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Abstract 

Background Data loss often occurs in the collection of clinical data. Directly discarding the incomplete sample may 
lead to low accuracy of medical diagnosis. A suitable data imputation method can help researchers make better use 
of valuable medical data.

Methods In this paper, five popular imputation methods including mean imputation, expectation-maximization 
(EM) imputation, K-nearest neighbors (KNN) imputation, denoising autoencoders (DAE) and generative adversarial 
imputation nets (GAIN) are employed on an incomplete clinical data with 28,274 cases for vaginal prolapse predic-
tion. A comprehensive comparison study for the performance of these methods has been conducted through certain 
classification criteria. It is shown that the prediction accuracy can be greatly improved by using the imputed data, 
especially by GAIN. To find out the important risk factors to this disease among a large number of candidate features, 
three variable selection methods: the least absolute shrinkage and selection operator (LASSO), the smoothly clipped 
absolute deviation (SCAD) and the broken adaptive ridge (BAR) are implemented in logistic regression for feature 
selection on the imputed datasets. In pursuit of our primary objective, which is accurate diagnosis, we employed 
diagnostic accuracy (classification accuracy) as a pivotal metric to assess both imputation and feature selection tech-
niques. This assessment encompassed seven classifiers (logistic regression (LR) classifier, random forest (RF) classifier, 
support machine classifier (SVC), extreme gradient boosting (XGBoost) , LASSO classifier, SCAD classifier and Elastic 
Net classifier)enhancing the comprehensiveness of our evaluation.

Results The proposed framework imputation-variable selection-prediction is quite suitable to the collected vaginal 
prolapse datasets. It is observed that the original dataset is well imputed by GAIN first, and then 9 most significant 
features were selected using BAR from the original 67 features in GAIN imputed dataset, with only negligible loss 
in model prediction. BAR is superior to the other two variable selection methods in our tests.

Concludes Overall, combining the imputation, classification and variable selection, we achieve good interpretability 
while maintaining high accuracy in computer-aided medical diagnosis.
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Introduction
Pelvic organ prolapse (POP) is a major health issue for 
women, which is defined as the descent of one or more 
pelvic organs, such as the anterior and posterior vagi-
nal wall, uterus (cervix), or apex of the vagina (vaginal 
vault or cuff scar after hysterectomy). POP significantly 
impacts the quality of life, causing discomfort, pain, and 
embarrassment. The cause of POP is multifaceted, and 
the known risk factors include aging, menopause, par-
ity, vaginal delivery, weight lifting, obesity, and chronic 
cough [1]. The prevalence of symptomatic POP in China 
is 9.6%, and the incidence of POP in women aged 70 years 
or older is reported to be eight times higher than that 
in women aged 20-29 years old [2]. The lifetime risk of 
surgery for POP is 11.1% [3]. Despite the high incidence 
of POP, its pathophysiological mechanism has not been 
elucidated. Pelvic floor disorders, including pelvic organ 
prolapse (POP), urinary incontinence and fecal inconti-
nence, are common ailments in middle-aged and elderly 
women. In POP, prolapse of the anterior vaginal wall is 
the most frequent form. Despite the high incidence, mul-
tiple factors such as inadequate awareness and shyness 
lead to a low clinic rate, making data collection harder 
and incomplete. Therefore, it’s important to figure out 
how to utilize the clinical data and minimize the impact 
of data loss. The issue of missing data in the diagnosis 
of vaginal prolapse is a concern due to privacy issues, 
as some patients may map out of sharing certain infor-
mation. The missing data can lead to potential misdiag-
nosis, which can have significant clinical implications. 
Deletion of samples with missing values, also known as 
complete case analysis or listwise deletion, is a commonly 
used approach for handling missing data. However, this 
approach can introduce substantial bias if the missing 
data are not missing completely at random, especially 
when the deleted values are related to the outcome vari-
ables [4, 5]. In these scenarios, imputation methods are 
often preferred over deletion. Two broad categories of 
imputation methods are typically used: statistical and 
machine learning methods [6].

Statistical methods deal with missing values by filling 
the missing part with its statistical estimate calculated 
from the available part [7], which include expecta-
tion maximization (EM) [8], gaussian mixture model 
(GMM) [9], Hot deck imputation [10], linear discrimi-
nant analysis (LDA) [11], Markov Chain Monte Carlo 
(MCMC) [12], Mean/Mode imputation [6], Multiple 
Imputation by Chained Equations (MICE) [13], Naive 

Bayes [14, 15], Principal Component Analysis (PCA) 
[16] and Singular Value Decomposition (SVD) [17]. In 
this paper we only research on mean/mode imputation 
and expectation maximum imputation because they’re 
commonly used and typical. Because of its simplicity 
and ease of computation, the mean imputation, which 
replaces missing values with the mean of the available 
observations, is the most commonly used imputation 
method. As the the sample mean is sensitive to extreme 
values, median or mode can be used as alternate when 
the data distribution is not normal. However, single 
imputation does not take into account the research 
objectives and individual differences, which may largely 
impact the estimation accuracy [18]. So it is impor-
tant to carefully develop the appropriate imputation 
method based on the characteristics of the data and 
the research question being addressed. More sophisti-
cated methods like multiple imputation that combine 
multiple estimates from a suitable imputation model 
can reduce the bias and narrow the uncertainty. How-
ever, doing multiple imputation well can be a tough 
task, since choosing and applying a suitable imputation 
model requires knowing well your data set [19]. EM 
imputation iteratively finds the maximum likelihood 
estimates via E-step and M-step . It is flexible that can 
be applied to a wide range of cases and relatively simple 
to be implemented. Many studies show that EM impu-
tation is effective in various statistical models [20, 21], 
although it is sensitive to initial values. Additionally, 
EM algorithm can converge to a local maximum, which 
means that it may not always find the global maximum 
likelihood estimate [22].

Compared with statistical methods, machine learn-
ing techniques excel at exploring complex relationships 
between large data sets.

On the other hand, the realm of machine learning 
offers an array of powerful methods for data imputa-
tion. Artificial Neural Networks are capable of learning 
complex patterns in data and predicting missing values 
[23]. Association rule mining identifies associations 
between variables that can aid in imputation. Cluster-
ing algorithms, such as Fuzzy C-Means and K-Means, 
group data points to facilitate imputation [24, 25]. 
Self-Organizing Maps (SOM) provide dimensional-
ity reduction for accurate imputation. Decision tree-
based methods like Classification and Regression Trees 
(CART) and C4.5 offer intuitive ways to predict missing 
values based on available information [26]. K-Nearest 
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Neighbor (KNN) imputation leverages proximity to 
similar data points for estimation [27]. Kernel-based 
imputation and Support Vector Machine/Regression 
(SVM/SVR) techniques further extend the repertoire 
of imputation methods within the machine learn-
ing framework [28]. In recent years, machine learning 
methods such as denoising autoencoders (DAE) [29], 
and generative adversarial imputation nets (GAIN) 
[30] have become increasingly popular in dealing with 
incomplete data. In our paper, we will focus on KNN, 
DAE and GAIN, because KNN is commonly used and 
GAIN, DAE are relatively new methods, according to 
our experiments, they are better suited to the real data-
set applied in this paper.

KNN imputation replaces the missing value with the 
mean or mode of its nearest neighbours [31]. Although 
KNN performs well on some public data sets [27], it is 
very complex to compute, especially in high-dimensional 
data, which is a drawback that makes it hard to be applied 
in real situation.

To reduce the complexity, a more practical approach 
applying Self-Organizing Map (SOM) was proposed [32]. 
DAE was first proposed as a new training principle for 
unsupervised learning [33]. Inspired by this, Gondara 
et al. apply DAE in missing data imputation , this method 
is valid for different types of missing data [29]. Another 
deep learning network be more appropriate for complex, 
high-dimensional distributions. Ozair et al. demonstrated 
the power of Generative adversarial networks in imputa-
tion with comprehensive simulations [34]. Unlike like-
lihood-based methods, GANs are considered as implicit 
probabilistic models [35]. Later on, an imputing method 
GAIN was proposed by adapting the GAN framework 
[30]. Yoon et  al. showed that GAIN outperformed the 
other five imputation methods including multivariate 
imputation by chained equations (MICE) [36], MissForest 
[37], Matrix [38], DAE and EM imputation [30].

In data-driven medical diagnosis, it is also crucial to 
automatically pick out the major risk factors for cer-
tain disease among a large number of candidate indica-
tors [39]. To address this issue, many variable selection 
techniques have been utilized to select the most relevant 
features, enhance model interpretability and avoid over-
fitting [40]. In principle, exhaustive searching of all possi-
ble combinations of variables is an ideal way for selecting 
the best subset. But this method will be computational 
infeasible when the number of variables d is large. Since 
LASSO [41], variable selection via regularized regression 
has been one of the hot topics in many real applications 
including medical data analysis. Such regularized models 
can identify most relevant variables and estimate regres-
sion coefficients simultaneously. In past years, various 
penalty functions have been employed in regularization 

for variable selection. As the first proposed regulariza-
tion regression, LASSO utilizes L1 penalty which produces 
biased estimates for large coefficients. This has moti-
vated Fan and Li [42] to consider a superior penalty, the 
smoothly clipped absolute deviation (SCAD) penalty. They 
proved that the SCAD has three properties for the penalty 
function: sparsity, unbiasedness and continuity. Also, the 
Elastic Net [43] which was proposed as the combination of 
L1 and L2 penalty, is very robust and less biased compared 
to LASSO. Theoretically, L0 regularized regressions which 
directly penalize the number of nonzero parameters, 
should be the most essential sparsity measure. However, 
solving an L0 regularized optimization is quite challenging 
because of its lack of convexity. In order to approximate 
the L0 regularization in generalized linear models (GLM), 
broken adaptive ridge (BAR) was proposed using an itera-
tive reweighed L2-penalization procedure [44]. The GLM-
BAR estimator possesses the advantages of both L0 and L2 
penalizations and comparing to L1 penalization, it tends to 
generate more concise model [44].

In this article, we develop a general framework which 
connects data imputation, prediction and feature selec-
tion. Taking the vaginal prolapse data set as an example, 
we first compare five imputation methods (mean imputa-
tion, EM imputation, GAIN, KNN imputation, and DAE) 
for their performance of handling missing data. Then 
LASSO, SCAD, BAR are applied on imputed data sets 
for feature selection and classification. These methods, in 
themselves, do not possess classification function. Their 
classification function only emerges when applied to a 
specific generalized model, such as logistic regression. So 
we work on some combinations in this work. Our contri-
butions in this work are:

• Through real medical data, we successfully dem-
onstrated that missing value imputation can greatly 
improve the prediction accuracy in clinical diagnosis.

• Imputation and feature selection are combined and 
adapted to the specific area of vaginal prolapse pre-
diction for the first time. We integrate them syner-
gistically to leverage the strengths of both methods 
within the unique characteristics of our dataset.

• The proposed framework imputation-variable selec-
tion-prediction is applicable to most medical diagno-
sis based on incomplete datasets.

The paper is organized as follows. In “Methodology” sec-
tion, specific details are provided about the five imputa-
tion methods and the three feature selection methods. 
Then we show experimental results of imputation, fea-
ture selection and classification in “Results” section. Con-
clusions and discussions are presented in “Conclusions 
and discussions” section.
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Methodology
Mean imputation
In this approach, missing components of every attribute 
are filled in by the average of all observed components in 
corresponding attribute [4].

EM algorithm
It assumes that the input vectors are generated from 
some probability distribution function (pdf) p(x|θ) , 
where θ is the parameter which determines this prob-
ability distribution. Given x1, ..., xN , the observed 
d-dimensional predictors, l(θ) = N

i=1 log p(xi|θ) is the 
log-likelihood function of θ . If there exists hidden data z 
with distribution Q(z), then p(xi|θ) =

∑

z p(xi, z|θ) and 
the log-likelihood function becomes:

According to Jensen’s Inequality (2), we have

The lower bound of l(θ) reaches its maximum when the 
equality holds, that is,

With an initialized distribution parameter θ , the follow-
ing two steps (E and M) are repeated until convergence.

• E step: compute the conditional probability expecta-
tion of the joint distribution. 

• M step: maximize the expectation. 

KNN
KNN imputation is a non-parametric method that 
does not make assumptions about the underlying 

(1)

l(θ) =

N
∑

i=1

log
∑

z

p(xi, z|θ)

=

N
∑

i=1

log
∑

z

Q(z)
p(xi, z|θ)

Q(z)
.

(2)
l(θ) =

N
∑

i=1

log
∑

z

Q(z)
p(xi, z|θ)

Q(z)

≥
∑

7Ni=1

∑

z

logQ(z)
p(xi, z|θ)

Q(z)
.

(3)Q(z) = p(z|xi, θ).

(4)Q(z) = p(z|xi, θ),

(5)E

(

p(xi , z|θ)

Q(z)

)

=

N
∑

i=1

∑

z

logQ(z)
p(xi , z|θ)

Q(z)
.

(6)θ = arg max E

(

p(xi, z|θ)

Q(z)

)

.

distribution of the data. Based on KNN, the missing 
values are imputed by the mean or mode of their near-
est neighbors which are defined as the K closest data 
points to the missing value according to some distance 
metric [31]. Choosing appropriate K - the number of 
neighbors and distance function are two important 
issues in KNN imputation. Troyanskaya et al. suggested 
to use non-missing part to calculate optimal K [45]. 
But until now, there is no theoretical optimal K. As to 
the distance between samples, Minkowski distance is 
used in general. Assume that observed samples have d 
attributes, for example, the i-th sample is represented 
as xi = (xi1, xi2, ..., xid) . Then the Minkowski distance 
between two samples xi and xj is defined in Eq. (7).

where q is the Minkowski coefficient. In this paper, we 
use Euclidean distance, which is a special case when the 
parameter q = 2.

DAE
DAE, a deep neural network, is composed of an encoder 
and a decoder, where both the encoder and decoder are 
three-layer neural networks. The decoder is first given 
the input d-dimensional with missing data, and the mean 
value of the corresponding variable is used as a place-
holder for the missing position. The units in each layer of 
the encoder is d + θ , d + 2θ , d + 3θ , and the units in each 
layer of the decoder is d + 3θ , d + 2θ , d + θ , and the final 
output is a d-dimensional complete data. θ represents 
positive integer, which in this article we set it to 7. DAE is 
implemented based on Python 3.9.0.

GAIN
Proposed by Yoon, J et  al., GAIN imputes missing data 
using well-known GAN framework [30]. The genera-
tor (G) observes some components of a real data vector, 
imputes the missing components conditioned on what is 
actually observed, and outputs a completed vector. The 
discriminator (D) then takes a completed vector and 
attempts to determine which components were actu-
ally observed and which were imputed. To ensure that D 
forces G to learn the desired distribution, D is provided 
with some additional information in the form of a hint 
vector. The hint reveals to D partial information about the 
missing part of the original samples, which is used by D to 
focus its attention on the imputation quality of particular 
components. This hint ensures that G is in fact generated 
according to the true data distribution. The architecture 
of GAIN algorithm is shown in Fig.  1. We define some 

(7)
D(xi, xj) = (|xi1 − xj1|

q + |xi2 − xj2|
q + ...

+ |xid − xjd |
q)

1
q ,
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random vectors: data vector X = (X1, ...,Xd) , mask vector 
M = (M1, ...,Md) and noise vector Z = (Z1, ...,Zd) , where 
M takes values in {0, 1}d.

Generator
The generator (G) is a fully connected neural network. Its 
output X̄ is

where ⊙ represents element-wise multiplication and 1 
denotes the unit vector. Then the overall output X̂ can be 
generated as:

Discriminator
The discriminator (D) is also a fully connected neural 
network mapping imputed data into [0, 1]d , where the 
i-th component represents the possibility that the i-th 
component of X̂ is observed.

Hint matrix
To ensure that enough information is provided to D, a 
hint mechanism is necessary [30].Consider a random 
variable B = (B1, ...,Bd),

Mi =

{

1 if Xi is observed,
0 otherwise.

(8)X̄ = G(X ,M, (1−M)⊙ Z),

(9)X̂ = M ⊙ X + (1−M)⊙ X̄ .

Bj =

{

0 j = k ,
1 j �= k .

where k ∈ {1, 2..., d} is randomly selected. The hint vector 
H is then defined based on B:

Loss function
To obtain the object of adversarial training, a quantity 
is defined in Eq. (11)

then GAIN is simplified as a minimax problem

Based on this problem, the loss function is given as

and the loss function of D is then defined as

It is obvious to see that D is updated by

where kD is the mini batch size. Similarly, the loss func-
tion of G is defined as follows

(10)H = B⊙M + 0.5(1− B).

(11)
V (D,G) = Ex̂,M,H [(1−M)T log(1− D(X̂ ,H))

+MT logD(X̂ ,H)],

(12)min
G

max
D

V (D,G).

(13)L(a, b) =

d
∑

i=1

[ai log(bi)+ (1− ai) log(1− bi)],

(14)
LD(m, m̂, b) =

∑

i:bi=0

[(1−mi) log(1− m̂i)

+mi log(x̂i)].

(15)min
D

−
∑

j=1

kDLD(m(j), m̂(j), b(j)),

Fig. 1 Architecture of GAIN
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By reducing the loss in Eq. (16), the generator can suc-
cessfully obfuscate the discriminator. Since the part gen-
erated by the generator should be as close to the real data 
as possible, another loss function Eq. (17) is defined as 
below to guarantee the similarity:

where

The G is updated by

where kG is the mini batch size, α is a hyper parameter. In 
this study, GAIN is implemented based on Python 3.9.0.

Variable selection in generalized linear models
For generalized linear models such as ordinary linear 
regression, logistic regression and Poisson regression, let 
y1, y2, ..., yN be N observations of response variables and x1 , 
..., xN be observed d-dimensional predictors corresponding 
to y1, y2, ..., yN . Each yi has the exponential distribution:

where φ (0 < φ < ∞) , θi are parameters, a(·), b(·) and c(·) 
are known functions. Through a specified link function 
h(·) , θi is connected with xi as h(µi) = xi

Tβ , where µi is 
the expectation of yi that can be obtained by µi = a′(θi) , 
and β = {β1, ...,βp} are regression coefficients of the 
GLM. Then the log-likelihood function is

Adding a penalty to the log-likelihood function will 
provide both variable selection and regression coeffi-
cient estimation for GLMs by simultaneously identifying 
a subset of significant variables. The β estimator is com-
puted by minimizing an objective function combining 
the goodness of fit and sparsity.

(16)LG(m, m̂, b) = −
∑

i:bi=0

(1−mi) log(m̂i).

(17)LM(xi, x
′
i) =

d
∑

i=1

miLM
(

xi, x
′
i

)

,

LM(xi, x
′
i) =

{

(

x′i − xi
)2
, if xi is continuous,

−xi log x
′
i. if xi is binary.

(18)
min
G

∑kG

j=1
LG(m(j), m̂(j), b(j))

+ αLM(x(j), x̂(j)),

(19)fY (yi|θi,φ) = exp

{

yiθi − a(θi)

b(φ)
− c(yi,φ)

}

,

(20)

l(β) =

n
∑

i=1

log L(β; xi, yi)

=

n
∑

i=1

log fY (yi; θi,φ).

Three typical penalty functions commonly used for 
variable selection are described briefly below.

LASSO
The well known variable selection approach shrinks some 
small coefficients using L1 penalty  

where � is a non-negative tuning parameter for model 
sparsity.

SCAD
 

LASSO and SCAD are both implemented by R package 
glmnet.

BAR
The BAR method is proposed to approximate the L0 pen-
alty. Initialized with the solution of ridge regression, the 
GLM-BAR estimator of β is updated by reweighed L2
-penalized regression ( k ≥ 1)

In this study, BAR is implemented using R BrokenA-
daptiveRidge package .

Results
Data description
The vaginal prolapse data set were collected through the 
specialized database of Pelvic Floor Dysfunction, from 
a National Key R &D Program of China, at West China 
Second University Hospital. The data set analyzed in this 
study includes demographic, therapeutic and recurrence-
survival information of 28,274 women with and without 
POP from January 1, 2015 to December 31, 2021.

After primary data cleaning, 12694 valid individuals 
with 67 prognostic factors are remained in our study. In 
this data matrix, the total missing rate reaches 7.71% . In 
all valid cases, 9840 of them contain at least one miss-
ing attributes, representing 77.52% of all 12694 cases. 
Table 1 shows the basic information of the five features 
with the highest missing rate, such as mean, range and 
the proportion of missing values. If all these incomplete 

(21)β̂ = arg min
β

{−l(β)+ P�(β)}.

(22)P�(β) = |β|,

(23)P�(β) = �
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(a− 1)�
I(β > �)

}
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items are deleted before modeling, we will lose a lot 
of useful information, resulting in inaccurate predic-
tion and diagnosis of the disease. Therefore, choosing 
appropriate data imputation method to fully utilize 
existing data information is crucial for solving such 
data-driven medical diagnosis problems. On the other 
side, how to select the important factors that are truly 
related to the disease from 67 potential variables is 
also a matter of great concern to doctors. In this work, 
a general framework which connects data imputation, 

prediction and feature selection is proposed and pre-
sented in Fig. 2.

Evaluation criteria
To assess the efficacy, classification models LR, RF, SVC, 
XGBoost, LASSO based classifier (LASSO-LR), SCAD 
based classifier (SCAD-LR) and Elastic Net based clas-
sifier (Elastic Net-LR) are implemented on each imputed 
data [46]. The accuracy, F1 score and AUC are used as 
the performance metrics for evaluating the proposed 
imputation methods. For each classifier, we repeated the 
experiment 100 times and show the averaged results and 
standard deviation.

• True Positives (TP): Instances correctly classified as 
positive.

• True Negatives (TN): Instances correctly classified as 
negative.

• False Positives (FP): Instances incorrectly classified as 
positive.

Fig. 2 Process of missing data imputation, prediction, and feature selection in data-driven medical diagnosis

Table 1 The five variables with highest missing rate

Factor Range Mean Missing 
rate (%)

Prerest pelvicfloor mean 0-112.6 6.77 30.7

Fast muscle rise 0.14-2 0.43 30.6

Incontinence(mom or sis) 1-2 1.01 23.2

Stress incontinence 1-2 1.07 23.1

Vaginal laxity 1-4 1.63 22.8
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• False Negatives (FN): Instances incorrectly classified 
as negative.

• Accuracy: ratio of the number of correct classifica-
tions to the total number. 

• F1 score: the summed average of precision and recall, 
with maximum of 1 and minimum of 0. 

 where 

• AUC : the area under the receiver operating character-
istic (ROC) curve.

Prediction without imputation and feature selection
In order to better emphasize the effect of imputation 
and feature selection, we will utilize the dataset with-
out imputation and without feature selection, that is, 
only case deletion is used on the original dataset. We 
will then showcase performance metrics, including 
accuracy, F1 score, and AUC (Area Under the Curve), 
under these conditions. Classification results are dis-
played in Table  2. It appears that the performance of 
LD is not very satisfactory, as its accuracy, F1 score, 
and AUC all hover around 70%. This suggests that 
LD may not be effectively capturing the underlying 
patterns in the data or that there may be room for 
improvement in its performance.

Accuracy =
True Positives+ True Negatives

True Positives+ True Negatives+ False Positives+ False Negatives

F1 =
2× precision × recall

precision+recall

precision =
TP

TP + FP

recall =
TP

TP + FN

Imputation
To show whether the feature selection strategies were 
useful, we display the accuracy, F1, and AUC by just 
using LR, RF, SVC, XGBoost, LASSO-LR, SCAD-

LR, and Elastic Net-LR on the dataset without feature 
selection and with data imputation in this section. 
Tables  3, 4, 5, 6, 7, 8 and 9 displays the classification 
results of the classifiers mentioned in “Evaluation crite-
ria” on the imputed datasets, respectively. It is observed 
that the accuracy of all imputation methods is higher 
than that of LD method. It is evident that RF classifier 
shows better performance than other three classifiers 
when imputed datasets are used. Furthermore, GAIN 
achieves superior performance compared to the other 
methods across all four classifiers.

Table 2 Classification results of LD dataset

Classifier Accuracy F1 AUC 

LR 0.7002(0.0029) 0.7252(0.0030) 0.6975(0.0031)

RF 0.6826(0.0261) 0.7038(0.0276) 0.6810(0.0265)

SVC 0.5989(0.2220e-16) 0.5831(0.0) 0.6459(0.5310e-5)

XGBoost 0.6551(0.0180) 0.6762(0.0201) 0.7127(0.0191)

LASSO-LR 0.6935(0.0177) 0.7187(0.0182) 0.6909(0.0180)

SCAD-LR 0.6861(0.0179) 0.7131(0.0191) 0.6833(0.0177)

Elastic Net-LR 0.6943(0.0181) 0.7196(0.0184) 0.6917(0.0184)

Table 3 Classification results of imputed datasets under LR 
classifier

Imputation 
Method

Accuracy F1 AUC 

Mean 0.7164(0.0012) 0.8110(0.0008) 0.6158(0.0025)

EM 0.7148(0.0011) 0.8098(0.0008) 0.6140(0.0025)

KNN 0.7174(0.0013) 0.8113(0.0009) 0.6179(0.0024)

DAE 0.7170(0.0015) 0.8030(0.0011) 0.6434(0.0033)

GAIN 0.8010(0.0009) 0.8555(0.0006) 0.7641(0.0015)

Table 4 Classification results of imputed datasets under SVC

Imputation 
Method

Accuracy F1 AUC 

Mean 0.7113(<e-33) 0.8177(0.1232e-31) 0.7595(<e-33)

EM 0.6955(<e-33) 0.8204(<e-33) 0.7750(0.1232e-31)

KNN 0.7715(0.1232e-31) 0.8445(0.4930e-31) 0.8201(<e-33)

DAE 0.7101(<e-33) 0.8150(<e-33) 0.7641(1.1093e-31)

GAIN 0.7948(0.4930e-31) 0.8511(0.1232e-31) 0.8666(<e-33)

Table 5 Classification results of imputed datasets under 
XGBoost classifier

Imputation 
Method

Accuracy F1 AUC 

Mean 0.7874(0.0075) 0.8443(0.0061) 0.8563(0.0069)

EM 0.7846(0.0073) 0.8440(0.0058) 0.8490(0.0068)

KNN 0.7862(0.0074) 0.8441(0.0059) 0.8519(0.0065)

DAE 0.7007(0.0082) 0.7868(0.0067) 0.7562(0.0084)

GAIN 0.7894(0.0072) 0.8456(0.0057) 0.8569(0.0067)
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Feature selection
As stated in “Methodology” section, we implement three 
feature selection methods on individual imputed data-
set via logistic regression to select most relevant factors 
of the vaginal prolapse. These methods include LASSO, 
SCAD and BAR. It is worth mentioning that the original 
LASSO tends to selected more variables. However, the 

algorithm in the R package we are using now has a very 
practical improvement in providing strong rules that can 
screen out a large number of predictors, yet producing 
sparse solutions [47].

As in the previous subsection, we evaluated the per-
formance of the feature selection methods using clas-
sifiers mentioned in “Evaluation criteria”. For each 

Table 6 Classification results of imputed datasets under RF classifier

Imputation Method Accuracy F1 AUC 

Mean 0.7937(0.0072) 0.8504(0.0058) 0.7566(0.0084)

EM 0.7892(0.0082) 0.8499(0.0065) 0.7412(0.0092)

KNN 0.7916(0.0073) 0.8495(0.0055) 0.7516(0.0095)

DAE 0.7030 (0.0069) 0.7899(0.0058) 0.6371(0.0073)

GAIN 0.8064(0.0101) 0.8510(0.0082) 0.7614(0.0118)

Table 7 Classification results of imputed datasets under LASSO-LR classifier

Imputation Method Accuracy F1 AUC 

Mean 0.7098(0.0077) 0.8082(0.0059) 0.6026(0.0070)

EM 0.7096(0.0075) 0.8082(0.0059) 0.6020(0.0067)

KNN 0.7120(0.0074) 0.8094(0.0057) 0.6062(0.0071)

DAE 0.7078(0.0080) 0.7985(0.0064) 0.6274(0.0089)

GAIN 0.7957(0.0069) 0.8521(0.0055) 0.7577(0.0081)

Table 8 Classification results of imputed datasets under SCAD-LR classifier

Imputation Method Accuracy F1 AUC 

Mean 0.7104(0.0080) 0.8087(0.0060) 0.6031(0.0076)

EM 0.7099(0.0073) 0.8084(0.0056) 0.6027(0.0068)

KNN 0.7127(0.0074) 0.8098(0.0057) 0.6075(0.0073)

DAE 0.7007(0.0085) 0.7987(0.0066) 0.6030(0.0082)

GAIN 0.7923(0.0069) 0.8504(0.0054) 0.7505(0.0083)

Table 9 Classification results of imputed datasets under elastic Net-LR classifier

Imputation Method Accuracy F1 AUC 

Mean 0.7111(0.0082) 0.8094(0.0063) 0.6032(0.0075)

EM 0.7103(0.0082) 0.8089(0.0064) 0.6024(0.0074)

KNN 0.7122(0.0080) 0.8098(0.0062) 0.6058(0.0075)

DAE 0.7078(0.0081) 0.7980(0.0066) 0.6287(0.0086)

GAIN 0.7976(0.0073) 0.8536(0.0060) 0.7590(0.0085)
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classifier, we repeated the experiment 100 times and 
show the averaged results. Our focus is on examin-
ing the changes in prediction ability before and after 
variable selection, following each imputation. There-
fore, LD is not considered in the following compari-
son. Tables 10, 11, 12, 13, 14, 15 and 16 demonstrates 
the performance of the three feature selection meth-
ods on imputed datasets, which includes the number 
of selected variables and the classification accuracy 
of the datasets after variable selection, F1 score and 

AUC. Regarding the number of variables selected, 
BAR outperforms LASSO and SCAD by selecting 
the fewest variables. However, except for the GAIN-
imputed dataset, the classification accuracy for LR 
and RF based other imputed datasets decreases using 
variables selected by BAR. In contrast, the classifica-
tion accuracy remains relatively stable after using 
LASSO and SCAD. While variable selection improves 
the accuracy of SVC, the overall classification accu-
racy of SVC remains lower than that of RF. Figure  3 

Table 10 Classification results of datasets after feature selection under LR classifier

Imputation methods FSM(No. of selected features) Accuracy F1 AUC 

Mean LASSO(20) 0.7132(0.0011) 0.8094(0.0006) 0.6101(0.0026)

SCAD(41) 0.7147(0.0011) 0.8101(0.0007) 0.6127(0.0026)

BAR(7) 0.7016(0.0007) 0.8030(0.0005) 0.5925(0.0022)

EM LASSO(20) 0.7140(0.0010) 0.8097(0.0007) 0.6117(0.0028)

SCAD(30) 0.7148(0.0009) 0.8102(0.0008) 0.6131(0.0024)

BAR(7) 0.7069(0.0007) 0.8057(0.0006) 0.6010(0.0020)

KNN LASSO(20) 0.7152(0.0008) 0.8104(0.0006) 0.6134(0.0027)

SCAD(38) 0.7162(0.0011) 0.8106(0.0006) 0.6159(0.0027)

BAR(7) 0.7070(0.0008) 0.8058(0.0007) 0.6012(0.0024)

DAE LASSO(27) 0.7056(0.0008) 0.7999(0.0009) 0.6160(0.0021)

SCAD(62) 0.7160(0.0012) 0.8027(0.0009) 0.6412(0.0030)

BAR(7) 0.6944(0.0008) 0.7944(0.0011) 0.5962(0.0022)

GAIN LASSO(10) 0.7939(0.0006) 0.8508(0.0004) 0.7554(0.0014)

SCAD(52) 0.8009(0.0008) 0.8557(0.0006) 0.7643(0.0016)

BAR(9) 0.7960(0.0006) 0.8521(0.0005) 0.7589(0.0015)

Table 11 Classification results of datasets after feature selection under SVC

Imputation methods FSM(No. of selected 
features)

Accuracy F1 AUC 

Mean LASSO(20) 0.7884(<e-33) 0.8570(1.1093e-31) 0.8338(< e-33)

SCAD(41) 0.7227(1.1093e-31) 0.8211(1.2325e-32) 0.7798(4.9303e-32)

BAR(7) 0.6963(4.9303e-32) 0.8209(1.2325e-32) 0.7321(<e-33)

EM LASSO(20) 0.6963(4.9303e-32) 0.8209(1.2325e-32) 0.7408(4.9303e-32)

SCAD(30) 0.6964( 4.9304e-32) 0.8210(1.2326e-32) 0.7481(4.9304e-32)

BAR(7) 0.6963(4.9303e-32) 0.8209(1.2325e-32) 0.7311(1.2326e-32)

KNN LASSO(20) 0.7574(1.2325e-32) 0.8369(4.9303e-32) 0.7959(4.9303e-32)

SCAD(38) 0.7648(4.9304e-32) 0.8408(1.2325e-32) 0.8082(1.1093e-31)

BAR(7) 0.6963(4.9303e-32) 0.8209(1.2325e-32) 0.7311(1.2326e-32)

DAE LASSO(27) 0.7223(1.1093e-31) 0.8157(<e-33) 0.7845(<e-33)

SCAD(62) 0.7089( 1.2326e-32) 0.8139(<e-33) 0.7648(1.2325e-32)

BAR(7) 0.6963(4.9303e-32) 0.8209(1.2325e-32) 0.6851(1.2325e-32)

GAIN LASSO(10) 0.7971(1.2326e-32) 0.8524(<e-33) 0.8650(4.9304e-32)

SCAD(52) 0.7940((4.9303e-32) 0.8506(<e-33) 0.8666(<e-33)

BAR(9) 0.7980(1.2325e-32) 0.8528(1.1093e-31) 0.8664(4.9303e-32)
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shows the classification accuracy of LR, SVC and RF 
before and after feature selection. Table  4 and Fig.  3 
indicate that using RF as the classifier will result in 
higher classification accuracy. However, in terms of 
model performance, GAIN is more stable and per-
forms better. Overall, for the GAIN-imputed dataset, 
variable selection using the BAR method can largely 
improve interpretability while maintaining a high clas-
sification accuracy. Table  17 gives result of the logis-
tic regression using the 9 selected features on the 

GAIN-imputed data, all 9 variables are extremely sig-
nificant with small P values.

Conclusions and discussions
This study aims to provide optimal solutions for the 
three most common problems in computer-aided 
medical diagnosis: data loss, accurate prediction, 
and risk factor analysis. For missing data imputa-
tion, two statistical methods (mean imputation and 

Table 12 Classification results of datasets after feature selection under XGBoost classifier

Imputation methods FSM(No. of selected features) Accuracy F1 AUC 

Mean LASSO(20) 0.7906(0.0077) 0.8466(0.0060) 0.8586(0.0075)

SCAD(41) 0.7891(0.0070) 0.8453(0.0058) 0.8581(0.0067)

BAR(7) 0.7273(0.0077) 0.8114(0.0060) 0.7626(0.0078)

EM LASSO(20) 0.7565(0.0080) 0.8299(0.0064) 0.7991(0.0071)

SCAD(30) 0.7722(0.0083) 0.8391(0.0066) 0.8275(0.0076)

BAR(7) 0.7282(0.0071) 0.8125(0.0054) 0.7616(0.0077)

KNN LASSO(20) 0.7714(0.0073) 0.8375(0.0061) 0.8282(0.0079)

SCAD(38) 0.7879(0.0083) 0.8455(0.0068) 0.8534(0.0074)

BAR(7) 0.7282(0.0071) 0.8124(0.0054) 0.7616(0.0077)

DAE LASSO(27) 0.6984(0.0086) 0.7859(0.0074) 0.7529(0.0082)

SCAD(62) 0.7006(0.0089) 0.7867(0.0073) 0.7563(0.0082)

BAR(7) 0.6866(0.0076) 0.7791(0.0061) 0.7400(0.0090)

GAIN LASSO(10) 0.7847(0.0066) 0.8423(0.0056) 0.8522(0.0065)

SCAD(52) 0.7895(0.0079) 0.8455(0.0067) 0.8574(0.0072)

BAR(9) 0.7906(0.0077) 0.8460(0.0062) 0.8572(0.0073)

Table 13 Classification results of datasets after feature selection under RF classifier

Imputation methods FSM(No. of selected features) Accuracy F1 AUC 

Mean LASSO(20) 0.7995(0.0105) 0.8541(0.0085) 0.7659(0.0119)

SCAD(41) 0.7945(0.0109) 0.8499(0.0091) 0.7617(0.0122)

BAR(7) 0.7303(0.0136) 0.8163(0.0102) 0.6451(0.0172)

EM LASSO(20) 0.7558(0.0114) 0.8308(0.0087) 0.6853(0.0133)

SCAD(30) 0.7645(0.0124) 0.8359(0.0098) 0.6988(0.0137)

BAR(7) 0.7289(0.0123) 0.8134(0.0098) 0.6500(0.0138)

KNN LASSO(20) 0.7677(0.0111) 0.8375(0.0088) 0.7045(0.0129)

SCAD(38) 0.7907(0.0118) 0.8485(0.0095) 0.7523(0.0135)

BAR(7) 0.7306(0.0106) 0.8150(0.0086) 0.6506(0.0124)

DAE LASSO(27) 0.7018(0.0114) 0.7896(0.0095) 0.6339(0.0125)

SCAD(62) 0.7009(0.0112) 0.7875(0.0091) 0.6372(0.0134)

BAR(7) 0.6895(0.0135) 0.7810(0.0108) 0.6193(0.0145)

GAIN LASSO(10) 0.8011(0.0076) 0.8501(0.0092) 0.7680(0.0127)

SCAD(52) 0.8025(0.0099) 0.8559(0.0081) 0.7692(0.0118)

BAR(9) 0.7986(0.0061) 0.8508(0.0051) 0.7705(0.0078)
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EM imputation) and three machine learning methods 
(KNN, DAE and GAIN) are considered. The evaluation 
results show that the GAIN method has the best impu-
tation effect, with a classification accuracy of 81.32% . 
To further enhance the interpretability of our find-
ings, we implement and compare three variable selec-
tion methods (LASSO, SCAD, and BAR) on the each 
imputed dataset. Our results show that BAR feature 
selection on the GAIN-imputed dataset can improve 

interpretability with only 9 out of 67 selected factors 
while maintaining high classification accuracy using 
the RF classifier.

It is verified that all these 9 selected features are 
strongly associated with vaginal prolapse. For example, 
the mode of delivery is a major risk factor to primary 
POP [48] and prolapse of the anterior vaginal wall is 
the most common form of POP [1], therefore, it is 
an important predictor of anterior vaginal prolapse. 

Table 14 Classification results of datasets after feature selection under LASSO-LR classifier

Imputation methods FSM(NO.of selected features) Accuracy F1 AUC 

Mean Lasso(20) 0.7115(0.0075) 0.8086(0.0058) 0.6071(0.0068)

SCAD(41) 0.7116(0.0078) 0.8086(0.0059) 0.6072(0.0075)

BAR(7) 0.6997(0.0073) 0.8021(0.0056) 0.5895(0.0067)

EM Lasso(20) 0.7117(0.0074) 0.8086(0.0058) 0.6080(0.0068)

SCAD(30) 0.7121(0.0075) 0.8086(0.0058) 0.6093(0.0069)

BAR(7) 0.7058(0.0075) 0.8052(0.0058) 0.5991(0.0069)

KNN Lasso(20) 0.7133(0.0073) 0.8094(0.0056) 0.6105(0.0073)

SCAD(38) 0.7135(0.0073) 0.8094(0.0057) 0.6114(0.0070)

BAR(7) 0.7058(0.0075) 0.8053(0.0058) 0.5991(0.0069)

DAE Lasso(27) 0.7022(0.0081) 0.7977(0.0064) 0.6113(0.0084)

SCAD(62) 0.7080(0.0077) 0.7987(0.0060) 0.6271(0.0082)

BAR(7) 0.6932(0.0083) 0.7943(0.0068) 0.5926(0.0073)

GAIN Lasso(10) 0.7921(0.0065) 0.8495(0.0053) 0.7536(0.0074)

SCAD(52) 0.7952(0.0076) 0.8517(0.0061) 0.7573(0.0084)

BAR(9) 0.7943(0.0070) 0.8508(0.0056) 0.7574(0.0079)

Table 15 Classification results of datasets after feature selection under SCAD-LR classifier

Imputation methods FSM(No. of selected features) Accuracy F1 AUC 

Mean Lasso(20) 0.7111(0.0077) 0.8095(0.0058) 0.6025(0.0069)

SCAD(41) 0.7119(0.0081) 0.8098(0.0061) 0.6041(0.0072)

BAR(7) 0.6992(0.0085) 0.8033(0.0062) 0.5837(0.0073)

EM Lasso(20) 0.7124(0.0080) 0.8103(0.0060) 0.6043(0.0071)

SCAD(30) 0.7124(0.0078) 0.8102(0.0059) 0.6049(0.0071)

BAR(7) 0.7063(0.0079) 0.8069(0.0060) 0.5950(0.0067)

KNN Lasso(20) 0.7134(0.0080) 0.8108(0.0060) 0.6069(0.0072)

SCAD(38) 0.7141(0.0078) 0.8109(0.0059) 0.6083(0.0071)

BAR(7) 0.7063(0.0079) 0.8069(0.0060) 0.5950(0.0067)

DAE Lasso(27) 0.7009(0.0089) 0.7997(0.0071) 0.6007(0.0078)

SCAD(62) 0.6945(0.0058) 0.7985(0.0047) 0.5840(0.0060)

BAR(7) 0.6945(0.0058) 0.7985(0.0047) 0.5840(0.0060)

GAIN Lasso(10) 0.7899(0.0067) 0.8500(0.0053) 0.7433(0.0075)

SCAD(52) 0.7918(0.0074) 0.8501(0.0059) 0.7505(0.0081)

BAR(9) 0.7908(0.0069) 0.8514(0.0055) 0.7411(0.0078)
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Additionally, variables such as posteri (Bp), poste-
rior fornix (D), and cervix (C) are consistent with the 
points for measurement in the Pelvic Organ Prolapse 
Quantification System (POP-Q) .The Pelvic Organ 
Prolapse Quantification System (POP-Q) was intro-
duced in 1996 as a standard system for the description 
of female POP and pelvic floor dysfunction. As the 
most commonly used pelvic support staging system, 
POP-Q is approved by the International Continence 
Society, the American Urogynecologic Society and the 
Society of Gynecologic Surgeons [49]. Moreover, vari-
ables like genital hiatus (gh) and perineal body (pb) are 

consistent with the landmarks in POP-Q [50]. What’s 
more, the main etiology of stress incontinence is asso-
ciated with loss of pelvic support, therefore stress 
incontinence may predict the occurrence of POP [51]. 
Overall, the selected features provide valuable insights 
into the important predictors of vaginal prolapse and 
can aid in the development of better diagnostic and 
treatment strategies.

In this dataset, occupations of the patients are only 
divided into mental and manual workers, so there may 
be cognitive differences. And the sample size of the 
dataset is not large enough and needs to be further 

Table 16 Classification results of datasets after feature selection under Elastic Net-LR classifier

Imputation methods FSM(No. of selected features) Accuracy F1 AUC 

Mean Lasso(20) 0.7143(0.0075) 0.8107(0.0063) 0.6092(0.0064)

SCAD(41) 0.7115(0.0112) 0.8090(0.8091) 0.6056(0.0098)

BAR(7) 0.7019(0.0100) 0.8036(0.0077) 0.5916(0.0080)

EM Lasso(20) 0.7148(0.0079) 0.8109(0.0064) 0.6106(0.0063)

SCAD(30) 0.7135(0.0092) 0.8098(0.0072) 0.6097(0.0080)

BAR(7) 0.7068(0.0082) 0.8061(0.0063) 0.5996(0.0070)

KNN Lasso(20) 0.7139(0.0078) 0.8099(0.0060) 0.6108(0.0073)

SCAD(38) 0.7142(0.0076) 0.8101(0.0059) 0.6115(0.0070)

BAR(7) 0.7068(0.0082) 0.8061(0.0063) 0.5996(0.0070)

DAE Lasso(27) 0.7024(0.0089) 0.7978(0.0066) 0.6115(0.0099)

SCAD(62) 0.6939(0.0064) 0.7953(0.0054) 0.5921(0.0061)

BAR(7) 0.6939(0.0064) 0.7953(0.0054) 0.5921(0.0061)

GAIN Lasso(10) 0.7923(0.0063) 0.8497(0.0052) 0.7538(0.0071)

SCAD(52) 0.7952(0.0069) 0.8516(0.0058) 0.7580(0.0072)

BAR(9) 0.7944(0.0070) 0.8508(0.0056) 0.7575(0.0079)

Table 17 Logistic regression analysis for risk factors of vaginal prolapse

a  β = Coefficient
b  OR(95% CI) = Odds Ratio with 95% Confidence Interval

Factors βa   Wald OR(95% CI)b   P Value

Intercept 0.09 0.07 1.09(0.58,2.04) 0.79

During pregnancy incontinence 0.34 20.8 1.40(1.21,1.62) 5.10e-06

Stress incontinence 1.24 39.45 3.46(2.38,5.18) 3.36e-10

Vaginal laxity 0.28 36.32 1.32(1.21,1.45) 1.68e-09

Cevix 0.23 62.77 1.25(1.19,1.33) 2.33e-15

Genital hiatus 0.37 111.03 1.45(1.35,1.55) <2e-16

Perineal body 0.17 23.14 1.18(1.11,1.27) 1.50e-06

Posteri 1.90 621.55 6.72(5.79,7.81) <2e-16

Fast muscle recovery 0.27 939.62 1.30(1.28,1.33) <2e-16

Delivery mode 0.35 328.33 1.42(1.37,1.47) <2e-16
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expanded. Furthermore, some patients are not only 
with vaginal prolapse, but also may be combined with 
other pelvic floor diseases such as uterine prolapse or 
urinary incontinence, resulting in crossing between 
different diseases. In the future, we will concentrate 
on how to generalize this framework to wider range of 
datasets.
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