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Abstract 

Estimation of mortality rates and mortality rate ratios (MRR) of diseased and non-diseased individuals is a core 
metric of disease impact used in chronic disease epidemiology. Estimation of mortality rates is often conducted 
through retrospective linkage of information from nationwide surveys such as the National Health Interview Survey 
(NHIS) and death registries. These surveys usually collect information on disease status during only one study visit. 
This infrequency leads to missing disease information (with right censored survival times) for deceased individu-
als who were disease-free at study participation, and a possibly biased estimation of the MRR because of possible 
undetected disease onset after study participation. This occurrence is called “misclassification of disease status 
at death (MicDaD)” and it is a potentially common source of bias in epidemiologic studies. In this study, we conducted 
a simulation analysis with a high and a low incidence setting to assess the extent of MicDaD-bias in the estimated 
mortality. For the simulated populations, MRR for diseased and non-diseased individuals with and without MicDaD 
were calculated and compared. Magnitude of MicDaD-bias depends on and is driven by the incidence of the chronic 
disease under consideration; our analysis revealed a noticeable shift towards underestimation for high incidences 
when MicDaD is present. Impact of MicDaD was smaller for lower incidence (but associated with greater uncertainty 
in the estimation of MRR in general). Further research can consider the amount of missing information and potential 
influencers such as duration and risk factors of the disease.

Keywords Missing disease information, Illness-death model, Biased mortality rate ratio, Simulation study, Estimation 
of mortality rate ratio

Introduction
Chronic diseases are a major burden for health care sys-
tems worldwide. As an example, in 2019, 37.1  million 
people in the US already had diagnosed or undiagnosed 
diabetes and 1.4  million new cases were detected [1]. 
Epidemiological studies allow estimation of the extent of 
impact of chronic diseases on a population’s health with 
calculation of prevalence, incidence, and mortality rates. 
For example, many nationally representative longitudi-
nal follow-up studies in the US estimate mortality rates 
by linking surveys, such as the National Health Interview 
Survey (NHIS) and National Health and Nutrition Exam-
ination Study (NHANES) [2] to information from death 
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registries (for example, the National Death Index in the 
USA [3]), retrospectively. Due to the design, these stud-
ies collect information on a participant’s disease status 
at one time point only. As a result, information may be 
missing about a diagnosis after study participation. For 
example, a deceased individual who had been disease-
free at study participation might have developed the 
(chronic) disease (without recovery) afterwards. These 
individuals with undetected disease onset are misclassi-
fied as non-diseased at death. Therefore, mortality esti-
mates based on these data are potentially biased. This 
leads to misclassification of disease status at death (Mic-
DaD) for the estimation of mortality rate ratios (MRR).

Binder et  al. have investigated existence, extent, and 
impact of misclassification of disease status on the esti-
mation of hazards on risk factors [4]. Moreover, Binder 
et al. [5] found that 46.4% of (prospective) cohort studies 
with time to event endpoint used assessment of disease 
information at follow-up visits only and conventional 
analysis of data had the potential of being biased because 
of unclear disease status at death. Moreover, a simula-
tion study revealed that this bias leads to under- or over-
estimation of the impact of risk factors on hazards [5]. 
Despite the common use of these approaches, the quanti-
tative impact of MicDaD on estimates of (excess) mortal-
ity and the extent and the direction of this bias has not 
yet been examined systematically. The aim of our study 
was to measure and evaluate the extent of MicDaD on 
MRR and how it is influenced by the incidence and to 
assess this bias through a simulation study in a high inci-
dence setting (based on type 2 diabetes) and a low inci-
dence setting (based on lupus erythematosus).

First, we will give a detailed description of the prob-
lem of misclassification of disease status at death and 
the illness-death model (IDM). Then, we will explain 

the structure of our simulation study and the methods 
we used for the analysis of populations with and with-
out misclassification of disease status at death. After the 
presentation of the results of our simulation study, we 
will summarize and review study results and limitations.

Methods
Misclassification of disease status at death
Information on a population’s disease status can be col-
lected in cross-sectional interview-based surveys. As 
these surveys are conducted only at discrete time points, 
the problem of censored information of disease status 
arises for individuals who are disease-free at interview. 
Assuming that all individuals are interviewed only once 
in their lifetime, disease status is collected at one fixed 
date and will not be updated in the resulting database 
afterwards. A person who is disease-free at study base-
line can develop the chronic disease of interest (without 
recovery) between study participation and death; thus, 
the classification as disease-free could be incorrect, lead-
ing to MicDaD. Therefore, estimation of MRR for dis-
eased and non-diseased individuals could potentially be 
biased, caused by false or missing information on disease 
status of deceased persons. The classification as healthy 
would only be correct for individuals that remained dis-
ease-free until the date of death. The true disease status 
at death, based on the survey, can only be obtained with-
out doubt for individuals already diseased at interview. 
The possible scenarios are depicted in Fig. 1.

Individual A was diagnosed (red dot) with the chronic 
disease of interest before the date of survey-participa-
tion (blue cross). This person will be correctly classified 
as having the disease at death. Individual C is disease-
free at the date of study participation and stays disease-
free (according to the chronic disease of interest) until 

Fig. 1 Schematic description of the problem of misclassification of disease status at death. Individual A has the correct classification of disease 
status as diagnosis took place before the survey; individual B has misclassification of disease status at death as diagnosis happened after survey; 
and individual C has correct classification as they are disease-free until death
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death. Therefore, this individual is correctly classified as 
disease-free at death. Individual B is disease-free at the 
interview but develops the chronic disease under consid-
eration between survey participation and death. Conse-
quently, when information on disease status (at death) is 
collected from the survey, individual B will be incorrectly 
classified as disease-free at death.

Illness‑death model
The simulation study is based on the illness-death model, 
a multi-state model with three possible states: Healthy 
(from chronic disease of interest), Diseased, and Death 
and three transition rates: mortality rates and incidence 
rate. Figure  2 shows a schematic description of the ill-
ness-death model.

The IDM describes a closed population according to a 
(chronic) disease. Every individual is disease-free at the 
beginning and starts in the healthy state. All individuals 
in the population experience at least one transition. The 
mortality rates of diseased (m1) and non-diseased (m0) 
individuals and the incidence rate (i) are the age depend-
ent transition intensities between the states of the IDM. 
All individuals in the population examined will either 
directly move from healthy to death along m0, or tran-
sit according to i from healthy to diseased first and then 
die in the diseased state with m1. We use an illness-death 
model where only two ways of transition are possible and 
we assume a (chronic) disease without recovery (remis-
sion) from disease state [6]:

1. A healthy individual directly transits from the healthy 
state to the death state (without transiting to the dis-
ease state) according to the mortality rate of non-dis-
eased m0 (one transition in the IDM).

2. A healthy individual contracts the chronic disease 
at some age (depending on the underlying incidence 
rate of the disease) and transits from the healthy state 
into the disease state. All individuals in the disease 
state remain in this state (no remission) until they 
have their second transition from disease state into 
the death state (mortality rate of diseased m1) [7].

In general, mortality and incidence rates are depend-
ent on (calendar-) time t and age a. To simplify the struc-
ture and analysis of our simulation study, we simulated 
the population as a birth cohort with all individuals born 
in the same year. As a result, we have a time-heteroge-
nous illness-death model that depends on age as the only 
timescale.

Simulation of populations
Figure  3 shows the steps of the simulation study pre-
sented in this article.

The population in the illness-death model used in our 
study with a size of 100 000 individuals was simulated 
in two steps with discrete event simulation for the high 
(based on type 2 diabetes) and the low incidence setting 
(based on lupus erythematosus). As a discrete event sim-
ulation is a microsimulation, we simulated event times 
(ages of transition in the IDM: change of state) for every 
subject individually and collected date of birth, age at 
diagnosis  (agediagnosis), and age at death  (agedeath). At the 
beginning, we simulated the age of first transition in the 
IDM—either from the healthy state to death state or from 
the healthy state to disease state. For all individuals with 
diagnosis at first failure time, a second time for death 
(diseased) was simulated. A detailed description of dis-
crete event simulation, including algorithms and distri-
bution functions of first and second failure time, can be 
found in Brinks et al. (2014) [8]. The age at diagnosis was 
set to NA for individuals that were disease-free at death. 
Data of the simulated population was stored with age at 
entering the state, duration in each state, age at leaving 
the state, and information about the entering state. For 
more information and a detailed description of this Lexis 
data format used in the R package Epi, see Carstensen 
(2021) [9] and Carstensen and Plummer (2011) [10].

Parameter settings for simulation of populations
For the simulation of a high incidence setting (motivated 
by type 2 diabetes) and a low incidence setting (moti-
vated by lupus erythematosus) with discrete event simu-
lation, we used the mortality and incidence rates taken 
from the references summarized in Table  1. The exact 
formulas for the transition rates between the states are in 
our Supplementary material.

Simulation of study participation
In the second part of our simulation, we added a random 
age at survey participation  (agesurvey). The age of survey 
participation was generated individually from a uniform 
distribution, ranging from 18 to 110 years of age. We set 
the lower age limit to exclude children from the surveys; 
and we determined the upper limit to ensure that every 

Fig. 2 Illness-death model with three different states: healthy, 
diseased, and death, and three transition rates: mortality rate 
of the non-diseased m0, mortality rate of the diseased m1 
and incidence rate i 
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individual is in the death state at the end of the simula-
tion study. Using the age at survey participation, we 
could mimic misclassification of disease status at death; 
diagnoses after study participation  (agesurvey <  agediagnosis) 
remained undetected. All individuals with undetected 
disease were (wrongly) categorized as disease-free at 
death (as the transition from healthy to diseased was 
not documented) which leads to a misclassification of 
true disease status at death. These individuals would be 
included as healthy in the calculation of mortality rate 
ratios, even though they contracted the chronic disease.

Sampling of sub‑populations
In the third part of our study, we evaluated extent and 
direction of the bias in the estimation of mortality rates 
and the MRR caused by misclassification of disease sta-
tus at death. Bias assessment was based on 200 sampled 
populations with 5000 individuals that were drawn from 

the original simulated population of 100 000 individu-
als. The number of populations (n = 200) was chosen as 
a compromise between reasonable estimation of the dis-
tributions and run-time of the simulation (in order not to 
increase the current already long term even further). For 
every sampled sub-population, a data set with and with-
out misclassification was conducted, resulting in two sets 
for every sampled sub-population.

Evaluation of mortality rate ratio
A Poisson model with log-link function and age of indi-
viduals as the only independent variable was used to 
estimate age-dependent mortality rates of diseased and 
non-diseased individuals for every sub-population (with 
MicDaD: m0dis,m1dis and without MicDaD: m0,m1). Age-
dependent MRRs with and without misclassification of 
disease status at death in the sub-populations at specific 
ages were calculated via m0(a) / m1(a). Comparison was 
performed based on median MRRs in the sub-popula-
tions without and with MicDaD (supported by 2.5%- and 
97.5%- quantiles to display the 95% range of estimated 
MRR). Kernel density was estimated for calculated MRRs 
without and with MicDaD and displayed in a graph with 
additional rug plots to compare location and variability of 
MRRs. As every sampled sub-population was evaluated 
without and with MicDaD, differences of MRR with and 
without MicDaD for every population at different ages 
were calculated. The closer to zero the difference between 
MRR with and without MicDaD, the lower the impact of 
MicDaD on MRR. Bias was calculated as the median of 

Fig. 3 Flow-chart of the simulation study

Table 1 Description of parameter settings for simulation of 
populations with discrete event simulation method

Setting

High incidence Low incidence

Chronic disease Type 2 diabetes Lupus erythematosus

Incidence and mortality 
rates

Brinks (2016) [7] Brinks et al. (2016) [11]

Age range (years) consid‑
ered

40 to 80 40 to 80
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the differences with and without MicDaD with a value 
bigger than 0 indicating an overestimation of MRR with 
MicDaD and a value smaller than 0 showing an underes-
timated MRR in the presence of MicDaD.

Results
Simulated populations
High incidence setting
The simulated population in the high incidence setting 
consisted of 100 000 individuals. Median age at diagnosis 
of the chronic disease within the high incidence setting 
was 60.75 years and median age at death was 75.85 years 
for diseased and 74.00 years for non-diseased individu-
als (overall median age at death was 74.84 years). Table 2 
displays the transitions between the states in the illness-
death model. In the high incidence setting, 40 019 diag-
noses were reported.

Figure 4 presents the decreasing age-dependent MRRs 
on a log-scale in the population with MRR 3.42 at age 
40 years, 2.26 at age 60 years, and 1.50 at age 80 years, 
respectively.

Low incidence setting
The second population resulting from an illness-death 
model with a low incidence setting consisted of 100 000 
individuals with 196 transitions from the healthy to the 
disease state (see Table 3). Median age at diagnosis was 
32.55 years, median age at death was 63.14 years for dis-
eased and 70.53 years for non-diseased subjects (overall: 
70.52 years).

Figure 5 shows the age-dependent MRRs for individu-
als in the low incidence setting. MRR for the ages 40 
years, 60 years and 80 years were 3.93, 2.30 and 1.35, 
respectively.

Estimated mortality rate ratios in sampled sub‑populations
High incidence setting
Figure 6 shows the distribution of the estimated MRRs in 
the 200 populations as small bars at the x-axis and with 
kernel density estimates in the sampled sub-population 
at ages 40, 60, and 80 years without as blue line and with 
MicDaD as black line. Table  4 summarizes these values 
with medians and 2.5%- and 97.5%- quantiles.

As the mortality rate ratios depend on age, differences 
between MRRs without and with MicDaD changed 
according to age of individuals (see Table  4). For exam-
ple, the true input-mortality rate ratio in the high inci-
dence setting was 3.32 at the age of 40 years, 2.23 at age 
60 years, and 1.49 at age 80 years. MRRs in the simulated 
population with 100 000 individuals were close to these 
input values with 3.42 (age 40 years), 2.26 (age 60 years) 
and 1.50 (age 80 years).

The median MRR in the sampled sub-populations 
without MicDaD at the age 40 years was 3.38 and close to 
the input MRR, whereas the median MRR in the popula-
tions with MicDaD showed a shift towards smaller val-
ues of MRRs in the sub-populations with median MRR 
3.11. For other ages (for example 60 years or 80 years) we 
could also detect smaller MRRs in the sub-populations 
with MicDaD with a shift towards 1 (with 1 indicating 

Table 2 Transitions in the illness-death model in the simulated 
population with 100 000 individuals (high incidence setting)

To
Disease Death

From Healthy 40 019 59 981

Disease 0 40 019

Fig. 4 Age-specific mortality rate ratio in the simulated population (high incidence setting)

Table 3 Transitions in the illness-death model in the simulated 
population with 100 000 individuals (low incidence setting)

To
Disease Death

From Healthy 196 99 804

Disease 0 196
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no difference in the mortality rates of diseased and non-
diseased individuals). Consequently, we saw that having 
populations with MicDaD led to an underestimation of 
the actual MRR for all ages (with smaller difference and 
smaller mortality rate ratios at higher ages).

Table 5 shows the bias in the estimation of MRR in case 
of MicDaD as the median of the differences.

At age 40 years most ages were smaller or equal to 0. At 
ages 60 years and 80 years all differences were smaller or 
equal to 0. This shows that nearly all MMRs in the sub-
populations were too small compared to the real MRRs 
in the same population without having MicDaD. MRRs 

in the high incidence setting were underestimated when 
some transitions from healthy to disease remain unseen 
and are not included in estimation of mortality rates. 
Table  5 displays bias of the estimation of MRR due to 
MicDaD only.

Low incidence setting
Figure  7 shows the distribution of MRR (bars at the 
x-axis) with kernel density estimates without (blue) and 
with (black) MicDaD in the 200 sampled sub-populations 
in the low incidence setting at ages 40 years, 60 years, and 
80 years. This figure shows that distributions of MRRs 

Fig. 5 Age-specific mortality rate ratio in the simulated population in the low incidence setting

Fig. 6 Distribution of mortality rate ratios (MMRs) at ages 40, 60, 80 years: input rate ratio for simulation (dashed line), MRR without MicDaD in blue, 
and MRR with MicDaD from 200 sampled populations in black (high incidence setting)

Table 4 True input MRR for simulation and medians (and 2.5%, 97.5% quantile) in simulated population and across 200 sampled sub-
populations (without and with MicDaD) (high incidence setting)

Age 40 years 60 years 80 years
True MRR (input for simulation) 3.32 2.23 1.49

MRR without MicDaD 3.38 (2.87–4.05) 2.26 (2.08–2.44) 1.50 (1.42–1.61)

MRR with MicDaD 3.11 (2.52–3.88) 2.06 (1.84–2.30) 1.36 (1.26–1.49)
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without and with MicDaD were mostly overlapping. This 
indicates only little impact of MicDaD in estimating MRR 
in this low incidence setting. At higher ages (60 years) the 
median in the sub-populations without MicDaD differed 
slightly from the median MRR in the sub-populations 
with MicDaD (2.42 vs. 2.49). For ages 40 years and 60 
years, differences in medians were greater and showed a 
shift towards 1. At age 80 years uncertainty was higher 
potentially because median age at death was 63.14 years 
for diseased and 70.53 years for non-diseased subjects. 
Table 6 has these values including medians and 2.5%- and 
97.5%- quantiles.

The exact intra-differences of the MMRs in every sub-
population with and without MicDaD at ages 40 years, 
60 years and 80 years are displayed in Table 7 as the bias 
of the estimation in the 200 sampled sub-populations 

caused by MicDaD including 2.5% and 97.5% quantiles in 
the low incidence setting.

At all ages about half of the differences were greater 
and half of the differences were smaller than 0. This 
shows that both underestimation as well as overestima-
tion of MRR occurred in the sub-populations when there 
was MicDaD. Therefore, MicDaD showed less and a non-
systematic impact on the estimation of MRR in our low 
incidence setting.

Discussion
In this article, we showed that the impact and extent of 
misclassification of disease status at death is driven by 
incidence of the chronic disease of interest.

Summary
Cross-sectional interview-based surveys can be used for 
the collection of information on the existence of chronic 
diseases in a population. However, if these interviews 
are used to obtain information about an individual’s dis-
ease status at death, misclassification is possible because 
study participants are interviewed only once and surveys 
do not capture that some disease-free participants may 
develop a chronic disease before death. We conducted 
a simulation study to assess the extent and direction of 
this possible misclassification bias and how this bias 
is influenced by the incidence of the chronic disease of 
interest. Therefore, our simulation study was based on a 
high incidence (type 2 diabetes) and a low incidence dis-
ease (lupus erythematosus) with populations consisting 
of 100 000 individuals that were transiting through an 
illness-death model with Healthy, Diseased and Death 

Table 5 Bias of estimation of MRR in 200 sampled sub-
populations without and with MicDaD including 2.5% and 97.5% 
quantiles and frequencies of over- and underestimation of MRR 
(high incidence setting)

Age 40 years 60 years 80 years
Bias -0.27 (-0.76–0.27) -0.20 (-0.34 – -0.04) -0.14 (-0.22 – -0.04)

MRR 
overesti‑
mated with 
MicDaD

35 ( 17.5%) 0 ( 0%) 0 ( 0%)

MRR 
underesti‑
mated with 
MicDaD

165 ( 82.5%) 200 ( 100%) 200 ( 100%)

Fig. 7 Distribution of mortality rate ratios (MMRs) at 40, 60, 80 years: input rate ratio for simulation (dashed line), MRR without MicDaD in blue 
and MRR with MicDaD from 200 sampled populations in black (low incidence setting)
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(final state for every individual) as possible states. A total 
of 200 sub-populations with 5000 individuals were ran-
domly drawn from these populations for each chronic 
disease. For every individual, a random age of study 
participation was simulated; diagnosis at an age greater 
than this age remained unseen with a misclassification as 
non-diseased. For every population, MRR was evaluated 
without and with possible misclassification of disease sta-
tus at death (MicDaD). We compared median (with 2.5% 
and 97.5% quantiles) MRRs in the simulated populations 
without and with MicDaD. Misclassification of disease 
status at death led to underestimated MRRs for chronic 
diseases with a high incidence (such as type 2 diabetes). 
For low-incidence chronic disease (such as lupus erythe-
matosus) MicDaD caused lower to no bias in the estima-
tion of MRR. This was the first study that investigated the 
impact of misclassification of disease status at death on 
MRRs.

Interpretation
Analysis of simulated data in the high incidence setting 
showed a gap between MRR of populations without and 
with MicDaD. Populations with MicDaD had smaller val-
ues with higher differences at younger ages and smaller 
values of MRR when MicDaD occurred. As the values 
of MRR shifted towards 1, underestimation of the MRR 
was detected in the high incidence setting with misclas-
sification of disease status at death for some individuals 
in a population. Since extent or number of undetected 

diagnoses is unknown in practice, it is possible that bias 
caused from MicDaD is larger than in the simulations and 
settings considered in our study. Particularly in the case 
of chronic diseases with high incidences (and a mortality 
similar to that used in the presented simulation study), a 
serious underestimation of the risk of death caused by or 
with a chronic disease is to be expected. Results in the 
low incidence setting (based on incidence and mortality 
rates for lupus erythematosus) lead to the suggestion that 
for a chronic disease with a low incidence, MicDaD has 
less impact. But still MRR is underestimated with values 
shifting towards 1. Bigger differences between MicDaD 
and no MicDaD and greater uncertainty in the low inci-
dence setting (for example at age 80 years: without Mic-
DaD: 1.76 with 2.5–97.5% quartiles: [0.64–23.88] vs. with 
MicDaD: 2.27 with 2.5–97.5% quartiles: [0.58–113.09]) 
are potentially caused by low mortality at that age and 
low incidence in general. In addition to that, differences 
in bias between younger and older ages (40 and 60–80) 
were recognized that were potentially caused by the age-
dependency of MRR and incidence. Nevertheless, further 
studies could explore this more detailed.

Our analysis showed that misclassification of disease 
status at death has an impact on the estimation of mor-
tality rates and MRRs for chronic diseases (especially for 
chronic diseases with higher incidences). MicDaD leads 
to an underestimation of the MRR of diseased and non-
diseased individuals. This underestimation results in a 
misinterpreted risk of death with chronic diseases.

Limitations
Our study is the first work to examine the influence of 
misclassification of disease status at death on the estima-
tion of MRR, but there are limitations.

First, the current analysis only considers age at entry 
and exit into states in the IDM. The duration in a state 
remained unconsidered in our analysis and in the esti-
mation of mortality rates and the related MRR. Duration 
influences mortality and should be considered in future 
research.

A second limitation is that we neither controlled nor 
systematically evaluated the amount of missing infor-
mation on disease status at death. A random age for 
one-time participation in the interview was determined 

Table 6 True input MRR for simulation and medians (and 2.5%, 97.5% quantile) in simulated population and across 200 sampled sub-
populations (without and with MicDaD) (low incidence setting)

Age 40 years 60 years 80 years
True MRR (input for simulation) 3.79 2.39 1.51

MRR without MicDaD 3.18 (0.40–9.07) 2.42 (1.03–6.71) 1.76 (0.64–23.88)

MRR with MicDaD 2.91 (0.04–9.21) 2.49 (0.71–9.85) 2.27 (0.58–113.09)

Table 7 Bias of estimation of MRR in 200 sampled sub-
populations without and with MicDaD, including 2.5% and 97.5% 
quantiles and frequencies of over- and underestimation of MRR 
(low incidence setting)

Age 40 years 60 years 80 years
Bias -0.05 (-2.69–1.75) 0.00 (-1.03–7.33) 0.00 (-1.11–107.85)

MRR 
overesti‑
mated with 
MicDaD

70 ( 35%) 89 ( 44.5%) 99 ( 49.5%)

MRR 
underesti‑
mated with 
MicDaD

106 ( 53%) 87 ( 43.5%) 77 ( 38.5%)
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and compared to age at diagnosis to decide whether 
information on diagnosis remained unseen. In further 
analyses, the amount of missing “diagnoses” could be 
systematically considered and varied to capture suscep-
tibility to bias in the estimate of the MRR, depending on 
the amount of missing diagnoses. As a possible solution 
to this problem, simulation of age at study participation 
could be performed based on different statistical distri-
butions, or on a distribution based on the actual ages at 
study participation in studies like NHIS. This approach 
can be used to systematically analyze whether or to what 
extent age at study participation influences bias caused 
by MicDaD. Additionally, it can be examined how the 
amount of missing information about disease status at 
death influences the magnitude of this misclassification 
bias. It is possible that higher ages at study participa-
tion and a smaller amount of missing information could 
reduce the bias caused by MicDaD. However, further 
research is needed.

We simulated age-dependent mortality rates only. 
In contrast to Binder et  al. (2014) [4] which considered 
constant transition intensities, the age-dependency of 
the transition rates in the IDM is a strength of our study 
because real life incidence and mortality are dependent 
on age. But in practice, more (risk) factors, such as sex 
and social economic position, influence mortality and 
could be considered in future research.

A fourth limitation of our simulation study is popula-
tion size. We only simulated one population with 100 
000 individuals and sampled sub-populations with 5000 
individuals. It is possible that extent of bias caused by 
MicDaD can differ in bigger or smaller populations. As 
the population size possibly influences the estimation of 
mortality rates, further simulation studies can be used to 
investigate the impact of population size on the bias in 
estimating MRR with MicDaD.

We considered only two different scenarios in our anal-
ysis. Thus, the analysis was based on only two possible 
combinations of age-dependent incidence and mortal-
ity rates (based on real-world data from type 2 diabetes 
and lupus erythematosus). Further analyses are needed to 
obtain a systematic analysis of the susceptibility and the 
extent of a bias by MicDaD in relation to mortality and 
incidence. For this reason, more and different scenarios 
with varying mortality and incidence rates and combina-
tions of these may be needed.

A fifth limitation is that we reduced misclassification 
of disease status at death to a problem with one time-
scale only (age of individuals) and an ordinary differential 
equation.

Because it is possible that other times, such as year 
(calendar time), also influence the MicDaD-induced 
extent of bias in estimating the MRR, further research 

that includes a description of transitions in the IDM is 
needed. Furthermore, partial differential equations with 
age and calendar-time as time scales (see Brinks et  al. 
(2016) [12]) may be conducted.

In the current simulation, individuals are surveyed 
(interview) only once in their lifetime. However, it is pos-
sible that study participants can be interviewed more 
than once. Additional analyses with the possibility of 
repeated study participation could be conducted.

In order to achieve a more detailed description of the 
extent of missing information of disease status at death, 
we plan to perform further research considering risk fac-
tors, other scenarios with varying mortalities and inci-
dences, and different amounts of missing information 
and population sizes. Additionally, we will add a second 
timescale (calendar-time) to our research and consider 
the possibility of repeated study participation and dura-
tion in a state in the IDM.

An additional limitation is that we only used 2 settings 
(high incidence with later age at onset; low incidence 
with earlier age at onset) based on the age-depedent 
incidence (and thus indirect regulation of the extent of 
MicDaD) for the simulation. A wider range of incidence 
settings would allow a more detailed analysis of different 
possible situations and frequencies of MicDaD and give a 
more diverse picture of the effects of MicDaD. However, 
the aim of our work was a first time description of this 
important epidemiological phenomenon that potentially 
plays a role in many studies. The effect of MicDaD (direc-
tion and magnitude of the effect of this misclassification) 
in studies with this design was completely unknown until 
now. Our goal was no comprehensive simulation study, 
but to gain a first insight into this complex topic.

Comparative literature
In contrast to our analysis of mortality rates, Binder 
et al. (2014) [4] performed a study on the extent of bias 
in estimating the hazards of risk factors. As they did 
not evaluate bias on estimation of mortality, the study 
is less comparable to our evaluation. Binder et al. evalu-
ated four scenarios with different transition rates in the 
IDM (mortality rates and incidence rate) and three risk 
factors with varying impact on these transitions and our 
study did not investigate risk factors. A second differ-
ence to our study was that Binder et al. (2014) assumed 
mortality and incidence rates to be constant over time. 
The authors found no impact of misclassification of dis-
ease status (and therefore no bias caused by misclas-
sification) on the estimation of hazards for risk factors 
when mortality rates for diseased and non-diseased 
individuals were the same and constant over time. These 
results cannot be compared to our results as we neither 
had constant nor identical mortality rates for healthy 
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and diseased individuals. In settings with differing mor-
tality rates, the authors found that bias was growing for 
higher fractions of missing disease information. Bias in 
estimation of hazards for risk factors was dependent on 
the constellation of mortality and incidence rates; for 
higher mortality of healthy individuals the effect of a 
risk factor is overestimated while it was underestimated 
for high incidence rates. In our analyses we saw a com-
parable tendency in the estimation of mortality rates as 
MRR was underestimated in the high incidence setting 
with MicDaD. An important limitation of the study from 
Binder et al. (2014) was that they had constant hazards 
only (transition rates in the IDM); although, mortality is 
known to be age-dependent.

Another study by Binder et  al. [4] investigated how 
unknown disease status leads to over- and underestima-
tion of effect size estimates for risk factors. Moreover, 
they revealed that nearly half of all prospective cohort 
studies are at risk of this bias, especially when data analy-
sis is performed using standard methods instead of meth-
ods they describe in their publication [13].

Another concept of bias in observational studies is 
the immortal time bias (ITB) that is possible in epide-
miological studies when a treated (exposed) and a non-
treated (non-exposed) group are compared. Individuals 
in the treated group are immortal before study partici-
pation [14]. ITB overestimates treatment effect on death 
whereas MicDaD underestimates mortality caused by the 
chronic condition of interest without consideration of 
any treatment.

So the difference between MicDaD and ITB is that 
MicDaD is caused by diseased individuals that are falsely 
treated as healthy when having the outcome ‘death’, 
whereas ITB concentrates on diseased individuals with 
known diagnosis that are unable to die. Additionally, death 
is impossible for an individual with ITB but with MicDaD 
individuals die without diagnosis. Therefore, results of 
studies analysing ITB are less comparable to our study.

Conclusion
The problem of misclassification of disease status at death 
influences the estimation of MRR. Impact and extent of 
MicDaD is driven by the incidence of the chronic disease 
of interest. In a high incidence setting MRR was underes-
timated, whereas in a setting with low-incidence, chronic 
disease MicDaD caused lower to no bias in the estima-
tion of MRR.
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