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Abstract 

Background Clinical trials often seek to determine the superiority, equivalence, or non-inferiority of an experimen-
tal condition (e.g., a new drug) compared to a control condition (e.g., a placebo or an already existing drug). The use 
of frequentist statistical methods to analyze data for these types of designs is ubiquitous even though they have 
several limitations. Bayesian inference remedies many of these shortcomings and allows for intuitive interpretations, 
but are currently difficult to implement for the applied researcher.

Results We outline the frequentist conceptualization of superiority, equivalence, and non-inferiority designs and dis-
cuss its disadvantages. Subsequently, we explain how Bayes factors can be used to compare the relative plausibility 
of competing hypotheses. We present baymedr, an R package and web application, that provides user-friendly tools 
for the computation of Bayes factors for superiority, equivalence, and non-inferiority designs. Instructions on how to 
use baymedr are provided and an example illustrates how existing results can be reanalyzed with baymedr.

Conclusions Our baymedr R package and web application enable researchers to conduct Bayesian superiority, 
equivalence, and non-inferiority tests. baymedr is characterized by a user-friendly implementation, making it conveni-
ent for researchers who are not statistical experts. Using baymedr, it is possible to calculate Bayes factors based on raw 
data and summary statistics.
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Background
Researchers generally agree that the clinical trial is the 
best method to determine and compare the effects of 
medications and treatments [1, 2]. Although clinical tri-
als are often similar in design, different statistical proce-
dures need to be employed depending on the nature of 

the research question. Commonly, clinical trials seek to 
determine the superiority, equivalence, or non-inferiority 
of an experimental condition (e.g., subjects receiving a 
new medication) compared to a control condition (e.g., 
subjects receiving a placebo or an already existing medi-
cation; [3, 4]). For these goals, statistical inference is often 
conducted in the form of testing.

Usually, the frequentist approach to statistical testing 
forms the framework in which data for these research 
designs are analyzed [5]. In particular, researchers often 
rely on null hypothesis significance testing (NHST), 
which quantifies evidence through a p-value. This p-value 
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represents the probability of obtaining a test statistic 
(e.g., a t-value) at least as extreme as the one observed, 
assuming that the null hypothesis is true. In other words, 
the p-value is an indicator of the unusualness of the 
obtained test statistic under the null hypothesis, forming 
a “proof by contradiction” ([6],  p.  123). If the p-value is 
smaller than a predefined Type I error rate ( α ), typically 
set to α = .05 (but see, e.g., [7, 8]), rejection of the null 
hypothesis is warranted; otherwise the obtained data do 
not justify rejection of the null hypothesis.

The NHST approach to inference has been criticized 
due to certain limitations and erroneous interpretations 
of p-values (e.g., [9–21]), which we briefly describe below. 
As a result, some methodologists have argued that p-val-
ues should be mostly abandoned from scientific practice 
(e.g., [14, 17, 22, 23]).

An alternative to NHST is statistical testing within a 
Bayesian framework. Bayesian statistics is based on the 
idea that the credibilities of well-defined parameter val-
ues (e.g., effect size) or models (e.g., null and alternative 
hypotheses) are updated based on new observations [24]. 
With exploding computational power and the rise of 
Markov chain Monte Carlo methods (e.g., [25, 26]) that 
are used to estimate probability distributions that cannot 
be determined analytically, applications of Bayesian infer-
ence have recently become tractable. Indeed, Bayesian 
methods are seeing more and more use in the biomedical 
field [27] and other disciplines [28].

Lee and Chu [29] have conducted a literature search 
to investigate how Bayesian inference is typically used 
in biomedicine. They found that the number of studies 
using Bayesian inference has been steadily increasing 
over the last decades, with a majority of studies testing 
treatment efficacy and with most applications in fields 
such as oncology, cardiovascular system research, and 
central nervous system research. Further, most of the 
studies that used Bayesian methods complemented fre-
quentist results with Bayesian results, and a majority of 
studies had a continuous or binary endpoint. The results 
indicated that many studies used Bayesian methods for 
the purpose of estimation or hypothesis testing, both 
with informative and non-informative priors, and had 
two conditions.

There are multiple ways that Bayesian hypothesis test-
ing specifically is done in biomedicine. For instance, the 
posterior probabilities of the null and alternative hypoth-
eses could be consulted, such that the alternative hypoth-
esis is accepted if its posterior probability is close to 1 or 
if the posterior probability of the null hypothesis is lower 
than a predefined threshold (e.g., [30]). Alternatively, 
the highest density interval of the posterior distribu-
tion could be compared to a predefined region of practi-
cal equivalence: If the highest density interval does not 

overlap with the region of equivalence, the alternative 
hypothesis can be accepted [24, 31, 32]. Another possibil-
ity is the use of Bayes factors [14, 33–36], which quantify 
the evidence for the alternative hypothesis relative to the 
evidence for the null hypothesis.

It can be argued that the Bayes factor should be pre-
ferred among those options. For example, a Bayes factor 
is an updating factor that enables researchers to update 
their individual prior beliefs about the two hypotheses. In 
other words, in contrast to posterior probabilities for the 
hypotheses, the Bayes factor is independent of any prior 
beliefs a researcher might have. Furthermore, a Bayes 
factor provides the relative evidence for the considered 
hypotheses. Conducting hypothesis testing with poste-
rior probabilities does not necessarily have this property: 
evidence against one hypothesis need not be in favor of 
the other (although for complementary hypotheses this 
would be true). For these reasons, we only consider Bayes 
factors in the remainder of this manuscript.

Despite the fact that statistical inference is slowly 
changing from frequentist methods towards Bayesian 
methods [27, 29], a majority of biomedical research still 
employs frequentist statistical techniques [5]. To some 
extent, this might be due to a biased statistical education 
in favor of frequentist inference. Moreover, researchers 
might perceive statistical inference through NHST and 
reporting of p-values as prescriptive and, hence, adhere 
to this convention [37, 38]. We believe that one of the 
most crucial factors is the unavailability of easy-to-use 
Bayesian tools and software, leaving Bayesian hypoth-
esis testing largely to statistical experts. Fortunately, 
important advances have been made towards user-
friendly interfaces for Bayesian analyses with the release 
of the BayesFactor software [39], written in R [40], and 
point-and-click software like JASP [41] and Jamovi [42], 
the latter two of which are based to some extent on the 
BayesFactor software. However, these tools are mainly 
tailored towards research designs in the social sciences. 
Easy-to-use Bayesian tools and corresponding accessible 
software for the analysis of biomedical research designs 
specifically (e.g., superiority, equivalence, and non-inferi-
ority) are still missing and, thus, urgently needed.

In this article, we provide an R package and a web appli-
cation for conducting Bayesian hypothesis tests for supe-
riority, equivalence, and non-inferiority designs, which is 
particularly relevant for the biomedical sciences. Although 
implementations for the superiority and equivalence test 
exist elsewhere, the implementation of the non-inferior-
ity test is novel. The main objective of this manuscript is 
twofold: (1) to provide an easy-to-use software for the cal-
culation of Bayes factors for common biomedical designs 
that can be used both by researchers who are comfort-
able programming and those who are not; (2) to provide 
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a tutorial on how to use this software, using an applied 
example related to biomedicine. First, we outline the tra-
ditional frequentist approach to statistical testing for each 
of these designs. Second, we discuss the key disadvan-
tages and potential pitfalls of this approach and motivate 
why Bayesian inferential techniques are better suited for 
these research designs. Third, we explain the conceptual 
background of Bayes factors [19, 33–36]. Fourth, we pro-
vide and introduce baymedr [43], an open-source software 
written in R [40] that comes together with a web applica-
tion (available at [44]), for the computation of Bayes factors 
for common biomedical designs. We provide step-by-step 
instructions on how to use baymedr. Finally, we present a 
reanalysis of an existing empirical study to illustrate the 
most important features of the baymedr R package and the 
accompanying web application.

Frequentist inference for superiority, equivalence 
and non‑inferiority designs
The superiority, equivalence, and non-inferiority tests 
are concerned with research settings in which two 
conditions (e.g., control and experimental) are com-
pared on some outcome measure [1, 3]. For instance, 

researchers might want to investigate whether a new 
antidepressant medication is superior, equivalent, 
or non-inferior compared to a well-established anti-
depressant. For a continuous outcome variable, the 
between-group comparison is typically made with one 
or two t-tests. The three designs differ, however, in the 
precise specification of the t-tests (see Fig. 1).

In the following, we will assume that higher scores 
on the outcome measure of interest represent a more 
favorable outcome (i.e., superiority or non-inferior-
ity) than lower scores. For example, high scores are 
favorable when the measure of interest represents the 
number of social interactions in patients with social 
anxiety, whereas low scores are favorable when the out-
come variable is the number of depressive symptoms 
in patients with major depressive disorder. We will 
also assume that the outcome variable is continuous 
and that the residuals within both conditions are Nor-
mal distributed in the population, sharing a common 
population variance. Throughout this article, the true 
population effect size ( δ ) reflects the true standardized 
difference in the outcome between the experimental 
condition (i.e., e ) and the control condition (i.e., c):

Fig. 1 Schematic depiction of the superiority, equivalence, and non-inferiority designs. The x-axis represents the true population effect 
size ( δ ), where c is the standardized equivalence margin in case of the equivalence test and the standardized non-inferiority margin in case 
of the non-inferiority test. Gray regions mark the null hypotheses and white regions the alternative hypotheses. The region with the diagonal black 
lines is not used for the one-sided superiority design. Note that the diagram assumes that high values on the measure of interest represent superior 
or non-inferior values and that a one-sided test is used for the superiority design
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The superiority design
The superiority design tests whether the experimental 
condition is superior to the control condition (see the 
first row of Fig.  1). Conceptually, the superiority design 
consists of a one-sided test due to its inherent direction-
ality. The null hypothesis H0 states that the true popula-
tion effect size is zero, whereas the alternative hypotheses 
H1 states that the true population effect size is larger than 
zero:

To test these hypotheses, a one-sided t-test is 
conducted.1

The equivalence design
The equivalence design tests whether the experimen-
tal and control conditions are practically equivalent (see 
the second row of Fig. 1). There are multiple approaches 
to equivalence testing (see, e.g., [45]). A comprehen-
sive treatment of all approaches is beyond the scope of 
this article. Here, we focus on one popular alternative: 
the two one-sided tests procedure (TOST; [45–49]). 
An equivalence interval must be defined, which can be 
based, for example, on the smallest effect size of interest 
[50, 51]. The specification of the equivalence interval is 
not a statistical question; thus, it should be set by experts 
in the respective fields [45, 48] or comply with regula-
tory guidelines [52]. Importantly, however, the equiva-
lence interval should be determined independent of the 
obtained data.

TOST involves conducting two one-sided t-tests, each 
one with its own null and alternative hypotheses. For the 
first test, the null hypothesis states that the true popula-
tion effect size is smaller than the lower boundary of the 
equivalence interval, whereas the alternative hypothesis 
states that the true population effect size is larger than 
the lower boundary of the equivalence interval. For the 
second test, the null hypothesis states that the true popu-
lation effect size is larger than the upper boundary of the 
equivalence interval, whereas the alternative hypothesis 
states that the true population effect size is smaller than 
the upper boundary of the equivalence interval. Assum-
ing that the equivalence interval is symmetric around 

(1)δ =
µe − µc

σ
.

(2)H0: δ = 0 H1: δ > 0.

the null value, these hypotheses can be summarized as 
follows:

where c represents the margin of the standardized equiv-
alence interval. Two p-values ( p−c and pc ) result from the 
application of the TOST procedure. We reject the null 
hypothesis of non-equivalence and, thus, establish equiv-
alence if max (p−c, pc) < α (cf. [45, 53]). In other words, 
both tests need to reach statistical significance.

The non‑inferiority design
In some situations, researchers are interested in test-
ing whether the experimental condition is non-inferior 
or not worse than the control condition by a certain 
amount. This is the goal of the non-inferiority design, 
which consists of a one-tailed test (see the third row of 
Fig.  1). Realistic applications might include testing the 
effectiveness of a new medication that has fewer unde-
sirable adverse effects [54], is cheaper [55], or is easier 
to administer than the current medication [56]. In these 
cases, we need to ponder the cost of a somewhat lower or 
equal effectiveness of the new treatment with the value 
of the just mentioned benefits [57]. The null hypothesis 
states that the true population effect size is equal to a pre-
determined threshold, whereas the alternative hypothesis 
states that the true population effect size is higher than 
this threshold:

where c represents the standardized non-inferiority mar-
gin. As with the equivalence interval, the non-inferiority 
margin should be defined independent of the obtained 
data.

Limitations of frequentist inference
Tests of superiority, equivalence, and non-inferiority 
have great value in biomedical research. It is the way 
researchers conduct their statistical analyses that, we 
argue, should be critically reconsidered. There are several 
disadvantages associated with the application of NHST 
to superiority, equivalence, and non-inferiority designs. 
Here, we limit our discussion to two disadvantages; for 
a more comprehensive exposition we refer the reader to 
other sources (e.g., [13, 17, 58, 59]).

First, researchers need to stick to a predetermined 
sampling plan [60–62]. That is, it is not legitimate to 
decide based on interim results to stop data collection 
(e.g., because the p-value is already smaller than α ) or to 
continue data collection beyond the predetermined sam-
ple size (e.g., because the p-value almost reaches statis-
tical significance). In principle, researchers can correct 

(3)
H0: δ ≤ −c OR δ ≥ c H1: δ > −c AND δ < c,

(4)H0: δ = −c H1: δ > −c,

1 Researchers often conduct a two-sided t-test and then confirm that the 
observed effect goes in the expected direction. We do not describe this 
approach because we have the opinion that a one-sided t-test should be 
conducted for the superiority test, whose name already implies a uni-direc-
tional alternative hypothesis.
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for the fact that they inspected the data by reducing the 
required significance threshold through one of several 
techniques [63]. However, such correction methods are 
rarely applied. Especially in biomedical research, the pos-
sibility of optional stopping could reduce the waste of 
resources for expensive and time-consuming trials [64].

Second, with the traditional frequentist framework 
it is impossible to quantify evidence in favor of the null 
hypothesis [16, 17, 65–67]. Oftentimes, the p-value is 
erroneously interpreted as a posterior probability, in the 
sense that it represents the probability of the null hypoth-
esis [9, 14, 68, 69]. However, a non-significant p-value 
does not only occur when the null hypothesis is in fact 
true but also when the alternative hypothesis is true, yet 
there was not enough power to detect an effect [65, 70]. 
As ([71],  p.485) put it: “Absence of evidence is not evi-
dence of absence”. Still, a large proportion of biomedical 
studies falsely claim equivalence based on statistically 
non-significant t-tests [72]. Yet, estimating evidence in 
favor of the null hypothesis is essential for certain designs 
like the equivalence test [65, 73, 74].

The TOST procedure for equivalence testing provides 
a workaround for the problem that evidence for the null 
hypothesis cannot be quantified with  traditional fre-
quentist techniques by defining an equivalence interval 
around δ = 0 and conducting two tests. Without this 
interval the TOST procedure would inevitably fail (see 
[45] for an explanation of why this is the case). As we 
will see, the Bayesian equivalence test does not have this 
restriction; it allows for the specification of interval as 
well as point null hypotheses.

Bayesian tests for superiority, equivalence 
and non‑inferiority designs
The Bayesian statistical framework provides a logically 
sound method to update beliefs about parameters based 
on new data [19, 24]. Bayesian inference can be divided 
into parameter estimation (e.g., estimating a population 
correlation) and model comparison (e.g., comparing the 
relative probabilities of the data under the null and alter-
native hypotheses) procedures (see, e.g., [75], for an over-
view). Here, we will focus on the latter approach, which 
is usually accomplished with Bayes factors [19, 33–36]. 
In our exposition of Bayes factors in general and spe-
cifically for superiority, equivalence, and non-inferiority 
designs, we mostly refrain from complex equations and 
derivations. Formulas are only provided when we think 
that they help to communicate the ideas and concepts. 
We refer readers interested in the mathematics of Bayes 
factors to other sources (e.g., [35, 36, 67, 76–78]). The 
precise derivation of Bayes factors for superiority, equiv-
alence, and non-inferiority designs in particular is treated 
elsewhere [65, 79].

The Bayes factor
Let us suppose that we have two hypotheses, H0 and 
H1 , that we want to contrast. Without considering any 
data, we have initial beliefs about the probabilities of 
H0 and H1 , which are given by the prior probabilities 
p(H0) and p(H1) = 1− p(H0) . Now, we collect some 
data D. After having seen the data, we have new and 
refined beliefs about the probabilities that H0 and H1 
are true, which are given by the posterior probabili-
ties p(H0 | D) and p(H1 | D) = 1− p(H0 | D) . In other 
words, we update our prior beliefs about the prob-
abilities of H0 and H1 by incorporating what the data 
dictates we should believe and arrive at our posterior 
beliefs. This relation is expressed in Bayes’ rule:

with i = {0, 1} , and where p(Hi) represents the prior 
probability of Hi , p(D | Hi) denotes the likelihood of 
the data under Hi , p(D | H0)p(H0)+ p(D | H1)p(H1) is 
the marginal likelihood (also called evidence; [24]), and 
p(Hi | D) is the posterior probability of Hi.

As we will see, the likelihood in Eq.  5 is actually a 
marginal likelihood because each model (i.e., H0 and 
H1 ) contains certain parameters that are integrated 
out. The denominator in Eq. 5 (labeled marginal likeli-
hood) serves as a normalization constant, ensuring that 
the sum of the posterior probabilities is 1. Without this 
normalization constant, the posterior is still propor-
tional to the product of the likelihood and the prior. 
Therefore, for H0 and H1 we can also write:

where ∝ means “is proportional to”.
Rather than using posterior probabilities for each 

hypothesis, let the ratio of the posterior probabilities 
for H0 and H1 be:

The quantity p(H0 | D)/p(H1 | D) represents the pos-
terior odds and the quantity p(H0)/p(H1) is called the 
prior odds. To get the posterior odds, we have to multi-
ply the prior odds with p(D | H0)/p(D | H1) , a quantity 
known as the Bayes factor [19, 33–36], which is a ratio 
of marginal likelihoods:

(5)

p(Hi | D)
Posterior

=

Likelihood

p(D | Hi)

Prior

p(Hi)

p(D | H0)p(H0)+ p(D | H1)p(H1)

Marginal Likelihood

,

(6)p(Hi | D) ∝ p(D | Hi)p(Hi),

(7)
p(H0 | D)
p(H1 | D)
︸ ︷︷ ︸

Posterior odds

=
p(D | H0)

p(D | H1)
︸ ︷︷ ︸

Bayes factor, BF01

p(H0)

p(H1)
︸ ︷︷ ︸

Prior odds

.
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where θ0 and θ1 are vectors of parameters under H0 and 
H1 , respectively. In other words, the marginal likelihoods 
in the numerator and denominator of Eq. 8 are weighted 
averages of the likelihoods, for which the weights are 
determined by the corresponding prior. In the case where 
one hypothesis has fixed values for the parameter vec-
tor θ i (e.g., a point null hypothesis), integration over the 
parameter space and the specification of a prior is not 
required. In that case, the marginal likelihood becomes a 
likelihood.

The Bayes factor is the amount by which we would 
update our prior odds to obtain the posterior odds, after 
taking into consideration the data. For example, if we had 
prior odds of 2 and the Bayes factor is 24, then the pos-
terior odds would be 48. In the special case where the 
prior odds is 1, the Bayes factor is equal to the posterior 
odds. A major advantage of the Bayes factor is its ease 
of interpretation. For example, if the Bayes factor ( BF01 , 
denoting the fact that H0 is in the numerator and H1 in 
the denominator) equals 10, the data are ten times more 
likely to have occurred under H0 compared to H1 . With 
BF01 = 0.2 , we can say that the data are five times more 
likely under H1 compared to H0 because we can simply 
take the reciprocal of BF01 (i.e., BF10 = 1/BF01 ). What 
constitutes enough evidence is subjective and certainly 
depends on the context. Nevertheless, rules of thumb for 
evidence thresholds have been proposed. For instance, 
[36] labeled Bayes factors between 1 and 3 as “not worth 
more than a bare mention”, Bayes factors between 3 and 
20 as “positive”, those between 20 and 150 as “strong”, and 
anything above 150 as “very strong”, with corresponding 
thresholds for the reciprocals of the Bayes factors. An 
alternative classification scheme was already proposed 
before, with thresholds at 3, 10, 30, and 100 and similar 
labels [35, 80].

Of course, we need to define H0 and H1 . In other 
words, both models contain certain parameters for which 
we need to determine a prior distribution. Here, we will 
assume that the residuals of the two groups are Normal 
distributed in the population with a common popula-
tion variance. The shape of a Normal distribution is fully 
determined with the location (mean; µ ) and the scale 
(variance; σ 2 ) parameters. Thus, in principle, both mod-
els contain two parameters. Now, we make two impor-
tant changes.

First, in the case where we have a point null hypoth-
esis, µ under H0 is fixed at δ = 0 , leaving σ 2 for H0 and 
µ and σ 2 for H1 . Parameter σ 2 is a nuisance parameter 
because it is common to both models. Placing a Jeffreys 
prior (also called right Haar prior), p

(
σ 2

)
∝ 1/σ 2 , on 

(8)BF01 =
∫

θ0
p(D | θ0,H0)p(θ0 | H0)dθ0

∫

θ1
p(D | θ1,H1)p(θ1 | H1)dθ1

,
this nuisance parameter [35, 79, 81] has several desirable 
properties that are explained elsewhere (e.g., [82, 83]).

Second, µ under H1 can be expressed in terms of a 
population effect size δ [67, 81]. This establishes a com-
mon and comparable scale across experiments and 
populations [67]. The prior on δ could reflect certain 
hypotheses that we want to test. For instance, we could 
compare the null hypothesis ( H0: δ = 0 ) to a two-sided 
alternative hypotheses ( H1: δ �= 0 ) or to one of two one-
sided alternative hypotheses ( H1: δ < 0 or H1: δ > 0 ). 
Alternatively, we could compare an interval hypothesis 
for the null hypothesis ( H0: − c < δ < c ) with a corre-
sponding alternative hypothesis ( H1: δ < −c OR δ > c).2 
The choice of the specific prior for δ is a delicate matter, 
which is discussed in the next section.

In the most general case, the Bayes factor (i.e., BF01 ) 
can be calculated through division of the posterior odds 
by the prior odds (i.e., rearranging Eq. 7):

accordingly, we can also calculate BF10:

Calculating Bayes factors this way often involves solv-
ing complex integrals (see, e.g., Eq. 8; also cf. [76]). Fortu-
nately, there is a computational shortcut for the specific 
but very common scenario where we have a point null 
hypothesis and a complementary interval alternative 
hypothesis. This shortcut, which is called the Savage-
Dickey density ratio, takes the ratio of the density of the 
prior and posterior at the null value under the alternative 
hypothesis to calculate the Bayes factor; this is explained 
in more detail elsewhere [36, 76, 84, 85].

Default priors
Until this point in our exposition, we were quite vague 
about the form of the prior for δ under H1 . In principle, 
the prior for δ within H1 can be defined as desired, con-
forming to the beliefs of the researcher. In fact, this is a 
fundamental part of Bayesian inference because various 
priors allow for the expression of a theory or prior beliefs 

(9)BF01 =

(
p(H0|D)
p(H1|D)

)

(
p(H0)
p(H1)

) =

(
p(H0|D)
p(H0)

)

(
p(H1|D)
p(H1)

) ;

(10)BF10 =

(
p(H1|D)
p(H0|D)

)

(
p(H1)
p(H0)

) =

(
p(H1|D)
p(H1)

)

(
p(H0|D)
p(H0)

) .

2 Note that the hypotheses represent exactly the opposite of the hypoth-
eses in TOST (i.e., H0 of equivalence corresponds to H1 of equivalence in 
TOST, and vice versa). Evidence in favor of equivalence in TOST can only 
be obtained by rejecting two null hypotheses: H0: δ < −c and H0: δ > c . 
For the Bayesian equivalence test we use the more intuitive null hypothesis 
of equivalence (i.e., H0: − c < δ < c).
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[86, 87]. Most commonly, however, default or objective 
priors are employed that aim to increase the objectiv-
ity in specifying the prior or serve as a default when no 
specific prior information is available [35, 67, 88]. We 
employ objective priors in baymedr.

In the situation where we have a point null hypoth-
esis and an alternative hypothesis that involves a range 
of values, [35] proposed to use a Cauchy prior with 
a scale parameter of r = 1 for δ under H1 . This Cauchy 
distribution is equivalent to a Student’s t distribution 
with 1 degree of freedom and resembles a standard Nor-
mal distribution, except that the Cauchy distribution 
has less mass at the center but instead heavier tails (see 
Fig.  2; [67]). Mathematically, the Cauchy distribution 
corresponds to the combined specification of (1) a Nor-
mal prior with mean µδ and variance σ 2

δ  on δ ; and (2) an 
inverse Chi-square distribution with 1 degree of freedom 
on σ 2

δ  . Integrating out σ 2
δ  yields the Cauchy distribution 

[67, 89]. The scale parameter r defines the width of the 
Cauchy distribution; that is, half of the mass lies between 
–r and r.

Choosing a Cauchy prior with a location parameter 
of 0 and a scale parameter of r = 1 has the advantage 
that the resulting Bayes factor is 1 in case of com-
pletely uninformative data. In turn, the Bayes factor 
approaches infinity (or 0) for decisive data [35, 82]. 
Still, by varying the Cauchy scale parameter, we can set 
a different emphasis on the prior credibility of a range 
of effect sizes. More recently, a Cauchy prior scale of 
r = 1/

√
2 is used as a default setting in the BayesFac-

tor software [39], the point-and-click software JASP 
[41], and Jamovi [42]. We have adopted this value in 
baymedr as a default setting. Nevertheless, objec-
tive priors are often criticized (see, e.g., [90, 91]); 

researchers are encouraged to use more informed pri-
ors if relevant knowledge is available [67, 79].

Implementation
With the baymedr software (BAYesian inference for 
MEDical designs in R; [43]), written in R [40], and the 
corresponding web application (accessible at [44]) one 
can easily calculate Bayes factors for superiority, equiva-
lence, and non-inferiority designs. The R package can be 
used by researchers who have only rudimentary knowl-
edge of R; if that is not the case, researchers can use the 
web application, which does not require any knowledge 
of programming. In the following, we will demonstrate 
how Bayes factors for superiority, equivalence, and non-
inferiority designs can be calculated with the baymedr R 
package; a thorough explanation of the web application is 
not necessary as it strongly overlaps with the R package. 
Subsequently, we will showcase (1) the baymedr R pack-
age and (2) the corresponding web application by reana-
lyzing data of an empirical study by [92].

The R package
Install and load baymedr
To install the latest release of the baymedr R package 
from The Comprehensive R Archive Network (CRAN), 
use the following command: 

The most recent version of the R package can be 
obtained from GitHub with the help of the devtools 
package [93]: 

Once baymedr is installed, it needs to be loaded into 
memory, after which it is ready for usage: 

Commonalities across designs
For all three research designs, the user has three options 
for data input (function arguments that have “x” as a 
name or suffix refer to the control condition and those 
with “y” as a name or suffix to the experimental condi-
tion): (1) provide the raw data; the relevant arguments are 
x and y; (2) provide the sample sizes, sample means, and 
sample standard deviations; the relevant arguments are 
n_x and n_y for sample sizes, mean_x and mean_y for 
sample means, and sd_x and sd_y for sample standard 

Fig. 2 Comparison of the standard Normal probability density 
function (solid line) and the standard Cauchy probability density 
function (dashed line)
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deviations; (3) provide the sample sizes, sample means, 
and the confidence interval for the difference in group 
means; the relevant arguments are n_x and n_y for sam-
ple sizes, mean_x and mean_y for sample means, and 
ci_margin for the confidence interval margin and ci_
level for the confidence level.

The Cauchy distribution is used as the prior for δ under 
the alternative hypothesis for all three tests. The user 
can set the width of the Cauchy prior with the prior_
scale argument, thus, allowing the specification of dif-
ferent ranges of plausible effect sizes. In all three cases, 
the Cauchy prior is centered on δ = 0 . Further, baymedr 
uses a default Cauchy prior scale of r = 1/

√
2 , complying 

with the standard settings of the BayesFactor software 
[39], JASP [41], and Jamovi [42].

Once a superiority, equivalence, or non-inferiority test 
is conducted, an informative and accessible output mes-
sage is printed in the console. For all three designs, this 
output states the type of test that was conducted and 
whether raw or summary data were used. Moreover, 
the corresponding null and alternative hypotheses are 
restated and the specified Cauchy prior scale is shown. In 
addition, the lower and upper bounds of the equivalence 
interval are presented in case an equivalence test was 
employed; similarly, the non-inferiority margin is printed 
when the non-inferiority design was chosen. Lastly, the 
resulting Bayes factor is shown. To avoid any confusion, 
it is declared in brackets whether the Bayes factor quanti-
fies evidence towards the null (e.g., equivalence) or alter-
native (e.g., non-inferiority or superiority) hypothesis.

Conducting superiority, equivalence and non‑inferiority tests
The Bayesian superiority test is performed with the 
super_bf() function. Depending on the research set-
ting, low or high scores on the measure of interest rep-
resent “superiority”, which is specified by the argument 
direction. Since we seek to find evidence for the alter-
native hypothesis (superiority), the Bayes factor quanti-
fies evidence for H1 relative to H0 (i.e., BF10).

The Bayesian equivalence test is done with the 
equiv_bf() function. The desired equivalence inter-
val is specified with the interval argument. Several 
options are possible: A symmetric equivalence interval 
around δ = 0 can be indicated by providing one value 
(e.g., interval = 0.2) or by providing a vector with 
the negative and the positive values (e.g., interval = 
c(-0.2, 0.2)). An asymmetric equivalence interval 
can be specified by providing a vector with the negative 
and the positive values (e.g., interval = c(-0.3, 
0.2)). The implementation of a point null hypothesis is 
achieved by using either interval = 0 or inter-
val = c(0, 0), which also serves as the default spec-
ification. The argument interval_std can be used to 

declare whether the equivalence interval was specified in 
standardized or unstandardized units. Since we seek to 
quantify evidence towards equivalence, we contrast the 
evidence for H0 relative to H1 (i.e., BF01).

The Bayes factor for the non-inferiority design is cal-
culated with the infer_bf() function. The value for 
the non-inferiority margin can be specified with the ni_
margin argument. The argument ni_margin_std 
can be used to declare whether the non-inferiority mar-
gin was given in standardized or unstandardized units. 
Lastly, depending on whether high or low values on the 
measure of interest represent “non-inferiority”, one of the 
options “high” or “low” should be set for the argument 
direction. We wish to determine the evidence in favor 
of H1 ; therefore, the evidence is expressed for H1 relative 
to H0 (i.e., BF10).

Results
To illustrate how the R package and the web application 
can be used, we provide one example of an empirical 
study that employed non-inferiority tests to investigate 
differences in the amount of sleep, sleepiness, and alert-
ness among medical trainees following either standard 
or flexible duty-hour programs [92]. The authors list 
several disadvantages of restricted duty-hour programs, 
such as: (1) “[t]ransitions [as a result of restricted duty 
hours] into and out of night shifts can result in fatigue 
from shift-work-related sleep loss and circadian mis-
alignment”; (2) “[p]reventing interns from participating 
in extended shifts may reduce educational opportuni-
ties”; (3) “increase[d] handoffs”; (4) “reduce[d] continuity 
of care”; and (5) “[r]estricting duty hours may increase 
the necessity of cross-coverage, contributing to work 
compression for both interns and more senior residents” 
([92], p.916). As outlined above, the calculation of Bayes 
factors for equivalence and superiority tests is done quite 
similarly to the non-inferiority test, so we do not pro-
vide specific examples for those tests. For the purpose of 
this demonstration, we will only consider the outcome 
variable sleepiness. Participants were monitored over a 
period of 14 days and were asked to indicate each morn-
ing how sleepy they were by completing the Karolinska 
sleepiness scale [94], a 9-point Likert scale ranging from 
1 (extremely alert) to 9 (extremely sleepy, fighting sleep). 
The dependent variable consisted of the average sleepi-
ness score over the whole observation period of 14 days. 
The research question was whether the flexible duty-hour 
program was non-inferior to the standard program in 
terms of sleepiness.

The null hypothesis was that medical trainees in the 
flexible program are sleepier by more than a non-infe-
riority margin than trainees in the standard program. 
Conversely, the alternative hypothesis was that trainees 
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in the flexible program are not sleepier by more than a 
non-inferiority margin than trainees in the standard pro-
gram. The non-inferiority margin was defined as 1 point 
on the 9-point Likert scale. All relevant summary statis-
tics can be obtained or calculated from Table  1 of [92] 
and the Results section of [92]. Table 1 of [92] indicates 
that the flexible program had a mean of Me = 4.8 and 
the standard program had a mean of Mc = 4.7 . From the 
Results  section of [92], we can extract that sample sizes 
were ne = 205 and nc = 193 in the flexible and stand-
ard programs, respectively. Further, the margin of the 
95% CI of the difference between the two conditions was 
0.31− 0.12 = 0.19 . Finally, lower scores on the sleepiness 
scale constitute favorable (non-inferior) outcomes.

The R package
Using this information, we can use the baymedr R 
package to calculate the Bayes factor as follows: 

Note that we decided to use a Cauchy prior scale of 
r = 1/

√
2 for this reanalysis. Since our Cauchy prior 

scale of choice represents the default value in baymedr, 
it would not have been necessary to provide this argu-
ment; however, for purposes of illustration, we men-
tioned it explicitly in the function call.

The output provides a user-friendly summary of the 
analysis: 

This large Bayes factor supports the conclusion from 
[92] that medical trainees in the flexible duty-hour pro-
gram are non-inferior in terms of sleepiness compared 
to medical trainees in the standard program ( p < .001 ). 
In other words, the data are 8.56× 1010 more likely to 
have occurred under H1 than H0.

The web application
Similarly, we can use the web application to calculate the 
Bayes factor. For this, the web application should first 
be opened in a web browser (available at [44]). The just-
opened welcome page offers a brief description of the 
three research designs and Bayes factors and lists sev-
eral further useful resources for the interested user. Since 
we want to conduct a non-inferiority test with summary 
data, we click on “Non-inferiority” and then “Summary 
data” on the navigation bar at the top (see Fig.  3). The 
summary statistics for the example reanalysis of [92] 
can be inserted in the corresponding fields, as shown 
in Fig. 3. For some fields a small green question mark is 
shown, which provides more details and help when the 
user clicks on them. Furthermore, the scale of the prior 
distribution can be specified, which by default is set to 1 
/ sqrt(2). A small dynamic plot accompanies the field 
for the Cauchy prior scale. That is, once the prior scale 
is changed, the plot updates automatically, so that users 
obtain an impression of what the distribution looks like 
and what effect sizes are included. Once the “Calculate 
Bayes factor” button is clicked, the output is displayed.

Figure 4 shows the output of the calculations. The top 
of the left column displays the same output that is given 
with the R package. Further, upon clicking on “Show 
frequentist results”, the results of the frequentist non-
inferiority test are shown and clicking on “Hide fre-
quentist results” in turn hides those results. Below that 
output is the formula for the Bayes factor, with different 
elements printed in colors that correspond to dots in 
matching colors in the plots on the right column of the 
results output. The upper plot shows the prior and pos-
terior for contrasting H0: δ = c with H1: δ < c . The two 
distributions are truncated, meaning that they are cut 
off at δ = c . Similarly, the lower plot shows the trun-
cated prior and posterior for contrasting H0: δ = c with 
H1: δ > c . Through a heuristic called the Savage-Dickey 
density ratio [36, 76, 84, 85], the ratio of the heights of 
the colored dots gives us the Bayes factor (see the colored 
expressions in the formula on the right side of the results 
output). The text above the two plots explains the plots 
as well.

Conclusions
Tests of superiority, equivalence, and non-inferiority are 
important means to compare the effectiveness of medi-
cations and treatments in biomedical research. Despite 
several limitations, researchers overwhelmingly rely on 
traditional frequentist inference to analyze the corre-
sponding data for these research designs [5]. Bayes fac-
tors [19, 33–36] are an attractive alternative to NHST 
and p-values because they allow researchers to quantify 
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evidence in favor of the null hypothesis [16, 17, 65, 66] 
and permit sequential testing and optional stopping [60–
62]. In fact, the possibility for optional stopping and 
sequential testing has the potential to largely reduce the 
waste of scarce resources. This is especially important 
in the field of biomedicine, where clinical trials might be 
expensive or even harmful for participants.

Although Bayes factors have many advantages over 
NHST, they bring along their own challenges (for a dis-
cussion, see [90, 95, 96]). For instance, the choice of the 
prior distribution can have a large impact on the resulting 
Bayes factor [66, 86, 90, 91, 97, 98]. In the extreme case, 
the Bayes factor and results from frequentist analyses 

can lead to diverging conclusions, something known as 
Lindley’s paradox [33, 99]. Thus, the choice of prior dis-
tribution is important but subjective and often difficult 
to make. Most of the time, however, Bayes factors and 
results from NHST are in agreement [18, 35]. Related to 
that, misspecification of the model might lead to errone-
ous and misleading conclusions. That is, a Bayes factor 
only makes a comparison of the models under investi-
gation (i.e., H0 and H1 ). If these models are inadequate 
or do not fulfill certain assumptions (e.g., Normality of 
residuals), the Bayes factor might not be trustworthy. 
Moreover, the Bayes factor is not immune to misinterpre-
tations: [100] have shown that among the most common 

Fig. 3 Shown is part of the baymedr web application demonstrating how summary statistics can be inserted and further parameters specified 
for a Bayesian non-inferiority test. In this specific case, the summary statistics correspond to the ones obtained from [92]. See text for details
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false interpretations of Bayes factors are the interpreta-
tion of a Bayes factor as posterior odds (i.e., a ratio of 
probabilities in favor of or against H0 and H1 ) and ignor-
ing that Bayes factors only provide relative instead of 
absolute evidence (see also [90]). Lastly, the computation 
of Bayes factors is complex and involves solving integrals 
[90]. For this reason, easy-to-use software is needed.

Our baymedr R package and web application [43] enable 
researchers to conduct Bayesian superiority, equivalence, 

and non-inferiority tests. baymedr is characterized by a 
user-friendly implementation, making it convenient for 
researchers who are not statistical experts. Furthermore, 
using baymedr, it is possible to calculate Bayes factors 
based on raw data and summary statistics, allowing for 
the reanalysis of published studies, for which the full data 
set is not available. To further promote the use of Bayes-
ian statistics in biomedical research, more easy-to-use 
software and tutorial papers are urgently needed.

Fig. 4 Shown is part of the baymedr web application showing the results of a Bayesian non-inferiority test. In this specific case, the results 
correspond to a reanalysis using summary statistics obtained from [92]. See text for details
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