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Abstract 

Real world evidence is now accepted by authorities charged with assessing the benefits and harms of new thera-
pies. Clinical trials based on real world evidence are much less expensive than randomized clinical trials that do not 
rely on “real world evidence” such as contained in electronic health records (EHR). Consequently, we can expect 
an increase in the number of reports of these types of trials, which we identify here as ‘EHR-sourced trials.’ ‘In this 
selected literature review, we discuss the various designs and the ethical issues they raise. EHR-sourced trials have 
the potential to improve/increase common data elements and other aspects of the EHR and related systems. Cau-
tion is advised, however, in drawing causal inferences about the relationships among EHR variables. Nevertheless, we 
anticipate that EHR-CTs will play a central role in answering research and regulatory questions.

Keywords Electronic health record, Learning health system, Treatment outcome, Common data elements, Ethics, 
Data accuracy, Government regulation

Introduction
Some who study randomized clinical trials broadly 
dichotomize them into explanatory (does this treatment 
work under ideal (or what Schwartz and Lellouch identi-
fied as “laboratory” conditions) [1] and efficacious (does 
this treatment work in the real world.

(what Schwartz and Lellouch identified as “normal” 
conditions) [2], while others prefer to see them as a con-
tinuum along this scale [1, 3, 4]. The ideal conditions 
needed for explanatory trials, however, are expensive, 
and do not allow inferences about generalizability of 
the findings. On the other hand, the normal conditions 

providing real world data are inexpensive, and do allow 
inferences about generalizability of the findings [5]. Dur-
ing the half-century since the ‘real world’ concept was 
introduced, 38 definitions of real-word data (RWD) have 
been offered with most approximating “data collected in 
a non-randomized controlled trial setting” [6].

Multiple forces are contributing to a rapid expansion of 
interest in real world data for clinical trials. These forces 
include the increasing availability of electronic data and 
the acceptability of real world evidence in support of 
applications for approval of medical products for mar-
keting. We begin this selected review of the literature 
with a description of these recent developments driving 
the focus on this topic. We follow this with a discussion 
of the designs of studies intended to evaluate therapies 
and interventions using real world evidence, including 
the advantages and limitations of each, the inferences 
that can be drawn from study results, and issues related 
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to recruiting/enrollment and ethics. We conclude with 
comments about the future.

Increasing availability of electronic data
The increasing availability of large integrated data 
sources [7–9] bodes well for clinical trials that rely on 
real world data, including the contents of the electronic 
health record. So does the availability of “learning health 
systems that use routine data from service delivery and 
patient care to generate knowledge to continuously 
improve healthcare” [10]. Groups of learning health sys-
tems are coming together to form networks, such as the 
nine Clinical Research Networks and the two Health Plan 
Research Networks that are part of Cornet [11]. The crea-
tion of an electronic health record data aggregation plat-
form by one of the large vendors is likely to result in more 
and/or larger networks that will be able to function as 
integrated learning health systems [12].

More recently, the United States Centers for Medi-
care & Medicaid Services proposed rule (CMS 0057-P) 
is intended to advance interoperability among health 
information exchanges (entities such as hospitals, and 
public health agencies in states or regions that help 
share information among groups that have a legitimate 
need for it) [13]. To exchange data with health informa-
tion exchanges, hospitals and networks of hospitals are 
expected to use application programming interfaces that 
can gather information from multiple sources and aggre-
gate it in one place [14]. This would allow access specific 
pieces of information, rather than having to sort through 
pages of unnecessary or unhelpful records. The likely 
result is expected to be many more clinical trials based 
on real world data than in the recent past.

Government encouragement
The European Medicines Agency, the United States Food 
and Drug Administration, and Health Canada now accept 
real world evidence (RWE) in applications for approval of 
medical products for marketing [15].

The Food and Drug Administration defines RWD as 
“data relating to patient health status and/or the deliv-
ery of health care routinely collected from a variety of 
sources” and defines RWE as “clinical evidence about the 
usage and potential benefits or risks of a medical product 

derived from analysis of RWD,” regardless of the type of 
study design [16]. In the announced framework for its 
RWE program for drug and biological products, Food 
and Drug Administration acknowledged that clinical tri-
als that use EHR data are acceptable, as are administra-
tive claims data, or registry data [17],

The perceived need for transparency in applications to 
FDA prompted one group to create “The Structured Pre-
Approval and post-approval Comparative study design 
framework to generate valid and transparent real-world 
Evidence (SPACE)” for identifying design elements, 
feasibility and validity concerns, and for documenting 
decisions [18]. An extension to SPACE, identified with 
another acronym, SPIFD for “Structured Process to Iden-
tify Fit-For-Purpose Data tool,” provides a guide to iden-
tify fit-for-purpose data required for the Food and Drug 
Administration’s (FDA) real-world-evidence (RWE) pro-
gram [19].

Increasingly, routinely collected data are seen as an 
attractive source for post-marketing surveillance, com-
plementing established spontaneous report mechanism 
[20, 21].

Here we focus on clinical trials that rely on data pro-
vided by EHRs, and what others have come to identify as 
"EHR-sourced" trials [22].

Designs: clinical effectiveness and implementation 
(Table 1)
EHR-sourced trials can be evaluated along a spectrum 
anchored at one end by those intended to assess only the 
clinical effectiveness of the intervention and anchored 
at the other end by those that assess only the adoption/
uptake/acceptance of the intervention by groups of pro-
viders and institutions.

Increasingly, the word ‘hybrid’ is associated with EHR-
sourced trials that try to evaluate (to varying degrees) 
both clinical effectiveness and acceptance of the inter-
vention [23–25]. The three types of hybrid designs are:

(a) Type 1: tests the clinical effectiveness of the inter-
vention (reducing elevated blood pressure or blood 
glucose level) while observing and gathering infor-
mation on the implementation,

Table 1 Design characteristics of clinical trials (Ideal Types)

Clinical effectiveness Implementation

Unit studied Patient Provider (clinical unit/system)

Intervention “clinical” intervention
(e.g., education, reminders, guidance)

“clinical” intervention
(e.g., education, reminders, guidance)

Outcomes Health outcomes (e.g., medication adherence, missed appts, cost 
reduction)

Adoption/uptake of intervention
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(b) Type 2: dual testing of clinical effectiveness and 
implementation interventions/strategies, and

(c) Type 3: evaluates the adoption of an implementa-
tion strategy while observing and gathering infor-
mation on its clinical effectiveness.

In the absence of obvious boundaries, some investiga-
tors avoid use of these labels (at least in the title). Only 
one report applied the term ‘continuum’ to the spec-
trum along the Type 1 to Type 3 classification [26]. More 
information about implementation strategies is available 
elsewhere [27, 28], as are examples of implementing self-
management strategies for people with diabetes [29, 30], 
with asthma [31, 32], with hypertension [33, 34], and 
with epilepsy [35–38].

Justification for EHR based clinical trials
“The often stringent inclusion and exclusion criteria des-
tined to provide for homogeneous study populations 
reduce the generalizability of randomized clinical trial 
results” [39]. Findings reported from observational stud-
ies, have, on important occasions, not been confirmed in 
randomized clinical trials [40–53]. This has been empha-
sized with the finding that in one-sixth of all comparisons 
between randomized clinical trials and observational 
studies, “there was a significant difference and the esti-
mates pointed in opposite directions” [54].

The findings of EHR-sourced trials, especially those 
conducted in populations that are likely to benefit from 
the results of the study, tend to be more informative 
about what works in the real world than are the find-
ings of explanatory trials (RCTs) [40, 55]. EHR-sourced 
trials are most suited to answer the question, “Will this 
intervention work in this population?” Investigators are 
encouraged to ‘embed’ randomization in learning health 
systems and networks [56].

Designs: randomized trials
The randomized trial design of an EHR-sourced trial can 
be identical to that of a randomized clinical trial in the 
most restrictive set of subjects. Two of the more com-
mon modifications of the conventional randomized clini-
cal trial are conventional cluster randomized design and 
stepped-wedge cluster randomized design.

Cluster randomized trials compare the results of 
different interventions among groups of people whose 
members have an identifiable feature in common [57, 58]. 
They are most appropriate when.

• the intervention evaluated is likely to be imple-
mented subsequently among other patients who have 
the randomized groups’ characteristics.

• the intervention carries a high risk of “contami-
nation” (i.e., individuals randomized to different 
comparison groups are in frequent contact with 
one another and thus may be influenced (‘contami-
nated’) by recipients of the alternative treatment).

• they have practical advantages over individual 
randomization (because of lower implementation 
costs, or administrative convenience).

Cluster randomized trials, however, pose potential 
ethical concerns (v.i., Ethics section).

In a stepped wedge design, an intervention, an inter-
vention is rolled out sequentially to the trial partici-
pants (either as individuals or clusters of individuals) 
[59, 60]. The order in which the different individuals or 
clusters receive the intervention is determined at ran-
dom and, by the end of the random allocation, all indi-
viduals or groups will have received the intervention.

Among the reasons investigators chose the stepped 
wedge design in preference to others are:

• The stepped wedge design avoids the logistical 
barriers that accompany efforts to implement the 
intervention simultaneously in many clusters,

• a lack of equipoise for the intervention made the 
investigators feel it would be unethical to deny the 
intervention to some groups,

• a desire to avoid the ‘disappointment effects’ pos-
sible in a parallel trial that follow from colleagues at 
some clusters who decide to drop out of the study 
when randomised to the control arm,

• higher statistical power associated with clusters 
functioning as their own controls

• the ability to adjust for time trends in outcomes,.
• logistical, practical, or financial constraints require 

that the intervention be implemented in stages 
[61–63].

In such circumstances, determining the order in 
which participants receive the intervention at random 
is likely to be both morally and politically acceptable 
and may also be beneficial for trial recruitment.

The step wedge design was chosen for a study that 
evaluated if the presence of a seizure dog in the home 
reduced seizure and injury frequency [64]. “This design 
was chosen because it allows for rollout of the interven-
tion to all participants. … The current capacity of the 
assistance dog schools participating in the EPISODE 
study would not permit simultaneous rollout of the 
required number of seizure dogs to all participants.” 
In addition, “blinding of the participants would be 
impossible.”



Page 4 of 10Leviton and Loddenkemper  BMC Medical Research Methodology          (2023) 23:271 

Group sequential design
Some patients exposed to an intervention that might be 
a source of potential benefit or harm can be monitored 
sequentially for either of these possibilities [65]. Group 
sequential design, also known as interim analysis offers 
an opportunity to make decisions along the way about 
whether or not future patients should be so exposed [66, 
67].

Inferences
Randomized clinical trials (RCTs) are considered the 
"gold standard" for evaluating the safety and efficacy of 
new therapeutic agents because of their high quality 
data and strict inclusion and exclusion criteria [68, 69]. 
In contrast, however, EHR-sourced trials are fraught 
with potential biases and limited quality of the data in 
the EHRs [70–79]. These biases and limitations include 
selection bias [80–83], protopathic bias, [84–86], miss-
ingness and other data quality limitations, [78, 87–94], 
time-orientation challenges [88, 95], and potential con-
founding [96, 97]. These biases and limitations have the 
potential to limit severely the causal inferences that can 
be drawn from the contents of EHRs [98–103].

Although efforts are underway to address some of 
them, structural limitations, such as the paucity of com-
mon data elements recommended for research purposes 
by the National Institutes of Health [104] will limit how 
much bias can be reduced soon [77, 91, 105–113]. Nev-
ertheless, planned EHR-sourced trials of technological 
care advances and changes in practice have the potential 
to enhance data quality in the EHR by requiring partici-
pating organizations to include selected common data 
elements, or by providing other data details (i.e., granu-
larity) not previously included in the EHR. Data quality 
is also likely to be improved by the apparently increas-
ing use of home monitoring devices, wearable devices, 
templated smartforms for documentation, automated 
transcription, artificial intelligence and natural language 
processing (to extract salient information from the EHR) 
[114, 115].

The Cochrane risk-of-bias groups have created tools 
for assessing “risk of bias in non-randomized studies of 
interventions” (ROBINS-I) [116], assessing risk of bias in 
randomised trials (RoB 2) [117], and even in cluster-ran-
domized trials [118], as well as assessing risk of missing 
evidence (ROB-ME) [119, 120].

Recruiting/enrollment
Learning healthcare systems, with their large collections 
of EHRs, are likely to include a broad patient popula-
tion with characteristics as close as possible to patients 
in routine clinical practice, whose responses to interven-
tions will maximize the generalizability and applicability 

of trial results [121]. Data about such patients can help 
design suitable EHR-sourced trials [122]. EHR query 
tools can identify potential candidates for these clinical 
trials when the selection criteria are expressed in struc-
tured digital format [123, 124]. Once identified, eligible 
subjects can be enrolled electronically, either by email or 
via the patient portal [125, 126], which is recommended 
because of its security [127]. Doing so, however, will not 
eliminate bias [127–131].

Because recruitment for a randomized clinical trial 
can take a long time, alternative arrangements have been 
sought. One option is the ‘trial within cohorts’ design, 
which uses the infrastructure of an observational cohort 
study to identify possible participants for a randomized 
trial [132]. Upon cohort enrollment, all participants 
provide consent for being randomized in future studies 
without being informed. When a new treatment becomes 
available for evaluation, those randomized to the treat-
ment arm are offered the new treatment, which they can 
choose to refuse. Those randomized to the standard of 
care arm are not informed about the trial and continue 
to receive standard of care as part of the cohort study. 
Patients do not appear to have ethical objections to serve 
as control without further notice [133, 134].

Ethics
The main ethical issue associated with EHR-sourced tri-
als is when and how consent is obtained. Of 1988 EHR-
sourced trial reports published during the years 2014 to 
2019, 7% did not include a statement about participant 
consent and only 7.0% reported a waiver [135]. Cluster 
randomization studies were more likely than others to 
obtain consent or provide details about consent.

The role of institutional review boards
Given their complex coordination across multiple sites, 
EHR-sourced trials, in general, pose a challenge for 
research oversight mechanisms, including ethical review 
by multiple institutional review boards [136]. The Com-
mon Rule regulations allow waiver of consent by an insti-
tutional review board when the research poses no more 
than minimal risk, doing so does not adversely affect 
the rights or welfare of the participant, and obtaining 
direct consent is impracticable [137]. When a waiver is 
granted, subjects can/should still be informed of the 
nature of the study and how it might affect them, and 
perhaps even offered an opt-out option [138]. Minimal-
risk determinations are the provenance of each institu-
tional review board [139], but considerations can/should 
include “clinical equipoise, practice variation, research 
methods such as cluster randomization, and patients’ 
perspectives” [140]. Yes, patients’ perspective! In one 
survey, three quarters of subjects approved obtaining 
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post-randomization the consent of only those assigned to 
the treatment arm [141].

Nevertheless, suggested options “to make sure” eve-
ryone is on board, include investigators consulting with 
the institutional review board, [142] obtaining written 
informed consent for all participants before randomi-
zation, [143] and opportunities to ‘opt-out’ [144–146]. 
More than two-thirds of a national sample of US adults 
“reported interest in notification of research using their 
identified health information, and 40% reported interest 
in notification if the health information was deidentified 
[147].

Cluster randomized studies
In cluster randomized trials the unit of randomization 
might be a hospital or network of hospitals that might 
ask physicians to treat all patients with disease X alike 
and collect data from patients. The benchmark ethical 
recommendations about who needs to consent are in 
“The Ottawa statement on the ethical design and conduct 
of cluster randomized trials” [148] and in the 2016 Coun-
cil for International Organizations of Medical Sciences 
(CIOMS) ethical guidelines [149]. Additional guidance 
has come from the FDA [150] and from “a guide for the 
perplexed” [151].

Stepped‑wedge cluster randomized studies
Stepped-wedge cluster randomized trial designs pose 
additional challenges [143]. In contrast to parallel clus-
ter randomized trials in which clusters are randomized 
at the outset to either intervention or control arms, 
stepped-wedge cluster randomized trials offer the inter-
vention sequentially to each cluster so that each cluster 
begins the trial as its own control, and then receives the 
intervention [59, 152, 153]. This approach is thought to 
avoid ethical concerns about the denial of a desired inter-
vention to participants in control groups [154–156].

The Consolidated Standards of Reporting Trials has 
an extension for stepped-wedge cluster randomized trial 
that includes whether or not consent was obtained, the 
purpose of consent, when consent was sought (i.e., before 
or after randomization), and the forms of consent (differ-
ences between intervention and control clusters) [157]. A 
review of the stepped-wedge cluster randomized trials in 
the National Institutes of Health’s Health Care Systems 
Research Collaboratory found that decisions to use the 
stepped-wedge cluster design were more often justified 
by practical and epistemic reasons than by ethical ones 
[143].

Limitations of this report
The main limitation of this report is that it is not a com-
prehensive overview of the literature. We specifically 

chose studies to show the breadth of the perspectives 
they offer about the designs most suitable for using EHR 
data, and to emphasize the data limitations, potential 
biases and other challenges that might hamper drawing 
causal inferences based on EHR contents.

The future
We see many phenomena contributing to large increases 
in the use of EHR data for clinical trials. First, the accept-
ance of real world evidence by authorities charged with 
assessing the benefits and harms of new therapies [158, 
159], is highly likely to provide a strong impetus for EHR-
sourced trials in preference to randomized clinical tri-
als [160, 161]. Consequently, we can expect continued 
increase in the number of reports of EHR-sourced trials 
as well as efforts to have EHR data become “regulatory-
grade) [69, 162].

Second, efforts to encourage an expanded set of com-
mon data elements for EHRs appear promising [105, 163, 
164]. These efforts have the potential to lead to improve-
ments have the potential to increase the validity of future 
EHR-sourced trials [165, 166].

Third, advances in artificial intelligence and machine 
learning bode well for significant improvement in the 
quality and quantity of information contained in the 
EHR [91, 115, 167, 168]. Although some will undoubt-
edly apply to natural language processing, we have little 
knowledge of the extraordinary achievements we can 
expect [169].

In light of these phenomena, EHR-sourced trials have 
a very bright future. Nevertheless, we are less optimistic 
that EHR data will be useful any time soon for providing 
valid information for drawing causal inferences about the 
relationships between EHR variables.

Conclusions
EHR-sourced trials have conceptual and logistic proper-
ties that make them especially attractive for future stud-
ies of what does and what does not work among those 
with the characteristics of the participants.
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