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Abstract 

Background Case‑cohort studies are conducted within cohort studies, with the defining feature that collection 
of exposure data is limited to a subset of the cohort, leading to a large proportion of missing data by design. Standard 
analysis uses inverse probability weighting (IPW) to address this intended missing data, but little research has been 
conducted into how best to perform analysis when there is also unintended missingness. Multiple imputation (MI) 
has become a default standard for handling unintended missingness and is typically used in combination with IPW 
to handle the intended missingness due to the case‑control sampling. Alternatively, MI could be used to handle 
both the intended and unintended missingness. While the performance of an MI‑only approach has been investi‑
gated in the context of a case‑cohort study with a time‑to‑event outcome, it is unclear how this approach performs 
with a binary outcome.

Methods We conducted a simulation study to assess and compare the performance of approaches using only MI, 
only IPW, and a combination of MI and IPW, for handling intended and unintended missingness in the case‑cohort 
setting. We also applied the approaches to a case study.

Results Our results show that the combined approach is approximately unbiased for estimation of the exposure 
effect when the sample size is large, and was the least biased with small sample sizes, while MI‑only and IPW‑only 
exhibited larger biases in both sample size settings.

Conclusions These findings suggest that a combined MI/IPW approach should be preferred to handle intended 
and unintended missing data in case‑cohort studies with binary outcomes.

Keywords Missing data, Multiple imputation, Case‑cohort study, Simulation study, Inverse probability weighting

*Correspondence:
Melissa Middleton
melissa.middleton@mcri.edu.au
1 Clinical Epidemiology & Biostatistics Unit, Murdoch Children’s Research 
Institute, Royal Children’s Hospital, Melbourne, Australia
2 Department of Paediatrics, The University of Melbourne, 50 Flemington 
Rd, Parkville, VIC 3052, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-023-02090-5&domain=pdf


Page 2 of 13Middleton et al. BMC Medical Research Methodology          (2023) 23:287 

Introduction
The case-cohort study design provides a powerful and 
cost-effective variation on the standard cohort study 
when the exposure is costly to measure, for example 
when it involves metabolite levels [1]. In this design, a 
subcohort is randomly selected from the main cohort 
and the expensive exposure information is only collected 
on the participants within the subcohort and on cases of 
the primary outcome, noting that some subcohort mem-
bers may also be cases. Hereinafter we refer to the subco-
hort and cases collectively as the study ‘subset’. Analysis 
is generally conducted on this subset, with the exposure 
intended to be missing ‘by design’ in the remainder of the 
cohort.

In such a design, it is important that the analysis 
accounts for the resulting unequal sampling probabilities 
due to all cases being selected into the subset (probabil-
ity of selection = 1) and non-case subcohort members 
selected with a probability < 1 [2]. Standard practice is 
to use inverse probability weighting (IPW) to account 
for this unequal sampling [3]. IPW involves discarding 
observations with missing exposure data (i.e. those not 
in the subset) and weighting the remaining observations 
in the analysis by the inverse probability of selection, to 
not only represent themselves, but also those not selected 
into the subset [4].

As with any study, it is common to have missing data 
due to non-response in several study variables (e.g. expo-
sure and/or covariates). We will refer to this as unin-
tended missing data. A popular approach to handling 
unintended missing data is multiple imputation (MI). MI 
is a two-stage process. In the first stage, imputed values 
are drawn from an approximate posterior distribution for 
the missing values dependent on the observed data [5]. 
Values are imputed several times to form m completed 
datasets. In the second stage, each completed dataset is 
analysed using the target analysis model and results are 
pooled across the m datasets using Rubin’s rules to obtain 
an overall estimate for the parameter of interest with an 
estimated variance [6]. For MI to produce unbiased esti-
mates with correct standard errors (SE), the imputation 
model needs to be compatible with the analysis model [7, 
8]. Simply put, this means the imputation model should 
include all variables and features of the analysis model. 
In the context of case-cohort studies analysed using IPW, 
and weighted analyses more broadly, this means account-
ing for the weights used in the analysis model within the 
imputation model [9, 10]. Previous work by the authors 
studied different approaches to account for weights in MI 
in the context of a binary endpoint, and found that inclu-
sion of the weights in the imputation model results in 
valid inferences when using MI in combination with IPW 
to address the intended and unintended missing data 

respectively [11]. One question that was not considered 
in M Middleton, C Nguyen, M Moreno-Betancur, JB Car-
lin and KJ Lee [11] was whether MI of IPW alone could 
be used to address both the intended and unintended 
missing data in case-cohort studies, rather than the 
standard practice of using MI in combination with IPW.

The use of MI to handle intended missing data in case-
cohort studies has previously been investigated in the 
context of a time-to-event outcome, where it was found 
to perform well provided the outcome and all variables 
in the analysis model were included in the imputation 
model [12–14]. However, these studies did not consider 
the scenario in which there are also unintended missing 
data. RH Keogh, SR Seaman, JW Bartlett and AM Wood 
[15] extended this work, comparing three approaches for 
using MI in a case-cohort setting with unintended miss-
ing data. They compared: the ‘substudy’ approach, which 
uses the subset only to fit an imputation model for unin-
tended missing data and uses IPW to handle intended 
missing data; the ‘intermediate’ approach, which uses the 
full cohort to fit an imputation model for the unintended 
missing data, but limits the analysis to those within 
the subset and uses IPW to handle intended missing 
data; and the ‘full’ approach, which uses the full cohort 
for imputation of both intended and unintended miss-
ing data and conducts an (unweighted) analysis. They 
showed all approaches to have large gains in efficiency 
compared to a complete-case analysis (CCA), which con-
ducts an unweighted analysis in participants with com-
plete data only, with the full approach showing the largest 
gain. They did, however, find the intermediate approach 
to be more robust to misspecification of the imputation 
model than the full approach, which can be a concern 
when imputing the large proportion of intended missing 
information in case-cohort studies. A limitation of the 
RH Keogh, SR Seaman, JW Bartlett and AM Wood [15] 
study was that they only considered the scenario where 
each variable could either have intended or unintended 
missing data, but not both, a scenario that is likely to 
arise in practice. It was also restricted to time-to-event 
analyses. Case-cohort studies are also used in the context 
of a binary outcome with fixed follow-up time [14, 16], 
which was not considered by RH Keogh, SR Seaman, JW 
Bartlett and AM Wood [15].

In the current study, we aimed to address these gaps 
by evaluating MI for handling both intended and unin-
tended missing data in the exposure and/or confounders 
compared to the more standard MI/IPW approach, in 
the context of a case-cohort analysis of a binary outcome. 
We considered the substudy, intermediate and full MI 
approaches, introduced by RH Keogh, SR Seaman, JW 
Bartlett and AM Wood [15] as well as an IPW-only and 
CCA (5 approaches in total).
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The paper is structured as follows. We first introduce 
a motivating example from the Barwon Infant Study 
(BIS), a birth cohort study in Victoria, Australia, and 
then describe the approaches for handling intended and 
unintended missingness in the case-cohort design that 
we compared. We then provide details of our simulation 
study, which was based on the motivating example and 
describe the application of the analysis approaches to the 
case study. We then present the results from the simula-
tion and the case studies. We conclude with a discussion 
and recommendations for practice.

Methods
Case study
The motivating example for this manuscript comes from 
BIS, which is a population-derived birth cohort study 
of 1,074 infants born in the Barwon region of Victo-
ria, Australia. The cohort profile and study design have 
been described elsewhere [17]. Due to the costly nature 
of biosample analysis, BIS has adopted the case-cohort 
design in several investigations of exposure effects on 
outcomes. The empirical investigation of interest here 
focusses on the association between vitamin D insuf-
ficiency (VDI) at birth, measured as 25(OH)D3 serum 
metabolite levels below 50nM from cord blood, and 
the risk of food allergy at one-year, as determined by a 
combination of a positive skin prick test and a positive 
food challenge to one of five common allergens (sesame, 
peanut, cow’s milk, egg and cashew) [18]. Of the infants 
who completed the one-year follow-up (n=894), all of 
the cases (n=61) and a random subcohort selected with 
a probability of 0.30 (n=324) were chosen for inclusion 
in the case-cohort study and had the exposure measured 
(noting some infants were in both). Of the 365 infants 
in the subset, VDI was only measured in 278 infants 
(76.2%), hence 23.8% of the subset had unintended miss-
ing data in the exposure.

The estimand of interest for the case study was the risk 
ratio (RR) for food allergy comparing those with VDI to 
those without. A standard outcome regression approach 
was used for its estimation, adjusting for family history 
of allergy (FamHx), “Caucasian” ethnicity (Eth), number 
of siblings (NSib), domestic pet ownership (PetOwn) and 
antenatal vitamin D supplement usage (AnteVD). Esti-
mation used the modified Poisson regression approach 
with a logarithmic link and “robust” variance estimation 
(due to the known convergence issues with log-binomial 
regression [19, 20]) to fit the following model:

(1)log Pr FoodAllergy = 1 = θ0+θ1VDI+θ2Eth+θ3FamHx+θ4PetOwn+θ5AnteVD+θ6I[NSib = 1]+θ7I[NSib = 2]

where I[.] is an indicator function for the equality con-
tained within the brackets (equal to 1 if the equal-
ity holds and 0 otherwise). The parameter of interest is 
log(RR) = θ1 . This is a slightly modified analysis to that 
used in the published version of this study, which used 
a log-binomial regression model to estimate the RR 
adjusted for a slightly different set of confounders. A 
description of the variables used for the current study 
can be found in Table 1, limited to participants with com-
plete outcome data to align with the scope of this study.

Analysis methods to account for the missing data
Below we outline the approaches we considered for 
the handling of missing data in the analysis of case-
cohort studies that have unintended missing data in the 
exposure and confounders. We comment on alterna-
tive approaches that we could have considered in the 
discussion.

MI‑based approaches
We considered the three MI-based approaches as pro-
posed by RH Keogh, SR Seaman, JW Bartlett and AM 
Wood [15]:

 i. Subset (MI-IPW-Sub) – Subset data are used to fit 
an imputation model addressing the unintended 
missing data. The imputed datasets are analysed 
using a weighted regression model (to address the 
intended missing data), with the weights equal to 
the inverse probability of being selected into the 
subset

 ii. Intermediate (MI-IPW-Int) – The full cohort is 
used to fit an imputation model to address the 
unintended missing data. This approach involves 
also imputing the intended missing exposure data. 
However, the analysis is limited to observations 
within the subset only (i.e. non-subset imputed 
records are discarded) and a weighted analysis is 
performed on the subset, with the weights equal 
to the inverse probability of being selected into the 
subset

 iii. Full (MI-only) – the full cohort is used to fit an 
imputation model imputing both the intended and 
unintended missing data, with an unweighted anal-
ysis performed on the full cohort (i.e. MI is used to 
handle both the intended and unintended missing 
data).
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For all MI approaches, the imputation model included 
the outcome, exposure, confounders and two auxiliary 
variables (included to improve the efficiency of MI [21]). 
The auxiliary variables were maternal age at birth and 
socioeconomic index for area (SEIFA) [22] tertiles. All 
incomplete variables (exposure and two confounders) 
were binary and were imputed using a fully paramet-
ric approach based on logistic regression models within 
the fully conditional specification framework [23]. Fifty 
imputed datasets were generated in each case.

Under the subset and intermediate approaches, 
the analysis model used IPW, with weights equal to 
the inverse probability of selection into the subset. 
The sampling weights for the ith observation, wi , are 
defined as:

where Si is an indicator for subset membership and Yi the 
outcome, for the ith individual.

Given all cases are included in the subset, the weights 
in expression (2) are 1 for cases. For non-case subco-
hort members, expression (2) is the inverse probability 
of subcohort membership for non-cases, estimated by 
̂wi = (m0/n0)

−1 where n0 is the number of non-cases in 

(2)wi = Pr(Si = 1|Yi)
−1

the full cohort and m0 the number of non-cases in the 
subcohort [24].

Including the weights as a covariate in the imputa-
tion model has shown good performance in minimising 
bias from an incompatible imputation model in a general 
weighting setting [25]. In the case-cohort setting, given the 
weights are constant within strata defined by the outcome, 
inclusion of the outcome in the imputation model, as is 
standard practice when using MI, is equivalent to includ-
ing the weights as a covariate in the imputation model. 
And indeed, this approach has shown good performance 
in the case-cohort setting [11]. Therefore, for both the 
subset and intermediate MI approaches, the weights were 
incorporated via inclusion of the outcome as a predictor in 
each of the univariate imputation models within the FCS 
procedure [11].

IPW to handle intended and unintended missingness 
(IPW‑only)
For completeness, we also considered a fully weighted 
approach. Here an IPW analysis was conducted on the 
complete records only, with weights representing the 
inverse probability of being a complete record, that is, 
records selected for the subset with complete data for all 
analysis variables.

Table 1 Description of variables in the Barwon Infant Study and their respective level of missingness in the full cohort and subset in 
participants with complete outcome data

SEIFA Socioeconomic Index for Area

Variable Label Full cohort (n=786) Subset (n=325)

Summary Missing (%) Summary Missing (%)

Outcome
 Food allergy at 1 year – present – n(%) FoodAllergy 61 (7.8) 0 (0.0) 61 (18.8) 0 (0.0)

Exposure
 Vitamin D insufficiency at birth – present – n(%) VDI 132 (45.1) 493 (62.7) 109 (44.3) 79 (24.3)

Confounders
 Ethnicity – “Caucasian” – n(%) Eth 573 (73.2) 3 (0.4) 240 (74.3) 2 (0.6)

 Domestic pet ownership – present – n(%) PetOwn 602 (77.4) 8 (1.0) 239 (74.2) 3 (0.9)

 Antenatal vitamin D usage – present – n(%) AnteVD 460 (79.3) 206 (26.2) 193 (76.0) 71 (21.9)

 History of family allergy – present – n(%) FamHx 675 (86.9) 9 (1.2) 284 (88.2) 3 (0.9)

 Number of siblings – n(%) NSib 0 (0.0) 0 (0.0)

  None 320 (40.7) 113 (34.8)

  One 281 (35.8) 130 (40.0)

  Two or more 185 (23.5) 82 (25.2)

Auxiliary
 Maternal age at birth (years) – mean(SD) MAge 32.1 (4.8) 3 (0.3) 33.0 (4.3) 0 (0.0)

 SEIFA tertile – n(%) SEIFA 14 (1.8) 6 (1.9)

  Low 172 (22.3) 77 (24.1)

  Middle 148 (19.2) 61 (19.1)

  High 452 (58.6) 181 (56.7)
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The probability of being a complete record can be 
decomposed into the unintended and intended missing-
ness probability components, assuming independence 
between the response indicator, Ri , and subcohort selec-
tion, Si , given the outcome and the observed predictors of 
missingness (a plausible assumption), and independence 
between the observed predictors of missingness, Zi , and 
subcohort selection, Si , given the outcome:

where Ri is equal to 1 if all analysis variables have com-
plete data (i.e. no unintended exposure or confounder 
missing data) and 0 otherwise (i.e. have any variable with 
unintended missing data), and Zi a set of completely 
observed predictors of (unintended) missingness that can 
include, but is not limited to, the analysis variables.

For the IPW-only approach, the probability of not hav-
ing unintended missing data, Pr(Ri = 1|Yi,Zi) , was esti-
mated by fitting a logistic regression model conditional 
on fully observed predictors of (unintended) missingness 
to the available data.

A weight for the ith individual was then estimated by 
combining the sampling weight estimate and the inverse 
estimated probability of being a complete observation 
from the logistic model: ûi = ̂wi ×

{

Pr ̂(Ri = 1|Yi,Zi)

}−1

. 

Complete case analysis (CCA)
For comparison, a CCA was also conducted, where 
observations with unintended missingness were deleted 
and IPW applied to the subset, using the sampling 
weights ̂wi , to address the intended missing data.

A summary of the analysis approaches is displayed in 
Table 2.

Simulation study
A simulation study was conducted to compare the per-
formance of the full MI approach, two combined MI/
IPW approaches, full IPW approach and a CCA for ana-
lysing case-cohort studies with a binary outcome where 
there is unintended and intended missing data, across a 

(3)
Pr(Ri = 1&Si = 1|Yi ,Zi) = Pr(Ri = 1|Yi ,Zi)Pr(Si = 1|Yi)

range of realistic scenarios. A complete-data analysis was 
also conducted, where an unweighted regression model 
was fitted to the simulated data prior to subcohort selec-
tion and missing data being induced, as a check of the 
data-generation process.

Data generation mechanisms
Three scenarios were considered with respect to the 
full cohort sample size and the probability of subco-
hort selection. The first approximately replicates BIS, 
with a full cohort of 1,000 and a subcohort selection 
probability of 0.3. We also consider scenarios with a 
full cohort of 10,000, and a subcohort selection prob-
ability of either 0.1 or 0.2, mirroring the large sample 
sizes and smaller selection probabilities of other stud-
ies [12, 13].

Complete cohorts were first generated based on 
plausible causal relationships between the relevant 
variables and their missingness indicators as shown in 
Fig. 1.

The exposure, five confounders and two auxiliary vari-
ables were generated in a sequential manner using the 
models below:

 i. Ethnicity

ii.   Maternal age at birth

         where ǫ ∼ N
(

0, σ 2
)

 iii. SEIFA tertile

(4)Eth ∼ Bernoulli(p)

(5)MAge = δ0 + δ1Eth+ ǫ

(6)

log

{

Pr

(

SEIFA = 1

SEIFA = 0

)}

= ζ0 + ζ1MAge+ ζ2Eth

Table 2 Summary of analysis approaches used in the simulation and case studies

FCS Fully conditional specification, IPW Inverse probability weighting, MI Multiple imputation
a Combined weights are the product of inverse probability of selection into subcohort and inverse probability of being a complete observation

Approach Imputation Approach Weights in 
analysis model

How missing data addressed Imputation sample Analysis sample

‘by design’ ‘by chance’

CCA None sampling IPW Not addressed N/A Subset

IPW‑Only None combineda IPW IPW N/A Subset

MI‑IPW‑Sub FCS with outcome only sampling IPW MI Subset Subset

MI‑IPW‑Int FCS with outcome only sampling IPW MI Full cohort Subset

MI‑Only FCS imputation None MI MI Full cohort Full cohort
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 iv. History of family allergy

 v. Number of siblings

(7)

log

{

Pr

(

SEIFA = 2

SEIFA = 0

)}

= η0 + η0MAge+ η0Eth

(8)logit{Pr(FamHx = 1)} = ι0 + ι1Eth

(9)
log

{

Pr

(

NSib = 1

NSib = 0

)}

= κ0 + κ1MAge+ κ2Eth

+ κ3I[SEIFA = 1]

+ κ4I[SEIFA = 2]+ κ5FamHx

(10)

log

{

Pr

(

NSib = 2

NSib = 0

)}

= �0 + �1MAge+ �2Eth

+ �3I[SEIFA = 1]

+ �4I[SEIFA = 2]+ �5FamHx

 vi. Domestic Pet Ownership

 vii. Antenatal vitamin D usage

 viii. Vitamin D insufficiency at birth,

(11)

logit{Pr(PetOwn = 1)} =ρ0 + ρ1MAge+ ρ2Eth

+ ρ3I[SEIFA = 1]+ ρ4I[SEIFA = 2]

+ ρ5FamHx + ρ5I[NSib = 1]

+ ρ6I[NSib = 2]

(12)

logit{Pr(AnteVD = 1)} =ψ0 + ψ1MAge+ ψ2Eth

+ ψ3I[SEIFA = 1]+ ψ4I[SEIFA = 2]

+ ψ5FamHx + ψ6I[NSib = 1]

+ ψ7I[NSib = 2]

(13)

logit{Pr(VDI = 1)} = φ0 + φ1MAge+ φ2Eth

+ φ3I[SEIFA = 1]+ φ4I[SEIFA = 2]

+ φ5FamHx + φ6I[NSib = 1]

+ φ7I[NSib = 2]+ φ8PetOwn + φ9AnteVD

Fig. 1 Missingness directed acyclic graph (m‑DAG) depicting the assumed causal relationships between generated variables and their missingness 
indicators. Dashed lines represent associations present under the dependent missing data mechanism, but not the independent missing data 
mechanism
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Finally, the outcome was generated per the target anal-
ysis model (1). We varied the strength of the exposure-
outcome association, and the associations between the 
auxiliary variable and the incomplete variables. Under 
‘observed’ conditions, the associations were as estimated 
from the BIS case study, while under ‘enhanced’ condi-
tions the exposure-outcome association was inflated to a 
RR of 2 (compared to RR=1.16 in BIS) and the associa-
tions of the exposure and missing confounders with the 
auxiliary variable maternal age were strengthened to 
represent an approximate 10-fold change in risk across 
the 30-year age range. An additional setting was con-
sidered, where the outcome generation model included 
an interaction between the exposure (VDI) and a con-
founder, ethnicity. This setting was designed such that 
the target analysis model was misspecified, as it excluded 
the interaction term, and enabled us to explore how the 
imputation models performed under a more complex 
but realistic scenario. The parameter values used for data 
generation under the various scenarios are given in the 
Supplementary Table S1.

Once the full cohort had been generated, unintended 
missing data were introduced into the two confound-
ers, antenatal vitamin D usage and pet ownership, and 
the exposure. Two levels of missing data frequency were 
considered: low (20% of records in the full cohort had at 
least one confounder missing and 10% had unintended 
missing data in the exposure, with 25% of records having 
incomplete data), and high (percentages doubled).

Data were set to missing either using an independ-
ent missingness mechanism, where observations were 
randomly assigned to be missing with the desired pro-
portions, or dependent on the outcome (expected to 
cause bias in the CCA), an auxiliary variable (expected 
to increase the efficiency of MI compared to CCA) and 
a confounder, as per Fig.  1. The degree of dependency 
between the missingness indicators was varied to control 
the overall proportion of missing data, and the distribu-
tion of missing data patterns. Under the dependent miss-
ingness mechanism, data were set to missing based on 
the following models (with parameter values given in the 
Supplementary Table S1):

(14)
logit

{

Pr
(

Mpetown = 1
)}

= ν0 + ν1FoodAllergy + ν2Eth + ν3Mage

(15)logit{Pr(Mante = 1)} = τ0 + τ1FoodAllergy + τ2Eth + τ3MAge+ τ4Mpetown

(16)logit{Pr(Mvdi = 1)} = ω0+ω1FoodAllergy+ω2Eth+ω3MAge+ω4I[Mpetown = 1|Mantevd = 1]

where Mvar is an indicator for missingness in variable 
“var”.

The strength of associations in the dependent missing-
ness mechanism were varied, with the ‘observed’ scenar-
ios using estimates from BIS as values for the regression 
coefficients of substantive predictors in models (14, 15 
and 16), and the ‘enhanced’ scenarios doubling these 
coefficients. The values for ν0 , τ0 , τ4 , ω0 , and ω4 were iter-
atively chosen such that the desired proportions of miss-
ingness were achieved (see Supplementary Table S2).

Finally, the subcohort was randomly selected with the 
required probability of selection, and the exposure set to 
be missing in the non-subset members.

Altogether 26 scenarios were considered, comprised 
of 24 scenarios in a factorial design and an additional 2 
scenarios where the interaction term was included in the 
data generation model. Scenarios are summarised in the 
Supplementary Table S3, and summary statistics for the 
simulated datasets provided in Supplementary Table S4.

Evaluation of analysis approaches
Each simulated dataset was analysed using each of the 
approaches for handling missing data to produce an 
estimate of the target parameter, the regression coeffi-
cient of the exposure in equation (1): log(RR) = θ1.

Performance was evaluated using the relative bias 
(percentage bias relative to the true value of the target 
parameter, θ1 ), empirical and model-based SEs, and 
the coverage of the 95% confidence interval (CI) for 
the target parameter. In calculating these measures in 
the scenario where the analysis model was correctly 
specified (outcome generated from model (1)), the true 
value of the parameter of interest was the coefficient 
for the exposure used during outcome generation ( θ1 ). 
In scenarios where the analysis model was misspeci-
fied (outcome generated from a model including an 
exposure-confounder interaction), the true value was 
estimated as the average of the exposure coefficient 
estimates obtained when applying the target analysis 
model (model (1)) to 1,000 simulated populations of 
size 1,000,000. Monte Carlo standard errors (MCSE) 
are also reported.
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A total of 2000 simulations were generated for each 
scenario, ensuring that the MCSE for a true coverage 
probability of 95% would be 0.49% [26]. All analyses 
were conducted in Stata 15.1 [27].

Implementation of analysis methods in the case study
Each of the analysis approaches was applied to obtain 
estimates of the target parameter, θ1 , in equation (1) 
in the case study. To align with the simulation study, 
the analysis was limited to observations with com-
plete outcome data (full cohort n = 786, subset n=325). 
The incomplete variables in the case study were: VDI 
(414/786 intended missingness and 79/786 unintended 
missingness), pet ownership (1% missing in full cohort, 
0.9% missing in subset), antenatal vitamin D usage 
(26.2% missing in full cohort, 21.9% missing in subset), 
history of family allergy (1.2% missing in full cohort, 
0.9% missing in subset), Ethnicity (0.4% in full, 0.6% 
in subset), SEIFA tertiles (1.8% in full, 1.9% in subset), 
and maternal age (<0.01% in full). Binary variables were 
imputed using a logistic regression model, categorical 

variables using an ordinal logistic regression model, 
and continuous variables using a linear regression 
model. When the analysis approach required the use of 
sampling weights, the weight for the non-cases in the 
subcohort, were estimated using the proportion of non-
cases selected for exposure measurement, i.e. (0.30)−1.

Results
Simulation study
Figure 2 displays the relative bias for all approaches and 
scenarios. In all scenarios with a small sample size and an 
independent missingness mechanism, most approaches 
were approximately unbiased (<5%), with the exception 
of MI-only which showed some bias in scenarios with low 
levels of missing data (-8.7 – 6.5%). In all scenarios with 
a small sample size, dependent missingness mechanism, 
and an observed association, all approaches (including 
the complete data analysis) showed bias in the point esti-
mate, with the largest biases for the MI-only approach 
(-15.6 – -15.5%). In contrast, when there was a small 
sample size with enhanced associations and depend-
ent missingness, the IPW-only, subset and intermediate 

Fig. 2 Relative bias (%) in the estimated coefficient for the target parameter across the 26 simulated scenarios
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approaches were relatively unbiased (<4.6%), with slightly 
larger biases with the CCA and MI-only approaches (6.3 
– 8.1%).

In all scenarios with a large sample size and correct 
specification of the analysis model, all approaches were 
approximately unbiased (<5.9%), with the largest biases 
for the CCA for the dependent missingness scenarios 
as expected. When the analysis model was misspecified 
(i.e. omitted the interaction term of the data generating 
model), the CCA was biased (9.1 – 9.4%) with all other 
approaches approximately unbiased (-3.1 – 0.4%).

The empirical SE for all approaches and scenarios is pre-
sented in Fig. 3. IPW-only and CCA performed similarly 
in terms of their precision across all scenarios, with IPW-
only tending to have a slightly lower precision in settings 
with a dependent missingness mechanism and a high pro-
portion of missing data. The combined MI/IPW and MI-
only approaches consistently showed a gain in precision 
(similar in magnitude for all approaches) compared to 
IPW-only and CCA. This gain in precision was greatest in 
scenarios with a sample size of 1,000 and a higher propor-
tion of missing data. The relative error in estimating the 

SE for all methods and scenarios is presented in Supple-
mentary Fig. S1  (see Supplementary Fig. S2 for the esti-
mated model-based SE).

The coverage probability of the 95% CI is shown in 
Fig.  4. Across all scenarios with correct specification 
of the analysis model the nominal coverage level of 
95% was generally within the expected MCSE range 
for all approaches (93.9 – 96.2%), with the coverage 
probability closer to the expected probability of 95% 
as the sample size increased. When the analysis model 
was misspecified, the MI-only approach and CCA 
showed under-coverage, ranging from 92.2% to 94.3%, 
while the subset and intermediate MI approaches and 
the IPW-only approach showed close to the nominal 
coverage.

Case study
The estimated RR and its 95% CI obtained from apply-
ing each analysis method to the case study data are 
displayed in Fig. 5. All methods produced similar point 
estimates, suggesting an increasing risk of food allergy 

Fig. 3 Empirical standard error for the target parameter for each of the 26 simulated scenarios
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at 1-year for having VDI compared to not having VDI, 
however, there was a large amount of uncertainty in 
the true effect. The MI-only approach had a narrower 
CI compared to the MI/IPW approaches, with all 
approaches using MI having a narrower CI compared 
to the CCA  and IPW-only approaches.

Discussion
This study aimed to evaluate approaches to handling 
intended and unintended missing data in case-cohort 
studies with a binary endpoint. We conducted a simu-
lation study to compare the performance of 5 analytic 
approaches (two MI/IPW approaches, a full imputation 
approach, a fully weighted approach and a CCA) across 
a range of scenarios.

When there was a small sample size, all analysis 
approaches, including the complete-data analysis, 
showed bias in the point estimate, which was not seen 
in scenarios with a large sample size. This is indicative 
of a finite sample bias in case-cohort studies, as previ-
ously observed by M Middleton, C Nguyen, M Moreno-
Betancur, JB Carlin and KJ Lee [11] and RH Keogh, SR 

Seaman, JW Bartlett and AM Wood [15]. While the 
MI/IPW subset and intermediate approaches gener-
ally performed similarly to the complete-data analysis 
in these small-sample scenarios, larger biases were seen 
with the MI-only approach.

In settings where there was a large sample size, the 
combined MI/IPW approaches showed underestimation 
of the SE (and narrower CIs) in some settings. However, 
this did not translate into under-coverage of the 95% CI, 
and therefore may not warrant concern in practice. In 
the analysis model misspecification settings, the IPW-
only, MI-IPW-Sub and MI-IPW-Int approaches showed 
consistently lower biases for both the point estimate and 
SE compared to MI-only and CCA. There was also no 
apparent gain in precision for using a full-MI approach 
compared to a combined MI/IPW approach under any 
scenario. Overall, these results suggest that combined 
MI/IPW may be the preferred approach, with little dif-
ference between the subset and intermediate approaches.

Previous work had suggested MI-IPW-Sub performed 
well in handling confounders with unintended miss-
ing values in case-cohort studies with binary outcomes 

Fig. 4 Coverage probability of the 95% confidence interval for each of the 26 simulated scenarios
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[11]. The results presented in the current simula-
tion study suggest that the good performance of this 
approach extends to scenarios where the exposure 
is missing “by chance” rather than by design. While 
MI provided some expected gains in the precision of 
the exposure-outcome effect compared to the IPW-
only approach and CCA, the simulation study results 
showed no apparent gain in bias or precision using a 
full or intermediate MI approach over the subset MI 
approach. These results are in contrast to those pre-
sented by RH Keogh, SR Seaman, JW Bartlett and AM 
Wood [15] who found an intermediate MI approach 
provided greater gains in efficiency than a subset or 
full approach. It is important to note, however, that the 
subset approach may be subject to convergence issues 
in small case-cohort sample sizes, and an intermedi-
ate approach may be preferable in this setting. Inter-
estingly, the MI-only approach tended to show slightly 
larger biases compared to the subset and intermediate 
MI approaches, suggesting a combined approach may 
be preferable.

It is important to note that in this paper we have only 
considered a single implementation of MI. In fact, MI 
is not a single approach, and decisions made during the 
set-up may impact the performance of the approach 
[21]. This impacts on the generalisability of our results, 
as a different implementation of MI may lead to different 
conclusions. However, our model was chosen to closely 

follow the data generation model and analysis model, and 
in this case we would expect MI to perform well.

A limitation of this paper is that we only considered 
incorporating the weights into the imputation model via 
inclusion of the outcome as this approach has shown to 
perform well in this setting [11]. Other approaches are 
available such as including the weights as a predictor in 
the imputation model along with all pairwise interactions 
between the weights and the covariates [9] and using a 
weighted imputation model. Another approach available 
to achieve imputation model compatibility is substantive 
model compatible fully conditional specification (smcfcs) 
[7]. However, at present, the smcfcs program in Stata and 
R cannot accommodate a weighted analysis model and 
hence was not considered in this study.

Our study was based on a realistic case-cohort setting 
and considered a large range of scenarios. While we con-
sidered a small number of scenarios where the analysis 
model was misspecified, further exploration is needed 
to assess the appropriateness of MI in such settings. Due 
to limitations in the handling of missing outcome data in 
case-cohort studies using weighting approaches, given 
the weights are derived dependent on the outcome sta-
tus, we have not considered missing outcome data in this 
study. This provides an avenue for future work. Another 
limitation is that we only considered IPW, MI and com-
bined MI/IPW approaches. There are alternative analy-
sis approaches, such as the semiparametric maximum 

Fig. 5 Estimated risk ratio and 95% confidence interval for the adjusted association between food allergy and vitamin D insufficiency estimated 
using the case study data
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likelihood and improved weighting approaches, as pre-
sented by H Noma and S Tanaka [14], which could also 
be explored.

Conclusions
Based on the findings in the current study, we con-
clude the combined MI/IPW approach may be pref-
erable to a full MI approach to address both intended 
and unintended missing data in case-cohort studies 
with a binary endpoint, although the latter typically 
resulted in minimal bias and nominal coverage. The 
subset and intermediate combined approaches per-
formed similarly, including in the scenarios where the 
analysis model was misspecified. Therefore, we recom-
mend addressing unintended missing data through MI 
applied to either the subset or full cohort and address-
ing intended missing data through IPW (MI-IPW-Sub, 
MI-IPW-Int).
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