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Abstract 

Background Subject-level real-world data (RWD) collected during daily healthcare practices are increasingly used 
in medical research to assess questions that cannot be addressed in the context of a randomized controlled trial 
(RCT). A novel application of RWD arises from the need to create external control arms (ECAs) for single-arm RCTs. In 
the analysis of ECAs against RCT data, there is an evident need to manage and analyze RCT data and RWD in the same 
technical environment. In the Nordic countries, legal requirements may require that the original subject-level data be 
anonymized, i.e., modified so that the risk to identify any individual is minimal. The aim of this study was to conduct 
initial exploration on how well pseudonymized and anonymized RWD perform in the creation of an ECA for an RCT.

Methods This was a hybrid observational cohort study using clinical data from the control arm of the completed 
randomized phase II clinical trial (PACIFIC-AF) and RWD cohort from Finnish healthcare data sources. The initial 
pseudonymized RWD were anonymized within the (k, ε)-anonymity framework (a model for protecting individu-
als against identification). Propensity score matching and weighting methods were applied to the anonymized 
and pseudonymized RWD, to balance potential confounders against the RCT data. Descriptive statistics for the poten-
tial confounders and overall survival analyses were conducted prior to and after matching and weighting, using 
both the pseudonymized and anonymized RWD sets.

Results Anonymization affected the baseline characteristics of potential confounders only marginally. The great-
est difference was in the prevalence of chronic obstructive pulmonary disease (4.6% vs. 5.4% in the pseudonymized 
compared to the anonymized data, respectively). Moreover, the overall survival changed in anonymization by only 8% 
(95% CI 4–22%). Both the pseudonymized and anonymized RWD were able to produce matched ECAs for the RCT 
data. Anonymization after matching impacted overall survival analysis by 22% (95% CI -21–87%).

Conclusions Anonymization may be a viable technique for cases where flexible data transfer and sharing are 
required. As anonymization necessarily affects some aspects of the original data, further research and careful consid-
eration of anonymization strategies are needed.
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Introduction
Real-world data (RWD) collected during daily healthcare 
practices are increasingly used in medical research to 
assess questions that cannot be addressed in the context 
of randomized controlled trials (RCT) [1–3]. Some of the 
most common applications of RWD are studies on the 
effectiveness and safety of medical products in real-life 
clinical practice, evaluation of disease epidemiology and 
economic burden, as well as support in drug develop-
ment, clinical trial design, product marketing, and regu-
latory approval [3–7].

A novel application of RWD rises from the need to cre-
ate external control arms (ECAs) for single-arm RCTs [8]. 
In such an application, RWD sources are utilized to create 
a comparator that mimics the characteristics of an RCT 
arm. This is especially relevant when a novel treatment 
has been shown to be highly efficacious, the disease in 
question is rare or very serious, when no effective stand-
ard treatments are available, or the target populations are 
too small [9, 10]. In such cases, ethical considerations 
or infeasibility may not support regular double-blinded 
placebo-controlled RCTs [11–15]. Moreover, by reducing 
or eliminating the need to enroll control patients for two 
RCT arms, an ECA can also increase efficiency, reduce 
delays, and lower costs in the evaluation of new thera-
pies. In the creation of an ECA using RWD, challenges 
may arise due to differences in data availability and qual-
ity. These aspects may affect the semantic and syntactical 
interoperability, and hinder acquisition of similar cohort 
characteristics.

In the Nordic countries, including Finland, Sweden, 
Norway, and Denmark, comprehensive healthcare data 
are recorded in an electronic format in national health-
care registers, providing an excellent ecosystem to utilize 
RWD [16]. Within the Nordics, pseudonymized indi-
vidual-level RWD may be used for research purposes by 
applying for a research permit [17–19]. Utilizing RWD 
in the Nordics for the creation of an ECA and analysis 
against RCT data implies that the data analysis is done in 
the same technical environment (e.g., computing infra-
structure designed for securing sensitive data), and RWD 
are pseudonymized (direct identifiers such as name or 
social security number are removed) before being avail-
able for analysis in the secure environment [19]. When 
pseudonymized RWD are extracted from the secure 
environment, the data needs to be anonymized (the risk 
to identify an individual even indirectly is minimized) 
[19]. This is due to tight laws and regulations on data 
protection since the protection of individual-level data is 
considered a top priority in the EU [20].

In the Nordics, there are essentially two options to 
analyze RWD against RCT data. In the first option, 
RCT data are transferred to the secure environment 

where the pseudonymized RWD are located, and access 
to that environment is granted to all relevant parties. 
In the second option, anonymized RWD are extracted 
into the technical environment in which the RCT data 
are located. The feasibility of the first option depends 
on regulations that govern the transfer of RCT data, 
while the feasibility of the second option depends on 
the amount of information lost in the anonymization 
process of the originally pseudonymized RWD.

A well-established and commonly accepted defini-
tion of anonymized data is not available. Recital 26 of 
the GDPR defines requirements for anonymization to 
be considered safe and acceptable [21]. For data to be 
considered anonymous under the GDPR, the anonymi-
zation procedure should ensure that re-identification 
is no longer possible using reasonable means, which 
are defined by, such as how much it would cost or how 
long it would take to identify someone from the data, 
what other relevant resources the users of the data 
would have access to, and what technology would be 
used now or in the foreseeable future. While the defini-
tion of Recital 26 establishes reasonable principles for 
anonymization, implementing these requirements in 
real-world use cases and datasets, given the capabilities 
and limitations of the technology, can be challenging 
[22].

Anonymization depends on how it is defined and, con-
sequently, what types of anonymization techniques are 
utilized. Anonymization techniques include, but are not 
limited to, micro aggregation, noise addition, rank swap-
ping, shuffling, recoding, and local suppression [23]. 
Several measures for the estimation of risk to identify 
individuals have been proposed [23], but regional agen-
cies that govern the data may have contradictory inter-
pretations. The selection of anonymization techniques 
and privacy criteria depends on the scope of the target 
data, variable types, and the intended use of the result-
ing anonymized data. Some of the recent examples of 
publishing anonymized RWD include the Lean European 
Open Survey on SARS-CoV-2 Infected Patients (LEOSS), 
[24, 25] European population statistics, [26] and urban 
mobility data [27]. There are also studies analyzing the 
privacy risks and data accuracy trade-offs of anonymized 
RWD and clinical study data sets [26–30].

The aim of this study was to explore how well 
anonymized RWD performs in the creation of an ECA 
for an RCT, when compared to the corresponding per-
formance prior to the anonymization, i.e., when using 
pseudonymized RWD. Furthermore, the study compared 
general characteristics of the same pseudonymized and 
anonymized RWD sets, to assess the magnitude of dis-
crepancies caused by anonymization. The study was 
based on one RCT and one RWD, and the scope of this 
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study was the establishment of concepts, and investiga-
tion of their utility in one use case.

Materials and methods
Study design, setting and participants
This was a hybrid observational cohort study using clini-
cal data from the control arm of the completed rand-
omized phase II clinical trial (PACIFIC-AF) and a RWD 
from Finnish healthcare data sources. The RCT included 
a total 755 patients with atrial fibrillation (AF) in three 
arms, and was originally designed to investigate a new 
factor XIa inhibitor, and to compare its safety and effi-
cacy against an existing oral anticoagulant (apixaban) 
[31, 32]. This study was conducted independently and is 
a post hoc analysis of the original RCT. To imitate data 
gathering as in a single arm RCT, the apixaban arm of 
250 patients was utilized. The RWD were collected using 
selection criteria that followed the RCT design as appli-
cable. The specific inclusion criteria were 1) age ≥ 45; 
2) prescription and usage of novel oral anticoagulant 
(NOAC) medication (Anatomical Therapeutic Chemical 
classification system [ATC] rivaroxaban [ATC: B01AF01], 
apixaban [ATC: B01AF02], edoxaban [ATC: B01AF03], 
or dabigatran [ATC: B01AE07] between  1st January 2014 
and  30th September 2019; and 3) patients who were diag-
nosed with atrial fibrillation (AF) (international classifi-
cation of diseases,  10th revision [ICD-10] I48 or ICD,  9th 
revision [ICD-9] 4273A) prior to the NOAC initiation. 
The full RWD cohort was identified from Auria Data 
Lake by the Hospital District of Southwest Finland. A 
total of 8,255 patients fulfilled the selection criteria. To 
further mimic the RWD design with the RCT, more spe-
cific selection criteria were applied, resulting in selection 
of 3,327 patients of the total possible 8,255. The RWD 
resulted from a non-interventional, retrospective study 
that did not affect the physicians’ management of the 
patients.

To ensure a similar proportion of NOAC-naïve patients 
in the RWD cohort vs. current apixaban-using patients 
at the RCT study entry, an algorithm that transforms a 
portion of the patients into current users at study entry 
was applied. For these artificial current users, the date 
of study cohort entry was defined as an “artificial index 
date” based on the observed time on NOAC treatment in 
the RCT. For NOAC-naïve patients, the study entry date 
was defined as the date of first NOAC use. Data prior to 
the study entry date was considered as baseline data, and 
patients were followed-up from study entry until death, 
and maximally up to  31st December 2020.

Variables
Thirty-six variables (explained in detail in the Supple-
mentary Information file, see Supplementary Table  1) 

that were considered as potential confounders were 
included as baseline data. The investigated outcome was 
overall survival, defined as time from study entry to death 
event or censoring at  31st December 2020, whichever 
occurred first. Both RWD and RCT included the baseline 
data, while only RWD included the outcome.

Data sources
The study data were collected from a primary data source 
(PACIFIC-AF RCT data) and secondary data sources 
(RWD). The RCT primary data collection source was 
the PACIFIC-AF phase II clinical trial (ClinicalTrials.
gov Identifier: NCT04218266), and baseline data (with-
out outcomes) for patients using apixaban for AF were 
included [31, 32]. The RWD were collected from both 
the regional hospital data lake of Southwest Finland (via 
Auria Clinical Informatics), and the following national 
Finnish healthcare registries: the nationwide prescription 
registers—Prescription Centre and Drug Prescription 
Registry by the Social Insurance Institution of Finland 
(Kela); the nationwide healthcare registers—Care Regis-
ter for Health care, and the Register of Primary Health 
Care Visits by the Finnish Institute for Health and Wel-
fare (THL); and the nationwide cause of death register by 
Statistics Finland.

Pseudonymized and anonymized data
The following outlines the methodological selection of 
the anonymization framework, and more detailed infor-
mation is given in the supplementary information. The 
data authority that regulates the use of RWD in Finland 
(Findata) requires the use of k-anonymity (k = 5), and this 
was considered as the starting point for the selection of 
the anonymization framework. Given this premise, two 
candidate approaches were evaluated using membership 
inference attacks [33–35]. First, the ε-safe k-anonymi-
zation [34] that may offer slight improvement against 
membership inference attacks, and it also considers the 
differential privacy composability problem in the case of 
multiple data publications. Second, the (k, ε)-anonymity 
framework [33] that was eventually selected, as the ε-safe 
k-anonymization method [34] is based on sampling, and 
data quality is more difficult to control, especially with 
imbalanced data.

The driving factor for the selection of ε value for this 
project was to ensure that anonymized real-world data 
had adequate privacy protections for it to be considered 
safe by the data authority (Findata). According to [36] the 
maximum privacy risk for the study dataset for ε values 
0.01 to 7 results in ρ = 0.012%–11.77%. A value ε = 3.46 
(ln 32), from the middle of the range of recommended 
values, yields a maximum privacy risk ρ =  0.39%. This 
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was selected as the initial ε value, for which privacy was 
evaluated by using the membership inference attack [35].

The pseudonymized data sets included subject-level 
data on all RWD and RCT study participants, without 
direct identifiers such as name or social security num-
ber. The anonymized RWD were derived from the pseu-
donymized RWD with k-anonymity criteria (k = 5) for all 
equivalence classes of size k, defined by quasi-identifying 
variables and ε-differential privacy criteria (ε = 3.46) for 
all non-quasi-identifying variables [33, 37]. The RWD 
were transformed according to the variable type and 
privacy criteria (Table  1, Supplementary Table  1). The 
exponential differential privacy mechanism was applied 
to categorical variables, including quasi-identifying varia-
bles, and to the records that failed the k-criteria, whereas 
the Laplace mechanism was used for numerical variables 
[34, 38, 39]. The data were then cleaned of nonsensi-
cal and out-of-range values produced by the differential 
privacy mechanism. Finally, the order of anonymized 
records was shuffled and the subject identifiers were 
replaced by random record identifiers. The number of 
records in the anonymized RWD is unaffected by these 
transformations. The Finnish data authority (Findata) 
approved the level of anonymization with the selected 
anonymization framework.

Statistical analyses
The logistic-regression model in which all 36 potential 
confounders were involved was used to estimate the pro-
pensity score (PS) for being in the RCT arm. In match-
ing, the logit of the PS was used with caliper matching 
(width equal to 0.2) at the artificial index date [40]. In 
matching weighting (MW), pairwise algorithmic match-
ing was used. Matching weight was defined as the smaller 
of the predicted probabilities of receiving or not receiv-
ing the treatment over the predicted probability of being 
assigned to the arm where the patient is [41]. In addi-
tion, the PS overlap weighting (OW) method was utilized 
[42]. After matching and weighting, standardized mean 

differences (SMDs) below 0.1 were considered as success 
and values between 0.1–0.25 as moderate success [43].

For all included patients, descriptive statistics were pre-
sented separately prior to and after matching and weight-
ing, using both anonymized and pseudonymized data. 
Continuous variables were described by mean, standard 
deviation (SD), median,  25th, and  75th percentiles. Cat-
egorical variables were described by proportion and fre-
quency in each category.

The Kaplan–Meier method was used to assess the 
time-to-event outcome prior to and after matching, using 
both the pseudonymized and anonymized data [44]. In 
addition, the Cox regression method was used to assess 
the association between the outcome and the confound-
ers in the pseudonymized and anonymized data sets 
prior to matching [45].

Results
Analyses prior to matching
Baseline description of the 3,327 patients included in 
the pseudonymized and anonymized RWD, and for the 
250 patients included in the RCT, is given in Table  2. 
In the full RWD, the results show that anonymization 
affects the population mean and proportion statistics 
only minimally. The greatest SMD between the pseu-
donymized and anonymized RWD sets is for chronic 
obstructive pulmonary disease (COPD), which was pre-
sent in 4.6% (152/3,327) in the pseudonymized data and 
5.4% (181/3,327) in the anonymized data (SMD = 0.04 for 
COPD, and SMD < 0.04 for all other variables, values not 
shown).

For nearly all the variables presented in Table  2 there 
is a marked difference in the mean (continuous variables) 
or proportion (categorical variables) between the RWD 
and RCT sets, regardless of whether RWD is anonymized 
or pseudonymized. This indicates that the applied inclu-
sion and exclusion criteria are not sufficient to harmo-
nize these populations, and further covariate balancing 
by matching or weighting is required.

Table 1 Summary of transformations and privacy criteria used by variable type

a Sampling was conducted as part of the exponential differential privacy mechanism and specific for the records that failed the k-criteria

Variable types Privacy Criteria Transformations
(Anonymization method)

Identifiers Suppression

Quasi identifiers (k, ε)—anonymity Noise (exponential mechanism)
Samplinga

Numerical variables Differential privacy Noise (Laplace mechanism)

Categorical variables Differential privacy Noise (exponential mechanism)

Metadata
(record order within a table)

Record order-based attacks Shuffling
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The overall survival for pseudonymized vs. anonymized 
data prior to matching, estimated using the Kaplan–
Meier method, is given in Fig. 1. When measured using 
the Cox model, anonymization increased the overall sur-
vival, on average, by 8%: hazard ratio (HR) = 1.08 and 95% 

confidence interval (CI) = 0.96–1.22, p = 0.204 However, 
the difference is not statistically significant.

The association between the 36 confounders and over-
all survival in the full pseudonymized and anonymized 
RWD sets is presented in Fig. 2. The greatest differences 

Table 2 Baseline descriptions of the pseudonymized and anonymized real-world data and randomized controlled trial data sets

Abbreviations: BMI Body mass index, COPD Chronic obstructive pulmonary disease, ISTH International Society on Thrombosis and Haemostasis, NOAC Novel oral 
anticoagulant, RCT  Randomized controlled trial, RWD Real-world data, SD Standard deviation; SSRI, selective serotonin reuptake inhibitors, TIA Transient ischemic 
attack

Variable Pseudonymized Anonymized RCT 
RWD RWD

N 3,327 3,327 250

Age, mean (SD) 75.92 (9.19) 75.84 (10.22) 74.27 (8.32)

Anemia, n (%) 761 (22.9) 770 (23.1) 26 (10.4)

Anti-diabetic medication use, n (%) 954 (28.7) 963 (28.9) 76 (30.4)

Anti-hypertensive medication use, n (%) 3,228 (97.0) 3,229 (97.1) 247 (98.8)

Aortic arteriosclerosis, n (%)  < 5 (< 0.2)  < 5 (< 0.2)  < 5 (< 2.0)

Arterial hypertension, n (%) 2,226 (66.9) 2,223 (66.8) 220 (88.0)

BMI  ≥ 30 kg/m2, n (%) 470 (14.1) 485 (14.6) 84 (33.6)

Carotid endarterectomy or stent, n (%) 9 (0.3) 9 (0.3)  < 5 (< 2.0)

Chronic heart failure, n (%) 696 (20.9) 710 (21.3) 117 (46.8)

Chronic kidney disease, n (%) 477 (14.3) 477 (14.3) 41 (16.4)

COPD, n (%) 152 (4.6) 181 (5.4) 24 (9.6)

Coronary artery disease, n (%) 709 (21.3) 729 (21.9) 50 (20.0)

Diabetes mellitus, n (%) 832 (25.0) 832 (25.0) 87 (34.8)

History of ISTH major bleeding, n (%) 137 (4.1) 149 (4.5) 22 (8.8)

History of osteoporotic fracture, n (%) 165 (5.0) 175 (5.3) 5 (2.0)

History of stroke, n (%) 305 (9.2) 313 (9.4) 20 (8.0)

Hyperlipidemia, n (%) 565 (17.0) 579 (17.4) 92 (36.8)

Hyperthyroidism, n (%) 70 (2.1) 72 (2.2)  < 5 (< 2.0)

Hypothyroidism, n (%) 530 (15.9) 543 (16.3) 28 (11.2)

Low body weight (body weight < 60 kg), n (%) 3,091 (92.9) 3,063 (92.1) 221 (88.4)

Malignancy, n (%) 441 (13.3) 442 (13.3) 45 (18.0)

Myocardial infarction, n (%) 161 (4.8) 165 (5.0) 36 (14.4)

Non-steroidal anti-inflammatory drugs, n (%) 825 (24.8) 833 (25.0) 18 (7.2)

Percutaneous coronary intervention, n (%) 202 (6.1) 203 (6.1) 15 (6.0)

Peripheral arterial disease, n (%) 113 (3.4) 118 (3.5) 20 (8.0)

Platelet aggregation inhibitors, n (%) 3,023 (90.9) 3,018 (90.7) 234 (93.6)

Prior or concomitant use of Histamine-2, n (%) 18 (0.5) 18 (0.5)  < 5 (< 2.0)

Prior or concomitant use of SSRIs, n (%) 176 (5.3) 179 (5.4) 6 (2.4)

Prior use of heparins, n (%) 1,059 (31.8) 1,081 (32.5) 55 (22.0)

Prior use of NOACs, n (%) 1,936 (58.2) 1,927 (57.9) 146 (58.4)

Serum creatinine ≥ 1.5 mg/dL, n (%) 392 (11.8) 399 (12.0) 27 (10.8)

Sex, Male, n (%) 1,622 (48.8) 1,616 (48.6) 141 (56.4)

Smoking status, n (%) 273 (8.2) 303 (9.1) 10 (4.0)

TIA, n (%) 111 (3.3) 113 (3.4) 13 (5.2)

Time in days since atrial fibrillation (%)

≤ 30 693 (20.8) 696 (20.9) 99 (39.6)

>  30 –  <  90 2,414 (72.6) 2,415 (72.6) 135 (54.0)

≥  90 220 (6.6) 216 (6.5) 16 (6.4)

Use of proton pump inhibitors, n (%) 1,494 (44.9) 1,503 (45.2) 109 (43.6)
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in the estimated hazard ratios were observed for aortic 
arteriosclerosis (the absolute difference in point esti-
mates was equal to 1.24), prior or concomitant use of 
histamine-2 (0.72), and myocardial infarction (0.50), 
carotid endarterectomy or stent (0.39), and COPD (0.34), 
all of which had wide CIs. On the contrary, for peripheral 
arterial disease and hyperthyroidism that had wide CIs, 
anonymization affected the point estimates less than 0.05 
units. The association between confounders and alloca-
tion to the RCT group (PS-model effects) using the pseu-
donymized and full anonymized RWD sets are shown in 
the Supplementary Information file, see Supplementary 
Fig. 1.

Matching the RWD sets with the RCT data
Using both the pseudonymized and anonymized data 
(Fig. 3), matching the RWD to the RCT data was appli-
cable, so that all the variables had SMD below 0.25, and 
only some were above 0.1. In the pseudonymized data, 
2 out of the 36 variables (coronary artery disease and 
platelet aggregation inhibitors) had SMD > 0.1. With 
anonymized data, the corresponding variables (3/36) 
were chronic kidney disease, diabetes mellitus and smok-
ing status. With both data sets, approximately the same 
number of matches was found: 223 with pseudonymized 
and 226 with anonymized (in more detail in the Supple-
mentary Information file, see Supplementary Table  2). 
When using the weighting methods, the number of effec-
tive patients dropped (MW to 220–222, OW to 174–
175), and the SMDs became smaller than 0.04.

Comparison of the outcome after matching
The change in overall survival for matched pseu-
donymized vs. anonymized data estimated using the 
Kaplan–Meier method is given in Fig.  4A, and the cor-
responding result for non-matched (all except matched) 
in Fig. 4B. For matched data, the estimated hazard ratio 
indicated that anonymization changed the analysis of 
the outcome by 22% (HR = 1.22, 95%; CI = 0.79–1.87; 
p = 0.369), and for non-matched (all except matched), by 
8% (HR = 1.08, 95%; CI = 0.94–1.22; p = 0.257).

Discussion
This study investigated the utility of anonymized data 
in the context of creation of an external RWD control 
arm for an RCT. First, anonymization affected the base-
line characteristics marginally, and the greatest differ-
ence was observed in the prevalence of COPD (4.6% in 
the pseudonymized data vs. 5.4% in the anonymized 
data). In addition, the overall survival changed by 8% 
(95% CI 4–22%) after anonymization. Second, both the 
pseudonymized and anonymized RWD were able to pro-
duce matched ECAs for the RCT data. Anonymization 
impacted the analysis of overall survival after matching 
by 22% (95% CI -21–87%). As the baseline characteristics 
after matching were nearly equal in both data sets, it is 
important to determine the cause in the observed differ-
ence in overall survival.

In a sensitivity analysis constructed to explore this 
observation, only the baseline covariates, and not the 
overall survival was anonymized. In this test, the overall 

Fig. 1 Kaplan–Meier estimates for overall survival from study entry in anonymized and pseudonymized real-world data sets
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survival in the matched population was impacted by 
nearly the same amount (22%) by anonymization. Since 
in this analysis the only distinction was selection of 
patients through matching, this result seems to indicate 
that different patients were matched to the RCT data 
when using the pseudonymized and anonymized RWD 
sets.

Regarding the other main findings, the distribution of 
overall survival prior to matching, baseline variable dis-
tributions, and PS-matching statistics were impacted 
relatively little by anonymization. In contrast, for sev-
eral variables with wide CIs, the association between 
the baseline covariates and the outcome was mark-
edly affected by anonymization. These results seem to 
indicate that anonymization has a larger impact on the 
results when estimation is dependent on individual data 
points, and less so when results are dependent on larger-
scale population statistics. These findings give high-level 
insights into cases where a specific anonymization strat-
egy may or may not be feasible. The quality of the result-
ing anonymized data depends on the algorithm used and 

the variables prioritized for matching. Therefore, it is cru-
cial to consider case-specific requirements and privacy 
criteria when designing the anonymization strategy for 
the data. This study examined only one use case, due to 
the vast scope needed for achieving generalizable results. 
Indeed, as all RCTs have their own specific characteris-
tics which need to be matched with RWD, and data hold-
ers may have different interpretations about legal aspects 
for privacy criteria, future work is needed to achieve 
more general quantitative recommendations about the 
applicability of different anonymization frameworks.

This was only one case-study in which anonymiza-
tion of data might be of interest. Due to the regulatory 
requirements of clinical trials, creating an ECA is in the 
highest-end when it comes to the need to pertain to data 
usability. Creating an external control arm is already chal-
lenging due to the complexity of data harmonization and 
high regulatory requirements; adding anonymization to 
the process, as in this case-example, further complicates 
it. The intrinsic uncertainty and noise added by anonymi-
zation may be incompatible with some downstream 

Fig. 2 Cox model results for the association between overall survival and the confounders in fully anonymized and pseudonymized real world 
data sets. BMI, body-mass index (kg/m2); COPD, chronic obstructive pulmonary disease; NOAC, novel oral anticoagulant; SSRI, selective serotonin 
reuptake inhibitor; TIA, transient ischemic attack
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analyses, such as the matching algorithms. Therefore, 
for such studies, the current recommendation is to make 
data transfer of pseudonymized RWD or RCT data per-
missible. However, when the analyses rely on population-
level distributions, and less on individual data points, 
anonymization seems to perform particularly well.

The main focus in this paper was to demonstrate how 
anonymization affects the performance of RWD in the 

creation of an ECA in one use case. It was also assessed 
how well variables in the RWD and RCT sets reflect the 
same entity (data validation), and how well variables 
were selected for the PS-model to minimize any residual 
confounding. Due to the added complexity of such chal-
lenges in the creation of an ECA, it is also recommended 
to reduce any avoidable complexities. In the Nordics, this 
means that the RCT would be optimally transferred to 

Fig. 3 Standardized mean differences for the pseudonymized and anonymized real-world and randomized clinical trial data sets. Standardized 
mean differences are shown for prior to matching, after matching, after matching weighting, and after overlap weighting groups. Values 
for the anonymized set that are not visible are approximately equal to the pseudonymized ones. BMI, body-mass index (kg/m2); COPD, chronic 
obstructive pulmonary disease; MW, matching weighting; NOAC, novel oral anticoagulant; OW, overlap weighting; RWD, real-world data; SMD, 
standardized mean difference; SSRI, selective serotonin reuptake inhibitor; TIA, transient ischemic attack
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the secure environment in which the RWD reside, to pre-
serve the pseudonymized data as it comes from the reg-
isters and retain the maximum amount of information. 
This may require careful considerations and regulatory 
preparations early in the planning phase of such a study.

It is to be noted that the creation of an ECA includes 
several other factors that pose possibly serious chal-
lenges. First, the primary purpose of RWD is to support 
daily healthcare practices, and research is often referred 
to as secondary use of these data [17]. Thus, the quality of 
RWD recorded in daily healthcare depends heavily on the 
data collection practices [8, 46, 47]. In contrast, RCT data 
are referred to as primary data, since they are collected in 
the course of original research within a particular study, 
and quality of the resulting data is generally high. Second, 
due to lack of randomization in RWD, treatment alloca-
tion is not independent of patients’ history [48]. While 
these challenges are important in their own right, they 
were not assessed in this study.

Finally, for studies that may depend on small sam-
ples and individual data points, careful consideration 
of anonymization and data-analysis strategy should be 
made. When applied to cases that rely on large-scale 
population statistics, the benefits of anonymization may 
be substantial, when considered against the relatively 
marginal limitations. Even if anonymization may not be 
an optimal solution for all cases, our study shows that 
it can be a viable option when flexible data transfer and 
sharing is required.
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