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Abstract
Objectives  In most African countries, confirmed COVID-19 case counts underestimate the number of new SARS-
CoV-2 infection cases. We propose a multiplying factor to approximate the number of biologically probable new 
infections from the number of confirmed cases.

Methods  Each of the first thousand suspect (or alert) cases recorded in South Kivu (DRC) between 29 March and 29 
November 2020 underwent a RT-PCR test and an IgM and IgG serology. A latent class model and a Bayesian inference 
method were used to estimate (i) the incidence proportion of SARS-CoV-2 infection using RT-PCR and IgM test 
results, (ii) the prevalence using RT-PCR, IgM and IgG test results; and, (iii) the multiplying factor (ratio of the incidence 
proportion on the proportion of confirmed –RT-PCR+– cases).

Results  Among 933 alert cases with complete data, 218 (23%) were RT-PCR+; 434 (47%) IgM+; 464 (~ 50%) RT-PCR+, 
IgM+, or both; and 647 (69%) either IgG + or IgM+. The incidence proportion of SARS-CoV-2 infection was estimated 
at 58% (95% credibility interval: 51.8–64), its prevalence at 72.83% (65.68–77.89), and the multiplying factor at 2.42 
(1.95–3.01).

Conclusions  In monitoring the pandemic dynamics, the number of biologically probable cases is also useful. The 
multiplying factor helps approximating it.

Keywords  SARS-CoV-2, COVID-19 testing, Reverse transcriptase polymerase chain reaction, Serology, Africa.
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Introduction
According to the World Health Organisation (WHO), 
confirmed cases of Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) infection are those with 
positive Nucleic Acid Amplification Test (NAAT) or 
those having both a positive SARS-CoV-2 Antigen-RDT 
(Rapid Diagnostic Test) and meeting some clinical crite-
ria [1].

It is now recognized that, in Africa, confirmed case 
counts do not accurately reflect COVID-19 epidemic 
dynamics [2]. That underestimation of the number of 
new infections is illustrated by the contrast between a 
low number of reported cases and a high prevalence of 
anti-SARS-CoV-2 antibodies (an indicator of high virus 
circulation) [3]. In 2020, in South Kivu, a low num-
ber of reported confirmed cases (418 for 1526 alert –or 
suspect– cases) contrasted with a high seroprevalence 
(41.2%) among 359 healthcare workers [4]. According 
to some authors, that underestimation had two distinct 
causes: (1) a small portion of the population was tested; 
(2) a number of tests may have been negative in infected 
individuals [5, 6]. For economic or logistic reasons, the 
first cause is difficult to circumvent, whereas the second 
seems easier to deal with. In fact, estimates of tests’ sen-
sitivity (Se) and specificity (Sp) are available as well as 
statistical methods that allow estimating the number of 
cases even with imperfect diagnostic tests [7–9].

In South Kivu, NAAT and antibody tests are currently 
available. Reverse Transcriptase-Polymerase Chain Reac-
tion (RT-PCR) SARS-CoV-2 antigen detection test does 
not yield false-positive results, but false-negative results 
are possible because of poor sample quality or sample 
collection in very early or late stages of infection [10]. 
According to some authors, the Se of RT-PCR SARS-
CoV-2 test (its ability to identify truly diseased individu-
als) was 55% [7], 68% [8], or 85% [9]; a large variability 
due to sample quality or sampling delay relative to infec-
tion. The antibody tests (i.e., rapid lateral flow tests for 
immunoglobulin M or G –IgM or IgG) that were avail-
able during the first wave of the pandemic could yield 
false-positive and false-negative results in detecting inci-
dent cases [11, 12]. Indeed, according to Kostoulas et al. 
[8], true positive results (Se) for either IgM or IgG during 
the first, second, and third week after COVID-19 symp-
tom onset were obtained in 32, 75, and 92% of cases, 
respectively. However, the latter tests Sps were obviously 
lower than that of RT-PCR and ranged from 81 to 100% 
[7, 13].

The WHO definition of ‘confirmed cases’ based on RT-
PCR results avoids count overestimation because of the 
very high Sp of RT-PCR (nearly 1). However, that defini-
tion gives only a lower limit for the real number of cases 
because of RT-PCR false-negative results. Serum IgM or 
IgG detection is not routinely used for case definition 

because of these tests’ false-negative and false-positive 
results. Besides, while RT-PCR and IgM tests are suitable 
to diagnose recent infections (incident cases), IgG test is 
rather suitable to assess past infections (prevalent cases). 
Given those elements, it seems useful to propose a way to 
obtain a better estimate of the number of new cases from 
the number of RT-PCR-confirmed cases.

This article proposes a method to obtain a factor by 
which the number of confirmed cases (precisely, RT-
PCR + cases) may be multiplied to provide a better esti-
mate of the number of new infections (i.e., the number of 
biologically probable cases).

In the following, we will: (i) estimate the incidence 
proportion and the prevalence of SARS-CoV-2 infection 
(here, the proportion of current or previous cases) in the 
first thousand COVID-19 alert cases in South Kivu using 
latent class model and a Bayesian inference method; and, 
(ii) propose an estimate of the multiplying factor that 
allows obtaining the number of biologically probable new 
SARS-CoV-2 infections from the number of confirmed 
cases.

Materials and methods
The study population
The data were extracted from the SARS-CoV-2 infec-
tion surveillance system in South Kivu (DRC) during 
the 2020 pandemic. The population of South Kivu is 
approximately 4,800,000 people who live in a 64,492 km² 
area. The study considered the first thousand alert cases 
recorded between March 29 and November 29, 2020. An 
alert case was defined as a person with signs suggestive of 
COVID-19 (fever, headache, breathing difficulties, asthe-
nia… with or without loss of taste and smell) or a person 
who has been in contact with a person who tested posi-
tive for SARS-Cov-2 infection.

From each alert case, two samples were collected: a 
nasopharyngeal sample for RT-PCR test and a blood 
sample for IgM and IgG serology. In general, the record-
ing of an alert case and sample collection took place the 
same day.

The serological test used ‘SARS-CoV-2 IgG/IgM Rapid 
Test Kit’ (Abbexa Ltd, Cambridge, UK). This test detects 
separately but on the same ‘cassette’ IgM and IgG anti-
bodies against the virus. The tests (RT-PCR and serologi-
cal test) were carried out in two centers: Kinshasa (March 
29 to June 16, 2020) and Bukavu (June 17 to November 
29, 2020).

A confirmed case was defined as an alert case with a 
positive RT-PCR test.

Statistical analyses
Data presentation
Data presentation used 2 by 2 contingency tables for 
cross-tabulation of RT-PCR versus IgM test results 
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(numbers and percentages), then for cross-tabulation of 
RT-PCR versus IgM and IgG test results (positive when 
IgM + or IgG+, negative when IgM– and IgG–). The 
information given by each cell of these tables depends 
on the proportion of infection cases, the Se, and the Sp 
of each test. For example, the number of alert cases posi-
tive on test A and test B is the sum of two numbers: (i) 
the number of true positive results on both tests (i.e., the 
number of alert cases multiplied by the proportion of 
infection cases and the Se of each test); and, (ii) the num-
ber of false positive results on both tests (i.e., the number 
of alert cases multiplied by the complement to 100% of 
the percentage of infected cases and the complement to 
100% of the Sp of each test). This information is needed 
to estimate respectively the incidence proportion and the 
prevalence of SARS-CoV-2 infection using a latent class 
model and a Bayesian inference method.

The latent class model
In the latent class model, the infection status is consid-
ered unknown and the results of the diagnostic tests are 
used to estimate the proportion of infected cases and the 
performance (Se and Sp) of the tests. The model was built 
with the assumption that the RT-PCR and the antibody 
test results are independent conditionally on the infec-
tion status. In fact, this assumption is plausible because 
the two types of diagnostic tests (RT-PCR and IgM or 
IgG serology) have different biological mechanisms.

Two separate latent class models were used; one to esti-
mate the incidence proportion (using RT-PCR and IgM 
serology) and the other to estimate the prevalence (using 
RT-PCR and IgM/IgG serology).

The bayesian inference method
With two tests, the information provided by the observed 
data is not sufficient to estimate the proportion of infec-
tion cases and the performance of the tests in terms of 
Se and Sp. A Bayesian inference method was used to add 
prior knowledge on the Se of the RT-PCR and the Se and 
Sp of the serological tests to the observed data [14]. The 

Sp of RT-PCR was set to 100%. This implies the use of two 
latent classes (instead of four without this assumption).

Prior knowledge was extracted from the literature and 
summarized using prior distributions. Prior informa-
tion on the performance of the tests was obtained from 
a search on PubMed with various combinations of key-
words “COVID-19”, “diagnosis”, “performance”, “accu-
racy”, “test”, and “serological”. The retained articles were 
those that reported the performance of at least one of 
the tests (RT-PCR, IgG, and IgM). The excluded articles 
were those where the ‘gold standard’ was an imperfect 
diagnostic test, those that reported on pre-pandemic sera 
(to determine serologic test specificities), and those that 
used clinical or biological criteria to select the popula-
tion. From the articles selected [7–9, 13], we extracted 
the smallest lower bound and the largest upper bound of 
the 95% confidence intervals (CoIs) of each test Se and 
Sp to derive prior intervals. When no confidence inter-
vals were available, point estimates were used to derive 
the prior intervals (Table 1). Beta distributions were used 
as prior distributions with means equal to the centers of 
the corresponding prior intervals and standard devia-
tions equal to the fourths of their ranges (Table  1). For 
the proportion of infection cases, a beta distribution with 
both parameters equal to one was used; this corresponds 
to a uniform distribution between 0 and 1.

Gibbs sampling was used to obtain a sample of the pos-
terior distribution of each parameter from which were 
derived a point estimate (median of the posterior dis-
tribution) and a 95% credibility interval (CrI, between 
quantiles 2.5% and 97.5% of the posterior distribution) 
[14].

Three sets of 60,000 values were sampled from the con-
ditional posterior distribution of each of the three param-
eters of the model using three different sets of starting 
values for the parameters. These starting sets were cho-
sen using the centres and the upper and lower bounds of 
the intervals of the literature data on test performance 
(Table 1). An interval was formed by the proportions of 
positive RT-PCR and IgG/IgM serology using the cross 
table of these two test results. The bounds and centre of 
this interval were used as a starting set for the proportion 
of infected people in the data. The convergence of the 
three Markov chains was evaluated by the Gelman index. 
The first 10,000 iterations of the three chains allowing to 
reach convergence were removed. The remaining 50,000 
iterations of each of the three chains were put together 
to give point estimates (medians of the posterior distri-
butions) and 95% credibility intervals (quantiles 2.5% and 
97.5% of the posterior distributions) of the parameters.

Estimating the multiplying factor
A sample of the posterior distribution of the multiply-
ing factor was obtained by dividing each value of the 

Table 1  Prior knowledge on the sensitivities and specificities of 
the tests used for the diagnosis of SAR-Cov-2 infection
Test characteristic Prior 

interval
Prior param-
eters of beta 
distributions
Alpha Beta

RT-PCR sensitivity 50–91% 13.25 5.54

IgM test sensitivity a 24–44% 30.18 58.58

IgM test specificity 94–100% 124.48 3.85

IgM and IgG test sensitivity b 23–97% 3.61 2.40

IgM and IgG test specificity b 81–100% 33.58 3.52
a Sensitivity of the test in diagnosing recent infections
b IgM and IgG test: positive result when IgM + or IgG+, negative result when 
IgM– and IgG–.
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posterior distribution sample of the incidence proportion 
of SARS-Cov-2 infection by the observed proportion of 
alert cases with positive RT-PCR test result. A point esti-
mate of the factor and a 95% CrI were extracted from that 
sample (For more details, please see Additional files 1, 2 
and 3).

In this work, qualitative variables were summarized 
by numbers and percentages in various modalities and 
quantitative variables by the mean, the standard devia-
tion, the median, the first and third quartile.

All statistical analyses were performed with R soft-
ware version 3.6.3 (2020-02-29, R Core Team (2020). R: 
A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. 
URL https://www.R-project.org/).

Results
Characteristics of the study population
The median age of the individuals in the alert population 
was 44 years and the standard deviation was nearly 17 
years. This wide variability is also illustrated by a 25-year 
interquartile range (Q1 = 33 years and Q3 = 58 years).

Of the 929 individuals with no missing data for sex or 
diagnostic test results, (659) 71% were males. Among 
COVID-19 signs that motivated the alert, fever, dry 
cough, and fatigue were present in (595) 64%, 166 (18%), 
and 99 (11%) of alert cases, respectively.

Observed diagnostic test results
Full RT-PCR and IgG/IgM test results were available 
for 933 out of the 1000 alert cases. According to these 
results, 218 (23%) cases were RT-PCR+; 434 (47%) IgM+; 
and 464 (50%) RT-PCR+, IgM+, or both. Besides, of these 
933 cases, 647 (69%) were IgM + or IgG+ (Table 2).

Estimates obtained with the latent class model
The incidence proportion of SARS-CoV-2 infection in 
the first thousand COVID-19 alert cases in South Kivu 
was estimated at 58% (95% CrI: 51.8–64) and the preva-
lence at 72.83% (95% CrI: 65.68–77.89). In other words, 
out of 100 alert subjects 58 were incident cases and about 
73 were prevalent cases.

The RT-PCR SARS-CoV-2 antigen test sensitivity was 
estimated at 41.34% (95% CrI: 36.47–46.57). The IgM 
test sensitivity was estimated at 71.65% (95% CrI: 66.45–
76.45) and its specificity at 96.93% (95% CrI: 92.75–
99.11). These values were also observable in the posterior 
distributions of the parameters (see Additional file 4).

Calculation of the multiplying factor
Of the 1000 alert subjects, 240 were predicted as con-
firmed cases versus 580 as probable cases. The factor for 
approximating the number of new biologically probable 
infections from the number of RT-PCR + subjects was 

2.42 (95% CrI: 1.95–3.01) (Table 3). This means that the 
number of confirmed cases should be multiplied by 2.42 
to yield an estimate of the number of new biologically 
probable infections.

Discussion
This analysis of the first 1000 alert cases in South Kivu 
showed the strong underestimation of the number of new 
infections obtained by using the number of confirmed 
cases. Indeed, whereas RT-PCR test indicated 23% of 
confirmed cases, the incidence proportion as estimated 
by the latent class model indicated 58% of new infec-
tion cases and the estimated prevalence was 73%; i.e., the 
number of new infections would have been more than 
double of the number of confirmed cases. The high speci-
ficity of RT-PCR tests precludes overestimation and justi-
fies its use to define confirmed cases. However, we might 
propose to join to the number of confirmed cases the 
number of biologically probable cases as obtained using 
the multiplying factor.

Table 2  SARS-CoV-2 RT-PCR antigen test and serology results 
in the first thousand COVID-19 cases seen in South Kivu (DRC) in 
2020

RT-PCR 
negative

RT-PCR 
positive

Total

IgM test result

Negative 469 (50.27) a 30 (3.22) 499 
(53.49)

Positive 246 (26.37) 188 (20.14) 434 
(46.51)

Total 715 (76.64) 218 (23.36) 933 
(100)

IgM and IgG test result b

Negative 267 (28.62) a 19 (2.04) 286 
(30.66)

Positive 448 (48.02) 199 (21.32) 647 
(69.34)

Total 715 (76.64) 218 (23.36) 933 
(100)

a Each value is expressed as number (percent of all available values)
b IgM and IgG test: positive result when IgM + or IgG+, negative result when 
IgM– and IgG–.

Table 3  Calculation of the factor for approximating the number 
of new biologically probable infections from the number of 
RT-PCR + subjects in South Kivu (DRC).
Parameter Median (95% cred-

ibility interval)
Expected number of RT-PCR + subjects among 
1000 alert cases

240 (203–278)

Number of biologically probable new SARS-
CoV-2 infections

580 (518–640)

Multiplying factor a 2.42 (1.95–3.01)
a Factor that allows obtaining the number of biologically probable new SARS-
CoV-2 infections from the number of confirmed cases

https://www.R-project.org/
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The impact of misclassification is well known in other 
contexts [15–18] and in infectious diseases [19] and has 
been taken into account in numerous studies. Either they 
use a method comparable to the one used here, based on 
estimating a multiplying factor to obtain the corrected 
value from the observed value [19], or they obtain the 
corrected value by a latent class model without giving a 
multiplying factor that can be used in another context. 
These methods are currently also used to estimate vac-
cine effectiveness [20–22]. Several previous studies have 
estimated the number of biologically probable cases 
using a latent class model to account for test imperfec-
tions [7–9, 23]. They reported comparable results in dif-
ferent geographical contexts and suggested for RT-PCR 
test higher sensitivity estimates than ours (55 to 85% vs. 
36 to 47%). This discrepancy may arise from tests per-
formed sometimes at late stages of the disease in this 
study context, which is supported by the high proportion 
of IgG + results.

Here, adding the information on IgG results would 
increase the estimate of the proportion of infection cases 
in the alert cases up to 73%. As the study concerned the 
1000 alert cases identified during the first months of the 
pandemic, it is very probable that most infection cases 
have occurred during the study period and that the true 
incidence proportion among these first thousand alert 
cases lays between 58% (an underestimation due to late 
diagnoses) and 73% (an overestimation due to the poten-
tial inclusion of a small number of infection cases that 
had occurred before the study period). Logically, after 
the first year of the pandemic, the incidence proportion 
should be estimated using only the results of RT-PCR 
and IgM tests.

The early availability of new biological tests at the 
beginning of the pandemic justifies the caution in sero-
logical result interpretation. In particular, some authors 
have suspected a cross-reactivity between SARS-Cov-2 
and other germ antigens already present in the African 
context [13, 24, 25]. The progressive improvement of 
serological tests make them useful complements to RT-
PCR test whose sensitivity decreases at late stages of 
infection. Indeed the latent class model with Bayesian 
inference changed slightly the estimates of the proportion 
of infection cases by allowing for the imperfections of the 
tests. In fact, (i) the proportion of either RT-PCR + or 
IgM + subjects was 50%, whereas the estimate of the inci-
dence proportion given by the model was 58%; and, (ii) 
the proportion of RT-PCR+, or IgM+, or IgG + subjects 
was 71%, whereas the estimate of the prevalence given 
by the model was 73%. This 58% incidence proportion is 
also found using the expression proposed by Sempos and 
Tian [26], but the contribution of the present study was 
to take into account the uncertainty on the performance 

of RT-PCR and quantify the multiplier factor in an Afri-
can context.

The correction factor estimate allowing to approximate 
the number of probable new SARS-CoV-2 infections 
among the tested subjects, was based on the number of 
confirmed cases and was depended of the performance 
of the used tests. It can be transposed to other countries 
that used the same tests, regardless of the strength of the 
epidemic. The correction factor would have to be recal-
culated in countries that use other tests.

The method and the multiplication factor can be gener-
alized to other African countries with different screening 
capacities, resources and epidemiological contexts. How-
ever, the multiplication factor will have to be recalculated 
if the tests used are different.

One limitation of this study may be the extrapolation of 
the incidence proportion found in the 933 subjects (who 
had diagnostic test results) to the rest of the first 1000 
alerts (i.e. 67 subjects). But there was nothing to contra-
dict the fact that these missing data were not random. 
Even if this bias exists, it will have little impact because 
these subjects represented only about 7% of the first 1000 
alerts.

Another limitation was the unavailability of the delay 
between symptom onset and lab tests. Indeed, this delay 
may affect test results and subsequently the value of the 
multiplier. Furthermore, very few subjects were asymp-
tomatic in our study, which limits subgroup analysis in 
this particular population.

Conclusion
The present study confirmed that the incidence propor-
tion of SARS-CoV-2 infection is underestimated when 
only RT-PCR positive subjects are counted. Thus, when 
dealing with changes in the dynamics of the pandemic, 
it would be useful to report the number of biologically 
probable cases along with the number of confirmed 
cases. The estimated multiplier may be used to approxi-
mate this number from the number of RT-PCR + cases in 
the African context. To further clarify the applicability of 
the proposed multiplier, this study should be supported 
by another one that aims to estimate the multiplier fac-
tor as a function of the time elapsed between the onset of 
COVID-19 symptoms and the carrying out of the diag-
nostic tests, and also in asymptomatic subjects.
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