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Abstract 

Background Health policy decisions are often informed by estimates of long-term survival based primarily on short-
term data. A range of methods are available to include longer-term information, but there has previously been 
no comprehensive and accessible tool for implementing these.

Results This paper introduces a novel model and software package for parametric survival modelling of individual-
level, right-censored data, optionally combined with summary survival data on one or more time periods. It could be 
used to estimate long-term survival based on short-term data from a clinical trial, combined with longer-term disease 
registry or population data, or elicited judgements. All data sources are represented jointly in a Bayesian model. The 
hazard is modelled as an M-spline function, which can represent potential changes in the hazard trajectory at any 
time. Through Bayesian estimation, the model automatically adapts to fit the available data, and acknowledges 
uncertainty where the data are weak. Therefore long-term estimates are only confident if there are strong long-term 
data, and inferences do not rely on extrapolating parametric functions learned from short-term data. The effects 
of treatment or other explanatory variables can be estimated through proportional hazards or with a flexible non-pro-
portional hazards model. Some commonly-used mechanisms for survival can also be assumed: cure models, additive 
hazards models with known background mortality, and models where the effect of a treatment wanes over time. All 
of these features are provided for the first time in an R package, survextrap, in which models can be fitted using 
standard R survival modelling syntax. This paper explains the model, and demonstrates the use of the package to fit 
a range of models to common forms of survival data used in health technology assessments.

Conclusions This paper has provided a tool that makes comprehensive and principled methods for survival extrapo-
lation easily usable.
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Background
Health policy decisions are often informed by censored 
survival data with limited follow-up, such as clinical trial 
data. However, since decisions may have long-term con-
sequences, the policy-maker is typically interested in the 
expected survival over the long term. This can be difficult 

to estimate when the main source of data is short-term. 
This task is generally referred to as “extrapolation” [e.g. 1]. 
While this word may imply a naive assumption that short-
term trends will continue in the long term, it is now widely 
acknowledged that making reliable decisions requires 
combining evidence and judgements about both the short 
term and the long term. Many approaches have been sug-
gested for combining short-term and long-term data for 
survival extrapolation. For reviews of these methods, see 
[2, 3], and for a broader review of flexible models for sur-
vival analysis in health technology assessments, see [4].
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An overview of these approaches is now given, struc-
tured around four desirable characteristics: (a) to allow 
all relevant information to be included, (b) to fit the data 
well, (c) to allow the resulting uncertainty to be quanti-
fied, (d) to be easy to implement.

Including all relevant information As well as the short-
term trial data, there may be registry data on people with 
the disease of interest, or national statistics describing 
mortality of the general population. Long-term survival 
can then be estimated by building a model to jointly 
describe all data sources [5–7], under assumptions on 
how the data are related, for example, proportional haz-
ards between populations. Another common approach 
is based on partitioning time into different intervals 
in which the hazard is informed by different data  [e.g. 
8]. Elicited expert judgements, ideally about interpret-
able quantities such as survival probabilities, can also be 
included in survival extrapolation, either to directly pro-
vide long-term survival estimates [9] or through formal 
Bayesian combinations with data [10].

As well as including all relevant data, models should also 
be designed to represent any substantive knowledge about 
how risks vary with time and between people. One com-
mon assumption involves distinguishing different causes 
of death in the model (e.g. the cause of interest and back-
ground causes) through additive hazards [4, 11, 12]. 
Another commonly-modelled mechanism is the notion 
of “cure” (e.g [13–15]), where some survivors are eventu-
ally assumed to have zero or negligible risk of some type 
of event in the long term. A particularly important quan-
tity in healthcare decision models is the relative effect of 
a new treatment on survival, which is generally unknow-
able beyond the horizon of its trial, and modellers are 
often advised to consider different mechanisms for how 
this effect might change [16].

Faithfully representing observed data A relatively easy 
part of this task is to estimate short-term risks from the 
short-term data. There is a vast range of statistical meth-
ods available for building, selecting or averaging over 
parametric survival models  [4, 17]. This is important 
to do well, since the expected survival in the long term 
is a function of both short-term and long-term hazards. 
However, short-term fit is a weak guide to long-term 
plausibility. Extrapolations of fitted models outside the 
data are heavily influenced by the choice of paramet-
ric form, therefore are unreliable if this is not informed 
by a plausible mechanism. The most common survival 
models (e.g. Weibull and log-logistic) are generally cho-
sen for their mathematical convenience and availability 
in software, rather than their biological plausibility  [18]. 

Flexible parametric survival models, e.g. spline mod-
els [19] are designed to adapt their shape to fit data arbi-
trarily well. These allow the shape of the hazard function 
to change at any time, hence can adapt to fit combina-
tions of short-term data and long-term data [7, 20]. Since 
the shapes of fitted spline models are driven by data, 
rather than knowledge about the mechanism, caution is 
advised when using them for extrapolation [4, 17].

Expressing uncertainty about survival An appre-
ciation of uncertainty is important in healthcare 
decision-making [21]. Representing parameter uncer-
tainty probabilistically (the Bayesian perspective) has 
various advantages [22] — one advantage is the ease 
with which multiple sources of evidence can be mod-
elled jointly to enhance information about quantities 
of interest. This approach, sometimes called “multipa-
rameter evidence synthesis”, has been used for survival 
extrapolation [5–7, 11, 15, 17, 20]. Another advantage 
of the probabilistic perspective is that it allows the 
expected value of further information to be calculated, 
e.g. for longer-term follow up of survival [23, 24].

Ease of implementation For a statistical method to be 
useful, it should be as easy as possible to use in software. 
The ideal tool would allow the decision-maker to input 
all available data and relevant knowledge, and convert 
those to interesting results. Relevant assumptions should 
be made transparent, while the computer bears the bur-
den of translating knowledge and assumptions to a math-
ematical form and processing the data. Flexible survival 
models can easily be fitted to individual-level censored 
data, for example using the R packages flexsurv [25] or 
survHE [26], or the Stata package stpm2 [27], but these 
do not have facilities for including “external” data to aid 
extrapolation. Bayesian evidence synthesis models have 
been implemented using Bayesian modelling languages, 
e.g. BUGS [7] and JAGS [20], though these require spe-
cialised statistical and programming skills.

The survextrap model and package
In this paper’s view, there has been no method for sur-
vival extrapolation that satisfies all four of these desir-
able criteria. For example, while the model of [7]  flexibly 
accommodates multiple sources of data, it requires spe-
cialised programming and advanced statistical expertise. 
The method of [8] is based on probabilistically blending 
a model for short-term data with a model for long-term 
data, however this only accommodates two sources of 
data, and does not address how to develop and imple-
ment each of the two models.
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This paper presents a model and R package, sur-
vextrap, that is intended to achieve these criteria. The 
model is a Bayesian evidence synthesis, that can com-
bine right-censored individual data with any number of 
external data sources. The model builds on that of  [7] 
in various ways, in particular, adding the ability to sup-
ply substantive prior information on the parameters. 
External data are supplied in a general aggregate count 
form that can encompass typical population or registry 
data, as well as elicited judgements about survival prob-
abilities. A penalised spline model is used that can rep-
resent hazard changes at any times. Through a Bayesian 
procedure, an appropriate level of smoothness and flex-
ibility is estimated. The result is a posterior distribution 
that represents uncertainty about survival given all data 
and knowledge provided. Uncertainty about potential 
hazard changes in times not covered by the data can also 
be included in this posterior, by allowing the spline func-
tion to vary smoothly in these times. The package also 
implements some commonly-used mechanisms for sur-
vival extrapolation: additive hazards (relative survival) 
models, mixture cure models, and models where the 
effect of a treatment wanes over time. A model can be fit-
ted in survextrap using a single call to an R function, 
which follows the standard syntax for survival modelling 
in R, and a range of common summary outputs can be 
extracted with single function calls.

The model is fully described in the Methods: statistical 
model section, explaining the idea of M-splines, how they 
are used to model data, and their extensions to deal with 
explanatory variables and special mechanisms.  The sec-
tion named Implementation of the software introduces 
the survextrap package and points to an example of 
its basic use. The section Demonstration: cetuximab for 
head and neck cancer demonstrates how the model and 
package might be used in a realistic application, to an 
evaluation of the survival benefits of cetuximab in head 
and neck cancer  [7]. A range of models are compared, 
each with different data sources and assumptions about 
how inferences outside the data are made. The Discus-
sion section gives some suggestions for further research.

Methods: statistical model
We suppose there is: 

(a) an individual-level dataset, with survival times that 
may be right-censored,

(b) optionally, also one or more aggregate external 
datasets, giving counts of survivors over arbitrary 
time periods.

The external datasets, indexed by j = 1, . . . , J  , take the 
following form:

• out of nj people alive at a time uj , with common char-
acteristics xj,

• rj of them survive until the time vj.

This form of data might be derived from e.g. disease reg-
istries or population life tables. It may also be derived 
from expert elicitation of the survival probability pj over 
the period (uj , vj) , using the following method. Suppose 
we elicit a Beta(a,  b) prior for pj . We interpret this as 
the posterior distribution from a vague prior (Beta(0,0), 
say) for pj combined with data (rj , nj) , which would be a 
Beta(rj , nj − rj) . Then, by equating a = rj , b = nj − rj , we 
can deduce the data (rj , nj) that would represent knowl-
edge equivalent to the elicited judgement. See [10] for a 
related approach.

A single model is assumed to jointly generate all 
sources of data. This is defined by its hazard function 
h(t|θ , x) , where t is time, θ includes all parameters, and x 
includes predictors (e.g. characteristics of individuals, or 
variables that distinguish one dataset from another). This 
model will be based around a flexible function known as 
an M-spline [28], as previously used by [29] and [30] for 
survival modelling. M-splines have some computational 
advantages over other kinds of splines and flexible mod-
els, as discussed in Appendix A. Appendix B  explicitly 
describes the differences between the M-spline model 
and the cubic spline model used by [7].

The sections named  M-spline model, Modelling data 
with an M-spline model, and Modelling explanatory vari-
ables describe the details of the M-spline model. This core 
model can then form the basis of some other specialised 
survival modelling mechanisms: additive hazards, cure 
models and treatment waning, as described in the Special 
mechanisms section. The model will be fitted by Bayesian 
inference (see the Bayesian inference section), which pro-
duces a posterior distribution for the parameters θ . Esti-
mates and measures of uncertainty for long-term survival 
and other quantities of interest can then be deduced.

M‑spline model
In an M-spline model, the hazard h(t) at time t is defined 
by a weighted sum of basis functions, which takes the 
form:

The scale parameter η is proportional to the typical 
level of the hazard, and the basis coefficients p1, . . . , pn 
satisfy i pi = 1 . A simple example is illustrated in Fig. 1 
with n = 5 basis functions. The axis of time is split into 
regions defined by n− 1 “knots”, in this example at 5, 10, 
15 and 20. Given these knots, a set of n basis functions 

h(t) = η

n∑

i=1

pibi(t)
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bi(t) are defined to span the range of the knots, where the 
first one has a peak at zero, the next n− 2 functions have 
peaks inside the knots, and the final basis function is con-
stant when t exceeds the final knot. The basis functions 
are polynomials (cubics by default), restricted to be posi-
tive and to ensure that h(t) is a smooth function of t. The 
coefficients that represent a constant hazard function can 
be derived as a deterministic function of the knots. The 
full definition is given in Appendix C.

The parameters η and pi do not have exact interpreta-
tions — the intention is to obtain a function that adapts 
to fit all available data, rather than to learn the biological 
or clinical mechanism. Three examples of M-spline haz-
ard functions, on the same basis and scale, but with dif-
ferent coefficients, are illustrated in Fig. 1.

Modelling data with an M‑spline model
The knots should be chosen to allow the hazard function 
to be determined from the data, and to allow the shape of 
the function to change outside the data, if this is plausible 
and an estimate outside the data is needed. This section 
explains the default approach in the survextrap pack-
age, but these defaults can be modified by placing knots 
anywhere if needed.

As in  [19], knots are placed by default at quantiles of 
the uncensored individual-level survival times. If there 
are also external data, additional knots should be defined 
by the user if required to cover the times of these data. 
The appropriate number and location of additional knots 
depends on how many external datasets there are and 
what times they cover — noting that hazard changes 
within an interval (uj , vj) cannot be identified from an 

aggregate count of survivors over this interval. Then to 
allow for hazard changes outside the period covered 
by all data, the highest knot should be placed at a point 
beyond which either we assume the hazard will not 
change, or any hazard changes are unimportant.

The appropriate level of flexibility for the hazard func-
tion is determined automatically from the data, by using 
a principle of penalisation [31], or “shrinkage” towards a 
constant hazard. Firstly, the number of knots spanning 
the individual data is fixed to be large enough to accom-
modate all plausible shapes ( n = 10 basis functions is 
the current package default). A hierarchical prior is then 
placed on the coefficients pi , to represent a belief that the 
true model may be this flexible, but is most likely to be 
less flexible. Then, when the model is fitted to data, the 
resulting posterior represents the optimal level of flexibil-
ity needed to describe the data. This is intended to pro-
tect against the risk of over-fitting.

Specifically, the prior for the pi is a multinomial 
logistic distribution: log(pi/p1) = γi , with γ1 = 0 and 
γi ∼ Logistic(µi, σ) for i = 2, . . . , n . The prior mean 
µ = (µ2, . . . ,µn) is defined so that the corresponding pi 
represent a constant hazard h(t). The prior variability σ 
controls the smoothness of the fitted hazard curve, and is 
estimated from the data. If σ = 0 then we are certain that 
the hazard is constant, and values of σ around 1 favour 
“wiggly” curves where the hazard is driven mainly by the 
data. See the survextrap package vignettes for some 
examples.

Modelling explanatory variables
To extend this model to allow the hazard 
h(t|x) = η

∑
i pibi(t) to depend on explanatory variables 

x , a proportional hazards model can be used, where the 
scale parameter η is redefined as η(x) = η0 exp(β

T
x).

A novel, flexible non-proportional hazards model is 
also defined, by also modelling the spline coefficients pi 
as functions of x using multinomial logistic regression:

The sth element of the vector δi describes the departure 
from proportional hazards for the s th covariate in the 
region of time associated with the ith spline basis term. 
With all δi = 0 , this is the proportional hazards model. 
For each covariate s, a hierarchical prior is used for the 
non-proportionality effects, δis ∼ Normal(0, τs) , which 
“partially pools” or smooths the effects from different 
regions of time i.

Hence, in the non-proportional hazards model, the 
ratio between the hazards h(t|x) at different covariate val-
ues x is a function of time t. Since the δi may be arbirtar-
ily different in each region of time i, the hazard ratio can 

log(pi(x)/p1(x)) =γi(x)

γi(x) ∼Logistic(µi + δTi x, σ) (i = 2, ..., n), δ1 = 0

Fig. 1 Three theoretical examples of M-spline hazard functions 
h(t) =

∑
i pibi(t) (coloured lines). Each is defined as a linear 

combination of the same 5 polynomial basis functions bi(t) (in grey), 
and scale η = 3 . Each has different basis coefficients pi , indicated 
in the plot. Note that the constant hazard model is not the one 
where all the coefficients are the same
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be an arbitrarily-flexible function of time. The shape of 
this time-dependence is estimated from the data, while 
the hierarchical prior protects against over-fitting.

Special mechanisms
The idea behind the package is for inferences to be 
driven by transparently-stated data and judgements. 
As described so far, the flexible model used to achieve 
this is treated as a “black box”, that is, its specific form 
is not intended to have a biological or clinical interpre-
tation. However, sometimes plausible mechanisms can 
be specified via parametric model structures, to improve 
estimates of long-term survival. The package currently 
supports the following three mechanisms, that are some-
times assumed for survival extrapolation.

Additive hazards / relative survival Here the overall 
hazard is assumed to be the sum of two hazards for dif-
ferent causes of death, as h(t) = hb(t)+ hc(t) , where

• hb(t) is the “background” hazard, assumed to be a 
known, piecewise-constant function of time. This is 
often confidently known from national statistics on 
general mortality.

• hc(t) is the “cause-specific” or “excess” hazard for 
the disease of interest, which is modelled with the 
M-spline parametric model.

The individual-level data are assumed to be described by 
h(t), and fitting the model to these data involves estimat-
ing the parameters governing hc(t) . The corresponding 
survivor functions are multiplicative: S(t) = Sb(t)Sc(t) , 
hence the alternative term “relative survival” model. This 
is a variant of the model used by [12], but Bayesian and 
with a different kind of spline.

Mixture cure model In a mixture cure model, 
data are assumed to arise from a survival function 
S(t|p, θ) = p+ (1− p)S0(t|θ) , where the unknown 
parameter p is sometimes termed the “cure probability”, 
and S0(t|θ) is a parametric model with parameters θ , 
termed the “uncured survival”. Here, S0 is the M-spline 
model described above. For very large t, the survival con-
verges to a constant p, the probability of never experienc-
ing the event. This is often interpreted as a mixture of two 
populations, where a person has zero hazard at all times 
t with probability p, or a hazard h0(t) at all times with 
probability 1− p . However, contrary to some descrip-
tions of this model, this is not a necessary assumption, 
because the same survival function arises if everyone is 
subject to the same hazard that decreases asymptotically 
to zero over time, h(t) = f0(t)/(p/(1− p)+ S0(t)) , where 

f0(t) is the probability density function of the “uncured” 
model. These two interpretations are indistinguishable in 
practice, since in the mixture interpretation, we cannot 
determine which of the two populations censored obser-
vations belong to.

A mixture cure model can either be used for the overall 
hazard, or the cause-specific hazard hc in an additive haz-
ards model. Using a cure model for hc would be appro-
priate if we can assume that the cause-specific hazard 
decreases to a negligible amount over time, so that every-
one with the disease of interest is essentially “cured”, and 
their hazard becomes dominated by background causes.

Waning treatment effects Health technology assess-
ments are often primarily informed by trials of a novel 
treatment against a control. Beyond the trial horizon, 
information about the relative effect of the new treatment 
will be weak. A naive extrapolation from the model would 
assume that the estimated short-term effect will continue 
in the long term (e.g. as a constant hazard ratio). This is 
often contrasted with more conservative scenarios where 
the treatment effect wanes over time, so that after some 
point, treated and control patients have the same hazard.

Treatment effect waning can be achieved by firstly fit-
ting a parametric model h(t|x) , including the effect of a 
treatment x, to short-term data. This does not necessar-
ily need to be a proportional hazards model. Then, the 
predicted hazard for the control group is taken from the 
fitted model, h(t|x = 0) . The predicted hazard for the 
treated group is obtained as h(t|x = 1) = h(t|x = 0)hr(t) , 
where the time-dependent hazard ratio hr(t) is defined as 
follows:

• For t ≤ tmin , hr(t) is taken from the fitted model. tmin 
might be the end of the trial follow-up period, or a 
later point up to which the effect from the trial can 
be confidently extrapolated.

• For t ≥ tmax , hr(t) = 1.
• For tmin ≤ t ≤ tmax , log(hr(t)) is assumed to dimin-

ish linearly between log(hr(tmin)) at tmin , and zero at 
tmax.

Bayesian inference
The models define a hazard function h(t|θ , x) , from 
which the cumulative hazard function and survivor 
function S(t|θ , x) can be derived, to construct the likeli-
hood function for the individual-level data. This hazard 
function is also assumed to govern the external data-
sets j, with any differences between them explained 
by different explanatory variables x = xj and the time 
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period covered. The likelihood for each external dataset 
j is built by assuming that rj is generated from a Bino-
mial distribution with denominator nj and probability 
pj = S(uj|θ , xj)/S(tj|θ , xj) , that is, the probability of sur-
vival to time uj conditionally on being alive at tj . Samples 
from the posterior distribution of θ (which may com-
prise e.g. η , p1, . . . , pn , σ , β , δ , τs , depending on the model 
choice) are then obtained by Markov Chain Monte Carlo 
methods, specifically Hamiltonian Monte Carlo as imple-
mented in Stan [32].

In the package, all priors for the parameters compris-
ing θ can be defined by the user. If any priors are not 
specified, then the following defaults are currently used. 
These are “weakly informative”, that is, containing some 
stabilising information but largely letting the data drive 
the inferences, following principles described by  [33]. 
As in [29], the baseline log hazard log(η0) (for covariate 
values of zero) is given a normal prior with mean zero 
and standard deviation 20. For the log hazard ratios, 
Normal(0, 2.5) is used, and a Gamma(2,1) is used for the 
smoothness parameter σ.

Prior calibration Procedures are also provided for sim-
ulating from the joint prior distributions for the parame-
ters in θ , to ensure that they imply plausible beliefs about 
easily-understandable quantities. For example, σ governs 
how much the hazard is expected to vary through time 
— a constant hazard has σ = 0 , but other values of σ 
are hard to interpret. However, we can draw a simulated 
value from any given prior for σ , jointly with the the dis-
tributions for the pi and η , and deduce the implied hazard 
curve h(t). The hazard variability in this curve could be 
described by the ratio ρ between (say) the 90% percentile 
and 10% percentile of h(t) over a fine, equally-spaced grid 
of times t from zero to the highest knot. By repeatedly 
simulating hazard curves, we can draw from the prior 
distribution of ρ . We can then calibrate the prior for σ to 
achieve a prior on ρ that expresses beliefs of the form “the 
highest values of the hazard are unlikely to be 10 times 
the lowest values”.

Statistical model comparison The goodness-of-fit of 
different models to the observed data can be compared 
using leave-one-out cross-validation, via the method and 
R package of [34, 35]. For each observation i (individual 
event or censoring time in the individual data, or individ-
ual event indicator in the external data), this method esti-
mates elpdi , the expected log predictive density, a meas-
ure of the accuracy with which a model would predict the 
ith observation if it were left out when fitting the model. 
The sum LOOIC = −2

∑
i elpdi is then used as an “infor-

mation criterion” to compare the fit of models. LOOIC is 

similar in principle to DIC  [36], but with a direct inter-
pretation in terms of predictive ability.

Implementation of the software
An R package called survextrap implements the 
method. It is available from https:// chjac kson. github. 
io/ surve xtrap/. It uses the rstan interface to the Stan 
software  [32, 37] to perform Hamiltonian Monte Carlo 
sampling from the posterior distribution of the Bayesian 
model. Models can be fitted with a single R command, 
using a similar mechanism to the rstanarm pack-
age [29]. Posterior summaries (e.g. estimates and credible 
intervals) for a range of interesting outputs (e.g. survival 
probabilities, hazards, mean survival times) can then be 
extracted using single commands. Outputs from all these 
functions obey “tidy data” principles [38], to facilitate fur-
ther processing, in particular, plotting with the ggplot2 
R package.

An example of basic use of the package is given in 
Appendix D of this paper. The website https:// chjac kson. 
github. io/ surve xtrap/ gives thorough documentation for 
all the package’s functions, including a series of articles 
describing specific features in more detail, and the code 
and data to reproduce the analysis in the Demonstration: 
cetuximab for head and neck cancer section.

Demonstration: cetuximab for head and neck 
cancer
This section demonstrates a range of models that can 
be built with survextrap in a typical application to a 
health technology evaluation, each using different kinds 
of information and model assumptions to enable extrap-
olation. The full R code to reproduce each model fit, 
calculation and plot is supplied and explained in a Sup-
plementary article. The paper will focus on discussing 
different analysis choices and their consequences.

We study the data that were previously analysed by  [7], 
describing the survival of people with head and neck can-
cer. Data are obtained from 5 years of follow-up of a trial 
[39] of cetuximab and radiotherapy, compared to a control 
group who only received radiotherapy. Individual-level data 
were imputed from the published Kaplan-Meier estimates, 
using the method of [40]. As well as the trial data, there are 
two external data sources [full details are given in 7]: 

(a) a cancer registry (SEER: the Surveillance, Epide-
miology and End Results Program), representing 
people with the same distribution of age, sex, can-
cer site and calendar period of diagnosis date as the 
trial data. This gave counts of survivors rj over the 
following year, out of nj alive at j years after diagno-

https://chjackson.github.io/survextrap/
https://chjackson.github.io/survextrap/
https://chjackson.github.io/survextrap/
https://chjackson.github.io/survextrap/
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sis, for j = 5 to 25, giving estimates of annual sur-
vival probabilities pj.

(b) survival data for the general population of the 
United States, matched by age, sex and date.

We examine either the survival for the control group 
alone, or the increase in survival provided by cetuxi-
mab. Specifically we calculate the restricted mean sur-
vival time (RMST), or the difference in restricted mean 
survival times, over time horizons varying from 5 years 
up to 40 years. We discuss how longer-term data and 
judgements are required to obtain confident estimates of 
longer-term survival.

Prior information
To improve transparency, and stabilise computation, we 
specify priors explicitly, rather than relying on the pack-
age’s (fairly vague) defaults. 

1 Hazard scale parameter η . Since patients in the 
trial have a median age of 57 (range 34 to 83), the 
prior for η is calibrated to imply a prior mean sur-
vival of 25 years after diagnosis but with a vari-
ance chosen to give a wide 95% credible interval 
of about 5 to 100 years. Note that this interval 
describes uncertainty about knowledge of the 
mean in the control group, not variability between 
individuals in this group.

2 Smoothing parameter σ . This is chosen by simula-
tion (as described in the Bayesian inference section) 
so that the highest hazard values for the control 
group (90% quantile) are expected to be ρ = 2 times 
the lowest values (10% quantile), but with a credible 
interval for ρ of between 1 and 16.

The individual-level data are spanned by n = 6 spline 
basis terms, chosen according to the quantiles of 
observed event times. Beyond the trial data, additional 
knots are used depending on what external data are 
included, and what time horizon we want to estimate 
survival for.

Trial data alone: extrapolating a single arm
Firstly we study just the data from the control treatment 
group. We contrast two models that describe the trial 
data in the same way, but differ in how extrapolation is 
done, labelled as: 

 (1a) the highest knot is set to 20 years,
 (1b) the highest knot is set to the final event time in 

the data (5 years in this case). This is the package 
default if an upper knot is not specified.

The posterior distributions of the survival and hazard 
curves up to 20 years (Fig.  2) show how extrapolation 
relies on both data and assumptions. Here there are no 
data describing 5 to 20 years. In (1b) we made the strong 
assumption that hazards will remain constant after the 
trial horizon of 5 years. In (1a) we assumed that the haz-
ard will change smoothly after the trial, but using a spline 
model that allows any size and direction of change, not 
determined by the fit to the short-term data. Therefore 
there is a lot of uncertainty around the extrapolated haz-
ard function in (1a), but the extrapolation under (1b) 
is more confident. The exact extent of uncertainty in 
(1a) will be sensitive to where knots are placed, though 
a rough uncertainty quantification may be sufficient to 
highlight the need for further information beyond that 
included in the trial.

5 and 20-year RMST estimates are shown in Table  1. 
Credible intervals for 20-year estimates are wide when 
we do not constrain the extrapolated hazard. The 5 year 
RMSTs from model (1a) did not change by more than 
0.1 years when the model was made more or less flex-
ible (through the number of basis terms varying from 5 
to 12).

Trial data alone: treatment comparisons
Now we consider a comparison between treatment 
groups based on the trial data alone, using three alterna-
tive models, labelled as: 

 (2a) a proportional hazards model,
 (2b) a parametric non-proportional hazards model 

(Modelling explanatory variables section),
 (2c) both treatment arms modelled separately.

These models fit similarly well to the trial data, judging 
from the fitted survival curves (Fig. 3), and their similar 
LOOIC cross-validation statistics (Table  2). The differ-
ence between them is more apparent when extrapolat-
ing. The upper boundary knot is set to 20 years, so that 
we allow the hazard to change after 5 years, even though 
there is no data then. Over five years (Table  2) the sur-
vival and incremental survival between treatment groups 
is similar between the three models, but over 20 years the 
uncertainty about these quantities is greater. The credible 
intervals are narrowest under the proportional hazards 
model, and widest when modelling arms independently. 
The non-proportional hazards model makes more effi-
cient use of the data than modelling arms separately, 
though the proportional hazards model is adequate 
(judging by LOOIC).

All the models so far have ignored the substan-
tive information that exists beyond the trial data: the 
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registry and population data to inform mortality for these 
patients, and information about the mechanism of the 
treatment effect.

External data from the patients of interest
We now examine how to incorporate external data in 
survextrap models. Annual hazard (mortality rate) 
estimates from the SEER registry data, calculated as 
− log(rj/nj) , are illustrated in Fig. 4, with corresponding 

interval estimates (calculated from quantiles of the 
Beta(rj , nj − rj) ). These are included in a joint model 
with the trial data (labelled (1c) in Table  1), with knots 
added at 10, 15 and 20 years, and the patients in the reg-
istry are assumed to have the same survival as the control 
group of the trial. The posterior distribution of the haz-
ard from this model is also illustrated in Fig. 4, along with 
estimates from the equivalent model (from Fig.  2) that 
excludes the registry data. The registry data makes the 
extrapolated hazard and RMST much more confident. 

Fig. 2 Survival and hazard estimates (posterior median and 95% credible intervals) for the trial control group, from flexible Bayesian models 
where the hazard after the last event time in the trial (vertical line) is either arbitrarily varying (1a) or constant (1b). Kaplan-Meier estimate 
from the trial data also shown on the left as a black jagged line

Table 1 Comparison of estimates of restricted mean survival time in years (posterior median and 95% credible intervals) over different 
models and time horizons, for head and neck cancer patients in the control group. The models differ by the different sources of 
observed data included, and the different assumptions used for extrapolation outside the time horizon of the observed data

Model Observed data Extrapolation assumptions Time horizon Restricted mean survival

(1a) Trial No extrapolation 5 2.88 (2.63, 3.13)

(1a) Trial Uncertain hazard 20 5.11 (3.77, 7.14)

(1b) Trial Constant hazard 20 5.12 (4.01, 6.71)

(1c) Trial,registry No extrapolation 20 5.76 (5.04, 6.57)

(1d) Trial,registry Uncertain hazard 40 6.2 (5.35, 7.12)

(1e) Trial,registry,population Uncertain excess hazard 40 6.22 (5.36, 7.13)

(1f ) Trial,registry,population Mixture cure 40 6.27 (5.39, 7.22)

(1g) Trial,registry,population Elicited survival 40 6.26 (5.37, 7.17)
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The model allows the hazard to vary flexibly up to 20 
years, and those variations can be estimated from the reg-
istry data. Different knot placements did not substantially 

affect estimates of survival over 20 years or improve the 
fit to the external data as measured by LOOIC (see the 
Supplementary material for more details).

Fig. 3 Estimates of survival as posterior medians from three different flexible Bayesian models for both treatment groups. Kaplan-Meier estimates 
from the trial data are shown as jagged lines, and spline knot locations as vertical lines

Table 2 Comparison of models fitted to both treatment and control trial data. Estimates of restricted mean and increase in restricted 
mean survival in years over 5 or 20 year horizons (posterior median and 95% credible intervals), and LOOIC model comparison statistic 
(lower indicates better predictive ability)

Model Restricted mean survival (control) Increase in mean survival (cetuximab ‑ 
control)

LOOIC

Trial data alone: prediction horizon 5 years

    (2a) Proportional hazards 2.89 (2.62, 3.14) 0.31 (-0.06, 0.67) 1156

    (2b) Non-proportional hazards 2.88 (2.62, 3.14) 0.31 (-0.06, 0.68) 1157

    (2c) Separate arms 2.88 (2.63, 3.13) 0.36 (0, 0.73) 1160

Trial data alone: prediction horizon 20 years

    (2a) Proportional hazards 4.97 (3.82, 7.11) 1.1 (-0.22, 2.61) 1156

    (2b) Non-proportional hazards 4.98 (3.76, 6.66) 1.12 (-0.91, 3.26) 1157

    (2c) Separate arms 5.11 (3.77, 7.14) 1.33 (-1.24, 4.12) 1160

Trial and registry data: prediction horizon 20 years, proportional hazards models

    (2d) No waning 5.82 (5.07, 6.62) 1.23 (-0.34, 2.86)

Trial, registry and population data: prediction horizon 20 years, proportional hazards models

    (2e) No waning 5.89 (5.11, 6.65) 1.08 (-0.4, 2.61)

    (2e) 5 to 20 years 5.89 (5.11, 6.65) 1.02 (-0.38, 2.47)

    (2e) 5 to 6 years 5.89 (5.11, 6.65) 0.81 (-0.3, 1.92)
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Modelling differences between external and trial 
data Note that in the survextrap package, the exter-
nal data does not have to describe a population iden-
tical to that described by a particular subgroup of the 
individual data. The differences between data sources 
could instead be explained by covariates included in the 
model, using either proportional or non-proportional 
hazards [5].

The simplest model of this kind would have a covari-
ate that indicates the dataset: e.g. a binary variable tak-
ing values “trial” and “external”. To estimate the hazard 
ratio between datasets, we would then need data from 
the same time period to be observed in both datasets, or 
strong prior information. This is not available in the data 
provided with  [7], where the external data starts where 
the trial data ends at 5 years (though Fig.  4 gives weak 
evidence that the hazard at 5 years is roughly the same in 
both datasets). Furthermore, to use a fitted model of this 
kind to predict outside the data, we would also need to 
assume that the relation between the datasets (e.g. pro-
portional hazards) holds outside the observed period, 
which would not be verifiable from the data. We would 
also need to specify whether to predict for the trial or 
external population.

If further covariates are recorded in both datasets, these 
may also be included in the model to explain any dif-
ferences between the datasets. Then, in theory, we may 
use the fitted model to make predictions for populations 
defined by combinations of the trial and external popu-
lations. Though likewise, extrapolation would rely on 
assuming that estimated covariate effects are valid out-
side the time and population that they were estimated 
from. Any combination of data from different sources 
needs careful consideration of potential biases.

Population data informing background mortality
Another way of including external data is through addi-
tive hazards, as described in the Special mechanisms sec-
tion. Here this allows the data on survival of the general 
population to be included. These are assumed to follow 
the background hazard hb(t) , which is assumed known. 
The trial data follow the overall hazard h(t), and the 
excess hazard hc(t) for head and neck cancer patients is 
assumed to follow the flexible M-spline model and esti-
mated. This model constrains the survival of head and 
neck cancer patients to be no better than the survival of 
the general population.

The population data are added to the model that includes 
the registry data. We compare hazard extrapolations up 

Fig. 4 Hazard estimates (posterior median and 95% credible intervals) from models for trial data with (1c) and without (1a) external data 
from the cancer registry (coloured bands), and hazard estimates from the registry data alone (jagged lines)
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to 40 years, placing further knots at 30 and 40 years (in 
addition to those spanning the trial and registry data), 
either without or with the population data (Fig.  4), 
labelled (1d) and (1e) in Table 1. The population data do 
not affect the hazard estimates up to 20 years, but the 
extrapolations over 40 years are very uncertain unless 
the population data are included. Including the popula-
tion data allows the reasonable constraint that hazards 
will not go below those of the general population. The 
exact excess risk for head and neck cancer patients is still 
uncertain, however, since we do not have data beyond 25 
years to inform it.

Mixture cure model
We could improve the precision of the estimates of the 
excess hazard for head and neck cancer patients by includ-
ing judgements, for example, that the excess hazard will 
diminish to zero as people age. While there is no evidence 
of this from the registry data in this example, in some appli-
cations it might be plausible. One way to represent this 
might be through a mixture cure model (Special mecha-
nisms  section) fitted to the trial, registry and population 
data combined. Comparing the results from the mixture 
cure model (Fig.  6, and (1f) in Table  1) to the model for 
the same data with no cure assumption (Fig.  5 and (1e)) 
shows how the assumption of cure has pulled the hazard 

extrapolations for 20-40 years closer to the estimates of the 
background hazard, though with wide credible intervals. 
The exact shape of the extrapolation for the cure model 
is influenced by the parametric form for the mixture cure 
hazard function. In practice, this should be checked for 
plausibility.

Elicitation of long‑term survival probabilities
A more flexible way to include longer-term judgements is 
by eliciting survival probabilities. These can be converted 
to artificial datasets represeting counts of survivors, 
which can be included as “external data” in the model, 
using the idea described in the Methods: statistical model 
section.

For example, we could state an assumption of “cure” 
in the form: “by 40 years after diagnosis, we are con-
fident that the patients of interest will have similar 
mortality to the background population”. The annual 
survival probability in the matched general popula-
tion dataset at this point is 0.72. Suppose we then elic-
ited a Beta(1000× 0.72, 1000× (1− 0.72)) distribution, 
Beta(724, 276), which has a 95% credible interval of (0.70, 
0.75). This is equivalent to having observed rj = 724 sur-
vivors at the end of the year, from nj = 1000 people alive 
at the start. The denominator nj could be controlled to 
give different amounts of prior uncertainty, e.g. nj = 100 

Fig. 5 Hazard estimates (posterior median and 95% credible intervals) from models from the trial data and cancer registry data, compared 
without (1d) and with (1e) additional data from the general population
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would give a Beta(72, 100− 72) which has a wider cred-
ible interval of (0.63, 0.80).

This artificial dataset is then concatenated with the 
SEER registry data, and supplied to the model in the 
same way as the registry data. The predicted hazard from 
this model is shown in Fig. 6. This reflects our assump-
tion that the overall hazard approaches the background 
hazard at 40 years, but with some uncertainty. This 
model makes less restrictive parametric assumptions 
than the mixture cure model — since spline knots are 
placed at 20, 30 and 40 years, the hazard curve is allowed 
to change within a wide variety of smooth shapes. The 
assumption that the cancer patients are “cured” by 40 
years is provided through a directly-stated judgement 
about survival at 40 years, rather than through extrapo-
lating a parametric equation estimated only from data 
up to 25 years.

Finally, note that the RMST estimates (Table  1) do not 
change much between the four different assumptions (1d)–
(1g) used for estimating the hazard between 20 and 40 years, 
since the probability of survival beyond 20 years is low.

Waning treatment effects
We have now built in a model that includes all back-
ground information about general mortality of the 

patients in the trial, allowing us to extrapolate absolute 
survival of the control group as confidently as the data 
allow. In  the section titled Trial data alone: treatment 
comparisons  we built models to estimate treatment 
effects from the trial data. We now consider what judge-
ments might be made about the treatment effect beyond 
the trial horizon, and how these can be modelled with 
survextrap.

As discussed by [7], the mechanism of cetuximab is to 
enhance the effect of radiotherapy. The effects of both of 
these therapies is expected to be limited to the initial 5 
or 6 years, where most of the mortality due to the cancer 
occurs. Therefore [7] judged that the hazard ratio for the 
effect of adding cetuximab to radiotherapy is expected to 
diminish to one by around 6 years, though acknowledged 
some uncertainty around this.

Therefore the model which includes registry and popu-
lation data but no cure is extended to include a propor-
tional hazards model for treatment (the treatment effect 
mechanism that best fitted the trial data in the Trial data 
alone: treatment comparisons section). The results from 
this model are labelled (2e) in Table  2. The incremen-
tal restricted mean survival over 20 years is compared 
between three different assumptions about the treatment 
effect beyond the 5-year trial horizon: 

Fig. 6 Hazard estimates (posterior median and 95% credible intervals) from models from the trial, cancer registry and general population data 
under two alternative models ((1f ) mixture cure, and (1g) elicited survival) that represent a decreasing excess hazard for people diagnosed 
with head and neck cancer
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(a) the log hazard ratio remains constant at the value 
estimated from the trial

(b) the log hazard ratio wanes linearly from the trial 
value at 5 years to zero at 6 years

(c) the log hazard ratio wanes linearly from the trial 
value at 5 years to zero at 20 years

Using all three data sources, with no waning, the 
incremental restricted mean survival over 20 years 
is estimated as 1.08 (-0.4, 2.61). This reduces to 1.02 
(-0.38, 2.47) when waning is applied gradually from 
6 to 20 years, and even further to 0.81 (-0.3, 1.92) 
when the effect is assumed to wane rapidly from 5 to 
6 years. Note also that omitting the population data 
from this model ((2d) in Table 2) impacts the estimated 
treatment effect.

The assumptions made here are uncertain, and there 
are many ways in which this uncertainty could be 
described. A simple deterministic sensitivity analysis is 
done here, which has an advantage of transparency to 
decision-makers. An alternative approach would be to 
represent this uncertainty probabilistically (see, e.g [7] for 
one approach), though formally specifying and eliciting 
distributions for a weakly-informed, time-varying quan-
tity like this is challenging in general.

Discussion
This paper has introduced a tool that makes principled 
methods for survival extrapolation straightforward. It 
accommodates a wide range of data sources, that can be 
represented in a flexible statistical model. The Bayesian 
approach allows uncertainty to be quantified, and the R 
package removes the need for specialised programming. 
The model can represent uncertainty about how the haz-
ard will change beyond the data, assuming only that the 
hazard function is smooth.

While the model is flexible, all models are based on 
assumptions. The package tries to make these as transpar-
ent as possible. In particular, prior distributions can easily 
be chosen to represent beliefs about interpretable quanti-
ties. While the spline model relies on a choice of knots, 
the statistical fit of different choices to data can be com-
pared. Extrapolations outside data may be sensitive to 
modelling choices, but uncertainty is inevitable when data 
is weak. If there is uncertainty, there is a tension between 
decision-making and recommending collection of further 
data. The Bayesian approach represents uncertainty using 
probability distributions, which allows the use of “value 
of information” methods to estimate the expected ben-
efits of further information (e.g. from a health economic 
perspective). In principle, the posterior distribution from 

a survextrap model might be used to calculate the 
expected value of sample information for a new trial or 
further follow-up from an existing trial — the implemen-
tation details have not been worked out, but see e.g. [41] 
for a potential starting point.

There are several ways in which the model used here 
might be extended. Hierarchical or random effects models 
are one potential direction, as in rstanarm  [29]. These 
might be used to represent various kinds of heterogeneity 
in survival, e.g. between observed groups such as differ-
ent hospitals  [42], or between latent classes of individu-
als [14]. Survival models with random effects can also be 
used for (network) meta-analysis  [43]. Another common 
extension of survival models is to multi-state models for 
times to multiple events. See, e.g.  [44] for a comparison 
of flexible parametric frameworks for multi-state mod-
els, and  [45] for network meta-analysis of survival data 
with multiple outcomes. The ideas described in this 
paper would enable any of these previous methods to be 
strengthened by including background information from 
external data.

A final point to consider is that getting new statis-
tical methods into routine practice involves several 
“phases” of research [46]. This paper has described the 
theoretical basis for a novel method, shown its util-
ity in a realistic application, and provided software to 
make it usable with the minimum of effort. However, 
flexible Bayesian evidence synthesis methods are com-
plex and specialised. To improve confidence in them, 
more work to demonstrate their use in a wide range of 
applications would be helpful. Furthermore, construct-
ing the flexible model relies on many assumptions 
made for mathematical or computational convenience, 
such as the M-spline structure, smoothing procedure 
and default priors. Simulation studies would be valua-
ble to assess whether the default models give estimates 
that are reliable in realistic situations, in particular 
when compared to better-known models. Further work 
on constructing practicable, flexible models that can 
reflect biological or clinical mechanisms, or models 
with stronger theoretical optimality properties, would 
also be beneficial. Education in statistical skills is also 
important. The Bayesian spline models used here are 
more complex than basic parametric survival models, 
with many ingredients that may be unfamiliar, such 
as prior distributions, spline knots and Markov Chain 
Monte Carlo computation. The online documentation 
includes lots of worked examples to explain the impor-
tant concepts, and will be updated as a “live” resource 
in response to users’ needs if the package becomes 
more widely used.
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Software availability and requirements
 

• Project name: survextrap: an R package for survival 
extrapolation with a flexible parametric model and 
external data

• Project home page: https:// chjac kson. github. io/ 
surve xtrap

• Operating system(s): Windows, MacOS and Linux
• Programming language: R and Stan
• Other requirements: R and various R packages, 

installed automatically
• License: GNU GPL ( ≥ 3)
• No restriction to use by non-academics

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874- 023- 02094-1.

Additional file 1: Appendices.

Additional file 2: Further details and reproducible code for the cetuximab 
case study

Acknowledgements
I am grateful to Iain Timmins for suggesting the smoothness constraint at the 
spline boundary, and other helpful discussion. Thanks also to Nicky Welton, 
Mike Sweeting, Dawn Lee, Ash Bullement, Nick Latimer, Ed Wilson, Gianluca 
Baio and Howard Thom for discussions and encouragement, and to Daniel 
Gallacher regarding the package name.

Authors’ contributions
All work for the manuscript was undertaken by C.J.

Funding
Funding was from the Medical Research Council, programme number MRC_
MC_UU_00002/11. The funding body had no role in the conduct of the work.

Availability of data and materials
All data analysed during this manuscript are made available inside the 
survextrap package. A detailed article explaining the case study in the 
Demonstration: cetuximab for head and neck cancer section, with embedded 
R code to directly reproduce all results including graphs and tables, is available 
in Supplementary file 2, and in a “live” version at https:// chjac kson. github. io/ 
surve xtrap/ artic les/ cetux imab. html which will keep it up to date with any 
future enhancements or fixes to the software.

Declarations

Ethics approval and consent to participate
Not applicable. Only openly-available data are studied.

Consent for publication
Not applicable. Only openly-available data are studied.

Competing interests
The authors declare no competing interests.

Received: 14 June 2023   Accepted: 3 November 2023

References
 1. Latimer NR, Adler AI. Extrapolation beyond the end of trials to estimate 

long term survival and cost effectiveness. BMJ Med. 2022;1(1).
 2. Bullement A, Stevenson MD, Baio G, Shields GE, Latimer NR. A systematic 

review of methods to incorporate external evidence into trial-based 
survival extrapolations for health technology assessment. Med Decis 
Making. 2023. https:// doi. org/ 10. 1177/ 02729 89X23 11686 18.

 3. Jackson C, Stevens J, Ren S, Latimer N, Bojke L, Manca A, et al. Extrapo-
lating survival from randomized trials using external data: a review of 
methods. Med Decis Making. 2017;37(4):377–90.

 4. Rutherford M, Lambert P, Sweeting M, Pennington R, Crowther MJ, 
Abrams KR, et al. NICE DSU Technical Support Document 21: Flexible 
Methods for Survival Analysis. Decision Support Unit, ScHARR, University 
of Sheffield; 2020.

 5. Demiris N, Lunn D, Sharples LD. Survival extrapolation using the poly-
Weibull model. Stat Methods Med Res. 2011;24(2):287–301.

 6. Benaglia T, Jackson CH, Sharples LD. Survival extrapolation in the pres-
ence of cause specific hazards. Stat Med. 2015;34(5):796–811.

 7. Guyot P, Ades AE, Beasley M, Lueza B, Pignon JP, Welton NJ. Extrapola-
tion of survival curves from cancer trials using external information. Med 
Decis Mak. 2017;37(4):353–66.

 8. Che Z, Green N, Baio G. Blended survival curves: a new approach to 
extrapolation for time-to-event outcomes from clinical trials in health 
technology assessment. Med Decis Mak. 2023;43(3):299–310.

 9. Cope S, Ayers D, Zhang J, Batt K, Jansen JP. Integrating expert opinion 
with clinical trial data to extrapolate long-term survival: a case study of 
CAR-T therapy for children and young adults with relapsed or refractory 
acute lymphoblastic leukemia. BMC Med Res Methodol. 2019;19(1):1–11.

 10. Cooney P, White A. Direct incorporation of expert opinion into parametric 
survival models to inform survival extrapolation. Med Decis Mak. 
2023;43:325–36.

 11. van Oostrum I, Ouwens M, Remiro-Azócar A, Baio G, Postma MJ, 
Buskens E, et al. Comparison of parametric survival extrapolation 
approaches incorporating general population mortality for adequate 
health technology assessment of new oncology drugs. Value Health. 
2021;24(9):1294–301.

 12. Nelson CP, Lambert PC, Squire IB, Jones DR. Flexible parametric models 
for relative survival, with application in coronary heart disease. Stat Med. 
2007;26(30):5486–98.

 13. Boag JW. Maximum likelihood estimates of the proportion of patients 
cured by cancer therapy. J R Stat Soc Ser B (Methodol). 1949;11(1):15–53.

 14. Federico Paly V, Kurt M, Zhang L, Butler MO, Michielin O, Amadi A, et al. 
Heterogeneity in survival with immune checkpoint inhibitors and its 
implications for survival extrapolations: a case study in advanced mela-
noma. MDM Policy Pract. 2022;7(1):23814683221089660.

 15. Chaudhary M, Edmondson-Jones M, Baio G, Mackay E, Penrod J, Sharpe 
D, et al. Use of advanced flexible modeling approaches for survival 
extrapolation from early follow-up data in two nivolumab trials in 
advanced NSCLC with extended follow-up. Med Decis Mak. 2022. https:// 
doi. org/ 10. 1177/ 02729 89X22 11322 57.

 16. National Institute for Health and Care Excellence. Guide to the methods 
of technology appraisal. London: National Institute for Health and Care 
Excellence; 2013.

 17. Kearns B, Stevenson MD, Triantafyllopoulos K, Manca A. Comparing 
current and emerging practice models for the extrapolation of survival 
data: a simulation study and case-study. BMC Med Res Methodol. 
2021;21(1):1–11.

 18. Bagust A, Beale S. Survival analysis and extrapolation modeling of 
time-to-event clinical trial data for economic evaluation: an alternative 
approach. Med Decis Mak. 2014;34(3):343–51.

 19. Royston P, Parmar MK. Flexible parametric proportional-hazards and 
proportional-odds models for censored survival data, with application 
to prognostic modelling and estimation of treatment effects. Stat Med. 
2002;21(15):2175–97.

 20. Vickers A. An evaluation of survival curve extrapolation techniques using 
long-term observational cancer data. Med Decis Mak. 2019;39(8):926–38.

 21. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD, 
et al. Model parameter estimation and uncertainty: a report of the ISPOR-
SMDM Modeling Good Research Practices Task Force-6. Value Health. 
2012;15(6):835–42.

https://chjackson.github.io/survextrap
https://chjackson.github.io/survextrap
https://doi.org/10.1186/s12874-023-02094-1
https://doi.org/10.1186/s12874-023-02094-1
https://chjackson.github.io/survextrap/articles/cetuximab.html
https://chjackson.github.io/survextrap/articles/cetuximab.html
https://doi.org/10.1177/0272989X231168618
https://doi.org/10.1177/0272989X221132257
https://doi.org/10.1177/0272989X221132257


Page 15 of 15Jackson  BMC Medical Research Methodology          (2023) 23:282  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 22. Spiegelhalter D, Abrams K, Myles J. Bayesian Approaches to Clinical Trials 
and Health-Care Evaluation. Chichester: Wiley; 2004.

 23. Vervaart M, Strong M, Claxton KP, Welton NJ, Wisløff T, Aas E. An efficient 
method for computing expected value of sample information for survival 
data from an ongoing trial. Med Decis Mak. 2022;42(5):612–25.

 24. Tai TA, Latimer NR, Benedict Á, Kiss Z, Nikolaou A. Prevalence of immature 
survival data for anti-cancer drugs presented to the National Institute for 
Health and Care Excellence and impact on decision making. Value Health. 
2021;24(4):505–12.

 25. Jackson CH. flexsurv: a platform for parametric survival modeling in R. J 
Stat Softw. 2016;70.

 26. Baio G. survHE: survival analysis for health economic evaluation and cost-
effectiveness modeling. J Stat Softw. 2020;95:1–47.

 27. Lambert PC, Royston P. Further development of flexible parametric mod-
els for survival analysis. Stata J. 2009;9(2):265–90.

 28. Ramsay JO. Monotone regression splines in action. Stat Sci. 
1988;3(4):425–41.

 29. Brilleman SL, Elci EM, Novik JB, Wolfe R. Bayesian survival analysis using 
the rstanarm R package. 2020. arXiv preprint arXiv:200209633.

 30. Król A, Mauguen A, Mazroui Y, Laurent A, Michiels S, Rondeau V. Tutorial 
in joint modeling and prediction: a statistical software for correlated lon-
gitudinal outcomes, recurrent events and a terminal event. J Stat Softw. 
2017;81(3):1–52. https:// doi. org/ 10. 18637/ jss. v081. i03.

 31. Wood SN. Generalized additive models: an introduction with R. 2nd ed. 
Boca Raton: CRC; 2017.

 32. Stan Development Team. Stan Modeling Language Users Guide and 
Reference Manual. 2022. https:// mc- stan. org. Accessed 14 Nov 2023.

 33. Gelman A, Hill J, Vehtari A. Regression and other stories. Cambridge and 
New York: Cambridge University Press; 2020.

 34. Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using 
leave-one-out cross-validation and WAIC. Stat Comput. 2017;27:1413–32. 
https:// doi. org/ 10. 1007/ s11222- 016- 9696-4.

 35. Vehtari A, Gabry J, Magnusson M, Yao Y, Bürkner PC, Paananen T, et al. loo: 
Efficient leave-one-out cross-validation and WAIC for Bayesian models. 2020. 
R package version 2.4.1. https:// mc- stan. org/ loo/. Accessed 14 Nov 2023.

 36. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian meas-
ures of model complexity and fit. J R Stat Soc B (Stat Methodol). 
2002;64(4):583–639.

 37. Stan Development Team. RStan: the R interface to Stan. 2023. R package 
version 2.21.8. https:// mc- stan. org/. Accessed 14 Nov 2023.

 38. Wickham H. Tidy data. J Stat Softw. 2014;59(10):1–23.
 39. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radio-

therapy plus cetuximab for squamous-cell carcinoma of the head and 
neck. New Engl J Med. 2006;354(6):567–78.

 40. Guyot P, Ades A, Ouwens MJ, Welton NJ. Enhanced secondary analysis 
of survival data: reconstructing the data from published Kaplan-Meier 
survival curves. BMC Med Res Methodol. 2012;12:1–13.

 41. Vervaart M, Aas E, Claxton KP, Strong M, Welton NJ, Wisløff T, 
et al. General purpose methods for simulating survival data for 
expected value of sample information calculations. Med Decis Mak. 
2023;43(5):0272989X231162069.

 42. Ieva F, Jackson CH, Sharples LD. Multi-state modelling of repeated 
hospitalisation and death in patients with heart failure: the use of large 
administrative databases in clinical epidemiology. Stat Methods Med Res. 
2017;26(3):1350–72.

 43. Jansen JP. Network meta-analysis of survival data with fractional polyno-
mials. BMC Med Res Methodol. 2011;11(1):1–14.

 44. Jackson CH, Tom BD, Kirwan PD, Mandal S, Seaman SR, Kunzmann K, et al. 
A comparison of two frameworks for multi-state modelling, applied to 
outcomes after hospital admissions with COVID-19. Stat Methods Med 
Res. 2022;31(9):1656–74.

 45. Jansen JP, Incerti D, Trikalinos TA. Multi-state network meta-analysis of 
progression and survival data. Stat Med. 2023;42(19):3371–91.

 46. Heinze G, Boulesteix AL, Kammer M, Morris TP, White IR. Phases of meth-
odological research in biostatistics — building the evidence base for new 
methods. Biom J. 2022:2200222 [early view].

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.18637/jss.v081.i03
https://mc-stan.org
https://doi.org/10.1007/s11222-016-9696-4
https://mc-stan.org/loo/
https://mc-stan.org/

	survextrap: a package for flexible and transparent survival extrapolation
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	The survextrap model and package

	Methods: statistical model
	M-spline model
	Modelling data with an M-spline model
	Modelling explanatory variables
	Special mechanisms
	Bayesian inference

	Implementation of the software
	Demonstration: cetuximab for head and neck cancer
	Prior information
	Trial data alone: extrapolating a single arm
	Trial data alone: treatment comparisons
	External data from the patients of interest
	Population data informing background mortality
	Mixture cure model
	Elicitation of long-term survival probabilities
	Waning treatment effects

	Discussion
	Software availability and requirements
	Anchor 26
	Acknowledgements
	References


