The pro-
pensity scores were then used to create a matched 
population or a pseudo population in each subset, allow-
ing the treatment effect to be evaluated in each subset 
separately. Then, treatment-by-subset interaction can be 
tested using the Gail and Simon statistics. This strategy, 
which should make it easier to obtain a balance in each 
subset, as previously demonstrated [15], did not work 
well in the case of our illustrative example. This result is 
likely because one subset had few patients, particularly in 
the case of PS matching without replacement, which suf-
fered even more than the “across subsets” strategy from 
the limitations of adopting this approach for small sam-
ples [32].

Our simulation study showed that the two “across 
subsets” and “within subsets” strategies achieve simi-
lar results in terms of bias and variance, provided that 
interaction terms between the subset variable and other 
covariates influencing the choice of treatment are incor-
porated. Otherwise, the omission of these interaction 
terms based on the “across subsets” strategy induced an 
important bias, regardless of the PS-based method used, 
which confirms previous results [33, 34]. This bias led to 
the identification of an interaction that was not found 
with the other two strategies in our illustrative exam-
ple. Interestingly, the incorporation of interaction terms 
that do not exist did not induce bias and only slightly 
increased the variance. Thus, when using the “across sub-
sets” strategy, these results encourage the nonparsimoni-
ous use of interaction terms with the subset of interest. 
The demonstration of an interaction was also slightly 
more powerful when using the “across subsets” strategy 
in the case of a very small sample. These results were 
confirmed in our illustrative example, in which we found 
similar treatment effect estimates between methods but 
with lower variances using the “across subsets” strategy.

Focusing on the covariates included in the PS model, 
we confirmed that the use of an instrumental variable is 
detrimental in terms of variance. In contrast, the incor-
poration of a prognostic variable had little impact on the 
estimation of the treatment effect. However, the omis-
sion of a confounder led to a bias. Our study demon-
strated that this bias was less important when matching 
with replacement or when overlap weight methods were 
used than when SMRW weighting was used. The “within 
subsets” strategy was also slightly more robust than the 
“across subsets” strategy in this case. Although previ-
ous studies on this topic focused on PS matching with-
out replacement [14–16, 33–37], compared to the other 
methods, this method achieved a bias in the estimation 
of the treatment effect in our setting of large differences 
between subsets. This bias has been previously named 

the “unmatched patient bias” [38]. In the case of a small 
sample size, replacement has been demonstrated to 
reduce this bias [39]; we indeed found that this bias was 
proportional to the proportion of matched patients.

Our study has some limitations. First, we used propen-
sity-score methods, while they could be outperformed 
by g-computation and/or doubly robust estimators [40, 
41]. Nevertheless, we were only concerned by examining 
two main issues (imbalanced subgroups, right-censored 
outcomes) when implementing pre-specified subgroup 
analyses in a causal inference framework using propen-
sity score approaches. Actually, we placed ourselves 
in the most popular setting in the medical and surgical 
literature for evaluating causal effects in observational 
studies, that is, targeting the ATT. We first used propen-
sity score matching, in line with recent works that used 
Monte Carlo simulations to evaluate propensity score 
matching with data from complex sample surveys [42], 
when dealing with clustered data [43], or when a con-
founder has missing data [44]. Other PS-based methods 
could have been used, such as the inverse probability 
treatment weighting (IPTW), which is commonly used 
in subset analyses [16, 33, 36, 37]. This method has been 
reported to achieve better performance than PS match-
ing in the case of right-censored outcomes [16]. In sec-
ondary analyses, we thus also used IPTW using either 
standardized mortality ratio weights or overlap weights 
[24]. Of note, the later targets another estimand, the 
ATO. Actually, the ATO targets an “artificial” and less 
defined population consisting of patients with the high-
est mutual overlap of PS between the 2 treatment groups. 
ATO can be considered as an intermediate between the 
average treatment effect (ATE) and the ATT. The popula-
tion targeted by the ATO indeed consists of patients with 
a high probability of appearing in either of the 2 treat-
ment groups, that could be interpreted as a population at 
clinical equipoise. This complicated interpretation is the 
main drawback of such overlap weighting. Nevertheless, 
the overlap weights facilitate a perfect and straight bal-
ance between groups and could therefore be largely used 
in this setting where it is difficult to obtain a satisfactory 
balance with other methods. Otherwise, overlap weight-
ing has been shown to preserve a higher proportion of 
the sample with a reduction in bias [24] and to provide 
close performances to that of g-computation [8]. How-
ever, the overlap weighting method did not outperform 
other PS-based methods in our simulation study.

Second, we considered only interactions between the 
subset and covariates that affected treatment choice 
rather than the outcome. However, the omission of an 
interaction term when there is an interaction between 
the subset and prognostic covariate has already been 
reported to bias the treatment effect [33].
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Third, we did not study other alternatives to the mul-
tivariable logistic model that have been proposed. These 
alternatives include the use of a generalized propensity 
score [45] or a balancing propensity score [31], extending 
the covariate balancing propensity score [46] for multi-
ple subset analyses; however, given the small difference 
observed between the two abovementioned strategies, 
we did not evaluate them.

Conclusions
In conclusion, when aiming to evaluate the treatment 
effect in prespecified subsets from observational data 
using propensity score approaches, estimating the pro-
pensity score in the whole sample appears a valid option 
compared to the estimation of the propensity score 
within each subset, provided that interaction terms 
between the subsets and other covariates are included 
in the PS model. This “across subsets” strategy could 
be useful in small samples, especially when the sam-
ples are imbalanced in terms of the subsets. Indeed, in 
this setting, estimating the propensity score can lead to 
convergence issues in a small subset while preventing a 
satisfactory balance between treatment groups. Weight-
ing methods appear to be more powerful for demonstrat-
ing a treatment-by-subset interaction. In the case of PS 
matching, the use of replacement appears to be preferred 
in this setup with a lack of comparable patients, regard-
less of the PS estimation strategy.
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