
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Fridgeirsson et al. BMC Medical Research Methodology          (2023) 23:285 
https://doi.org/10.1186/s12874-023-02112-2

Introduction
With the digital medicine revolution and personalized 
medicine more clinical prediction models are being built 
to aid in decision making in healthcare [1, 2]. With more 
of healthcare systems utilizing electronic health record 
(EHR) systems the potential availability of big databases 
to develop those models is increasing. However, with all 
this data there are challenges. Data is stored in differ-
ent formats and different terminology systems. This has 
been addressed through the Observational Medical Out-
comes Partnership Common Data Model (OMOP-CDM) 
maintained by the Observational Health Data Sciences 
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Abstract
Background Deep learning models have had a lot of success in various fields. However, on structured data they have 
struggled. Here we apply four state-of-the-art supervised deep learning models using the attention mechanism and 
compare against logistic regression and XGBoost using discrimination, calibration and clinical utility.

Methods We develop the models using a general practitioners database. We implement a recurrent neural network, 
a transformer with and without reverse distillation and a graph neural network. We measure discrimination using the 
area under the receiver operating characteristic curve (AUC) and the area under the precision recall curve (AUPRC). 
We assess smooth calibration using restricted cubic splines and clinical utility with decision curve analysis.

Results Our results show that deep learning approaches can improve discrimination up to 2.5% points AUC and 
7.4% points AUPRC. However, on average the baselines are competitive. Most models are similarly calibrated as the 
baselines except for the graph neural network. The transformer using reverse distillation shows the best performance 
in clinical utility on two out of three prediction problems over most of the prediction thresholds.

Conclusion In this study, we evaluated various approaches in supervised learning using neural networks and 
attention. Here we do a rigorous comparison, not only looking at discrimination but also calibration and clinical utility. 
There is value in using deep learning models on electronic health record data since it can improve discrimination and 
clinical utility while providing good calibration. However, good baseline methods are still competitive.
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and Informatics (OHDSI) community [3]. Addition-
ally, solutions like the Fast Healthcare Interoperability 
Resources (FHIR) standard provide a complementary 
approach to enhancing data exchange and interoperabil-
ity in healthcare [4]. The OMOP-CDM has enabled the 
use of common methods and tools across a large network 
of databases. This includes tools for predictive modeling 
such as the patient-level prediction (PLP) framework [5].

For predictive modelling the field of deep learning has 
had a heavy impact on the world in the last decade [6, 
7]. In deep learning a layered approach is used to build 
increasingly complex representation of the input to use 
for prediction. This approach has transformed whole 
domains such as computer vision, speech recognition 
and natural language processing. Despite this success 
these models have struggled more for structured or tabu-
lar data where traditional methods like logistic regression 
and boosted trees are dominant [8–10].

Recently there have been some advances in develop-
ing prediction models for electronic health record data 
using deep learning [11–13]. The application of atten-
tion, an advancement in deep learning, has significantly 
enhanced various fields including natural language pro-
cessing and computer vision [14]. Attention is a mecha-
nism which learns the relations between input features 
and uses them to dynamically focus on specific parts of 
the input. The recent deep learning EHR models all use 
different architectures in combination with attention. 
Choi et al. use recurrent neural networks such as long 
short-term memory units (LSTM). Kodialam et al. use 
transformers with and without reverse distillation where 
their model learns from a linear baseline. Finally, Zhu et 

al. use graph neural networks (GNN) with graph atten-
tion layers in an encoder-decoder setup in combination 
with variational techniques to regularize the model.

In this study we implement these state-of-the-art EHR 
models and investigate their performance on three EHR 
prediction problems and compare against linear and 
non-linear baseline models. Specifically, we build upon 
the work of previous literature in structured EHR mod-
elling by reimplementing their model architectures and 
test thoroughly on a new dataset. The pipeline and mod-
els are made publicly available1 so others can apply the 
tools we developed and can test the models on their own 
OMOP-CDM data.

Methods
The dataset
The data used were from the Integrated Primary Care 
Information (IPCI) database [15]. This is a database 
including 2.5 million patients from a set of general prac-
titioners (GPs) in the Netherlands and converted to the 
OMOP-CDM. From the database we extracted three 
target cohorts (Table  1). We predicted mortality within 
30 days in patients over 60 years of age after a GP visit. 
We predict readmission in 30 days after a hospital dis-
charge in adult patients. Finally, we predict onset of 
dementia within 5 years from a first GP visit of patients 
aged 50–79. We selected these problems based on their 
prevalence in the existing literature and the availability of 
a sufficient number of outcome events in our data. Mor-
tality and readmission prediction are among the most 
common prediction problems used in the literature and 
dementia is common as well [1, 16]. While the data is a 

1 https://github.com/mi-erasmusmc/DeepLearningEHR.

Table 1 Overview of cohorts used for the prediction models
Mortality Readmission Dementia

Observations 3,836,184 visits 206,995 visits 287,208 patients

Outcome (%) 36,952 (1%) 20,202 (9.8%) 4674 (1.6%)

Sex: # female (%) 2,232,244 (58.2%) 109,684 (53%) 148,660 (51.8%)

Age mean (std) 73.8 (9.0) 62.7 (18.0) 61.3 (8.5)

Index event GP visit after 60 Inpatient visit of adults First GP visit of pa-
tients aged 50–79

Time-at-risk1 30 days 30 days 5 years

Observation window2 1 year prior to index 1 year prior to index 1 year prior to 
index

Features Age, gender, conditions, drug 
exposure and procedure codes

Age, gender, conditions, drug exposure and 
procedure codes

Age, gender, 
conditions, drug 
exposure and 
procedure codes

Number of features 2056 2303 1748

Average features per observation / feature 
matrix density

49.5 / 2.3% 45.2 / 1.9% 21.8 / 1.2%

1Time-at-risk refers to the period after the index event during which predictions are made.
2Features are extracted from the observation window

https://github.com/mi-erasmusmc/DeepLearningEHR
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GP database certain information from discharge letters 
is recorded from hospitals, which is especially relevant 
for the readmission problem. The study was approved 
by the IPCI supervisory board (approval no. 9/2020 and 
2/2022). Comorbidities and more detailed cohort charac-
teristics can be found in supplementary table 1a, 1b and 
1c.

Preprocessing
Demographics, drug, procedure and condition concept 
codes were extracted using the OHDSI tool FeatureEx-
traction2. The features were extracted within an obser-
vation window starting one year prior to index date 
until the index date. For the temporal models the input 
to the model is a sequence of features occurring in the 
year prior. For models that require static features, three 
windows were used to aggregate the features across time. 
The windows reached from 365, 180 and 30 days before 
and until index. This results in a binary feature indicat-
ing whether it was present in the window or not. Fea-
tures occurring in less than 0.1% of observations were 
removed. Numerical features were standardized using 
max absolute scaling to be in the interval [0, 1].

Model architectures
We developed prediction models using the following 
model architectures (for more details see the relevant 
references):

1. RETAIN is a model consisting of two units of 
recurrent neural network units, in our case 
LSTMs [11]. First the input goes through a linear 
embedding layer. The resulting embedding output 
goes separately through each LSTM. Then attention 
is added on the hidden states of each LSTM. One 
uses visit-level attention, and one attends to the 
coordinate of each visit-level embedding. A context 
vector is generated from the attentions combined 
with the visit embeddings, which is then used to 
make predictions. We made two modifications to 
the original architecture. First, we used bidirectional 
LSTMs, which according to a discussion on the 
author’s GitHub3 improved performance, this 
was also true in our experiments. Second, we 
concatenated features such as age, sex and visit times 
to the visit embeddings.

2. The transformer architecture used was based on 
the implementation in the SARD paper from the 
authors GitHub4. First, an embedding layer calculates 
the embeddings per feature and sums them up per 

2 https://ohdsi.github.io/FeatureExtraction/.
3 https://github.com/mp2893/retain.
4 https://github.com/clinicalml/omop-learn.

visit for a visit-level embedding. As in RETAIN we 
concatenated the non-temporal features, sex and 
age, to the visit embedding. A sinusoidal temporal 
embedding was added to the visit embedding. Then 
the embeddings were fed through standard multi-
head attention blocks with layer norm and feed 
forward networks on top. Finally, the contextualized 
visit embeddings go through a convolutional 
prediction head to output the final prediction.

3. For SARD the same architecture as in the 
transformer is used. First it is trained to match 
predictions from a linear baseline, then it is finetuned 
where the supervision is provided by both the labels 
and linear model predictions using a mixing factor in 
the loss.

4. The last deep learning model used is a graph neural 
network from [13]. In contrast to the other deep 
learning models this model uses non-temporal 
(static) data. First it embeds the features using a 
linear embedding layer. Then an encoder consisting 
of graph attention layers encodes these embeddings 
into latent variables which are then decoded using 
a graph attention layer. A node is added to the 
decoder graph representing the output label and 
uses its attentions to predict the label. Variational 
regularization is applied to the latent variables 
which helps the model learn more expressive 
representations.

5. A baseline linear model, LASSO was used as 
implemented in the PLP package [5], it is an L1 
regularized logistic regression model which uses 
adaptive search to select the regularization strength 
[17].

6. As a second baseline, An XGBoost model was 
developed using the PLP package. XGBoost is 
a model known to be very strong in the tabular 
domain [18].

Training procedure
A train-test split of 75 − 25% was used for all experiments. 
For LASSO and XGBoost a three-fold cross validation 
over the training set was used to select hyperparam-
eters. For the deep learning models a train-validation 
split of 67 − 33% was used. In mortality and readmission, 
we divided the data by visit, ensuring that patients were 
never present across different folds in the process. For 
dementia the split was by patients. LASSO used the adap-
tive search, XGBoost used exhaustive grid search, but the 
deep models used a tree of parzen estimators with 100 
iterations over the hyperparameter space [19]. The search 
space can be seen in supplementary table 2a along with 
the optimal hyperparameters in supplementary tables 2b 
to 2e. The deep learning models used a batch size of 512. 

https://ohdsi.github.io/FeatureExtraction/
https://github.com/mp2893/retain
https://github.com/clinicalml/omop-learn
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Early stopping was used with a patience of three epochs 
and the learning rate was reduced by a factor of ten if the 
validation loss didn’t improve with patience of one epoch.

For SARD the models were trained to match the 
LASSO predictions on the training set (distillation) and 
then finetuned using labels and LASSO predictions 
(finetuning) on the validation set. Once hyperparam-
eters had been selected then the models were refit on the 
whole training dataset using the best hyperparameters 
and tested on the test set. For the deep learning models 
this included the number of epochs and learning rate 
schedule.

Since all our prediction problems are imbalanced the 
deep learning models use a weighted binary cross entropy 
as objective function where the weight on the positive 
class is the ratio of negative class observations to positive 
in the training set. The area under the receiver operating 
characteristic curve (AUC) and the area under the preci-
sion recall curve (AUPRC) were computed for the predic-
tions on the test set. Confidence intervals were computed 
using the method in Sun et al. [20] for the AUC and from 
Boyd et al. [21] for the AUPRC.

Calibration and clinical utility
The deep learning models that employed weighted binary 
cross-entropy as their objective function required reca-
libration due to overestimation of risk. The models were 
recalibrated on the validation set by adding a weight and 
intercept to the model outputs. These parameters were 
fit while the rest of the model’s parameter were fixed so 
that the model produces well calibrated probabilities for 
the validation set. This is equivalent to Platt’s scaling [22, 
23]. For consistency and fairness this procedure was also 
applied to the baselines. Then to assess calibration set 
smooth calibration curves were created using restricted 
cubic splines on the test set.

To assess clinical utility decision curves were computed 
showing the net benefit of patients for all prediction 
thresholds [24]. Net benefit is the difference between the 
proportion of true positives (benefit) and the false posi-
tives (harm) weighted by the odds of the selected thresh-
old which would classify someone as high risk. A model 
with higher net benefit at a given threshold captures 

more true positives without increasing false positives. 
The net benefit of the models is compared to the default 
strategies of treat-all and treat-none.

Feature importance and hyperparameter analysis
To further gain insight into the specific prediction prob-
lems used the top ten LASSO coefficients (by absolute 
value) were computed. Since an extensive hyperparam-
eter search was performed it allowed for the opportunity 
to model which hyperparameters are most important 
to tune for these prediction problems. To model this a 
random forest model was fit with the hyperparameter 
combinations as features and the validation AUC as the 
outcome. Then SHAP was used to compute hyperparam-
eter importance from this model and the results were 
visualized [25]. This was done for the best deep learning 
models if they showed benefit over the baselines.

Reduced feature set
We repeated the analysis above with a reduced feature set 
of 200 and 20 features. We used the absolute magnitude 
of coefficients from LASSO to select the largest coeffi-
cients and then fit XGBoost, RETAIN, the transformer 
and SARD to investigate the effect of a reduced feature 
set on the performance. We did not fit the GNN for this 
analysis since computationally it was expensive and it 
was not a best performer in any category.

Results
Discrimination
Table 2 shows the discrimination performance for the 
three prediction problems. SARD performs best both in 
terms of AUC and AUPRC for the mortality and read-
mission prediction problems. The LASSO performs best 
for dementia although the AUC for SARD is very close. 
XGBoost is in third place. The most significant gains 
are in the AUPRC for the mortality task where SARD 
improves on LASSO by 7.3% points and on XGBoost by 
0.7% points. Overall, the baselines are quite competi-
tive but the best deep learning methods are comparable 
or better. XGBoost is better than LASSO on two prob-
lems out of three. RETAIN and the GNN struggle to beat 
the baselines. In all cases, using reverse distillation with 

Table 2 Area under the receiver operating curve (AUC) and area under the precision recall curve (AUPRC) for the models on the three 
problems. The best performance is in bold

Mortality Readmission Dementia
AUC (%) AUPRC (%) AUC (%) AUPRC (%) AUC (%) AUPRC (%)

LASSO 92.0 ± 0.33 33.8 ± 0.98 67.0 ± 0.79 18 ± 1.0 87.5 ± 0.89 11.8 ± 2.0
XGBoost 93.8 ± 0.26 37.9 ± 0.98 67.5 ± 0.79 18.4 ± 1.0 87.2 ± 0.92 11.6 ± 2.0

RETAIN 93.6 ± 0.27 34.2 ± 0.98 66.5 ± 0.78 16.9 ± 1.0 85.6 ± 1.06 9.6 ± 2.0

GNN 93.5 ± 0.26 36.7 ± 0.98 65.7 ± 0.79 16.9 ± 1.0 86.5 ± 0.92 8.9 ± 2.0

Transformer 94.1 ± 0.25 37.8 ± 0.98 67.1 ± 0.77 17.7 ± 1.0 87.0 ± 0.91 10.0 ± 2.0

SARD 94.5 ± 0.24 41.1 ± 0.98 68.1 ± 0.77 18.5 ± 1.0 87.4 ± 0.90 11.3 ± 2.0
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SARD yields better results compared to using only the 
transformer.

Calibration
The smooth calibration curves for all three problems are 
depicted in Fig.  1. The plots show that the models are 
well calibrated for most of their predictions, (see den-
sity plots on bottom of Fig. 1) with a few exceptions. For 
dementia (Fig. 1a) most of the models are well calibrated. 
Exception is the GNN model which underestimates the 
risk. SARD underestimates it as well but to a less extent. 
For readmission (Fig.  1b) LASSO, RETAIN and SARD 
overestimate risk for high-risk patients but are again well 
calibrated for most of their predictions. The GNN overes-
timates risk except for high-risk patients where it under-
estimates it. For mortality the Transformer and RETAIN 
are well calibrated while the other models overestimate 
the risk except for XGBoost which underestimates it.

Clinical utility
The decision curves are plotted in Fig. 2. These show the 
net benefit over a range of decision thresholds. The net 
benefit is the benefit due to a decision identifying more 
true positives without increasing false positives [24, 
26]. The net benefit is compared to default strategies of 
treating all or none. In dementia, SARD and LASSO are 
equivalent for most of the risk range. There is no benefit 
over treating none above 20% risk. For both readmission 
and mortality prediction SARD has the best clinical util-
ity. In all cases there is a range of thresholds where there 
is more benefit in using a model than treating all/none 
patients. The threshold signifies the tradeoff between 
harms due to unnecessary treatment and missing a true 
positive and needs to be selected using clinical knowl-
edge depending on the specific problem.

Feature importance
Feature importance of LASSO for the three predic-
tion problems can be seen in supplementary Table 3. 

Fig. 1 Smooth calibration for the three prediction problems (a) Dementia, (b) Readmission and (c) Mortality. On the x-axis is the predicted risk and, on 
the y-axis, the actual risk. Below each plot is a density plot showing how the predictions of each model are distributed
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Displayed are coefficients with the largest absolute value. 
In mortality most of the largest coefficients are negative, 
indicating the model is learning things that are predictive 
of surviving. However, the largest coefficient is age and 
is positive. For readmission many of the features have to 
do with cancers of various kinds. For dementia age is the 
largest with various drugs and conditions with positive 
coefficients. These include vitamins such as D-vitamin 
and B-vitamin, but deficiencies of those vitamins have 
been linked to increased dementia risk [27, 28] and inju-
ries such as head injury are as well linked to increased 
dementia risk [29]. Positive coefficients for the vitamins 
could be explained by doctors prescribing these as a pre-
ventative measure to patients with subclinical presenta-
tion of symptoms.

In Fig.  3 we see the importance of the hyperparam-
eters for SARD. We focus here on the problems where 
the performance was better than the baselines (read-
mission and mortality prediction). The other models are 
in supplementary Fig.  1 to 4. The two most important 

hyperparameters are the different learning rates while 
the others vary by prediction problem. Lower learning 
rates improve the predictions. The best performing deep 
learning models seem to prefer lower embedding sizes 
(see supplementary Table 2c).

Reduced feature set
The results for the discrimination performance of the 
reduced feature set can been seen in supplementary 
Tables 4 and 5. There is a difference between problems 
with how affected the performance is using a reduced set. 
The dementia problem is barely affected while readmis-
sion is moderately affected. Mortality problem shows the 
greatest drop in performance. Interestingly for readmis-
sion and mortality the non-deep learning baselines suffer 
more drop as the feature set is reduced.

Fig. 2 Decision curves showing the net benefit for all the models. It includes the benefit when either treating all or none cases. (a) net benefit in for 
dementia prediction, (b) net benefit for readmission prediction and (c) net benefit for mortality
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Discussion
In this study we empirically investigated some of the 
state-of-the-art approaches in supervised learning using 
neural networks combined with attention. Our results 
show that using deep learning with attention can out-
perform strong baselines. Overall however, good base-
lines are still competitive. Using a linear baseline as a 
teacher model in a distillation setting always improves 
the deep learning model and depending on the problem 
might provide additional benefit over the linear model. 
For readmission and dementia problem most models are 
decently calibrated except for the GNN model. For mor-
tality there are signs of overestimating risk for LASSO, 
SARD and the GNN and underestimation for XGBoost. 
In terms of clinical utility SARD has higher net benefit on 
readmission and mortality over LASSO and XGBoost. To 
ensure good performance a careful tuning of the learning 
rate is required for the deep learning models.

In terms of discrimination SARD has the best per-
formance of two out of three prediction problems. The 
performance difference between SARD and the base-
lines was greatest on the mortality problem which had 
the largest cohort size. The differences we find are more 
modest than many reported in the literature. The big-
gest difference between a deep learning model using 
attention and logistic regression is 15–25% points from 
Solares et al. [30]. The best performing model in their 
study was RETAIN. One thing to note that was differ-
ent in their study than ours is that they reduced the high 
dimensionality from thousands down to 326 by grouping 
medical codes. Choi et al. [11] founds differences of 7% 
points between RETAIN and logistic regression, which is 
less than Solares et al. but more than Kodialam et al. [12]. 
However, in their original study they only train RETAIN 

on medical codes but no other data that is usually avail-
able and can improve performance such as demograph-
ics. Our results do agree broadly with Kodialam et al. and 
Rajkomar et al. [31] where improvements in discrimina-
tion are smaller, on the order of few percentage points.

The deep learning models seem to be more robust to a 
set of reduced features (supplementary Tables 4 and 5), 
in particular in readmission and mortality. However, it is 
important to note that the best performing models over-
all are always those with the full feature set. If there are 
few features available, it might give greater gains to use 
the deep learning models. This might also explain why 
some of the previous literature finds greater gains using 
different feature settings. However if you have more fea-
tures available that is the best pathway to improve the 
performance.  Although deep learning research rarely 
addresses the issue of calibration, it is crucial in safety-
critical domains such as medicine to ensure that a mod-
el’s risk estimates are appropriately calibrated for effective 
medical decision-making [32]. Our analysis indicates 
that, except for the GNN that utilizes variational tech-
niques, the deep learning models exhibit similar levels of 
calibration as the baseline methods. However, it is essen-
tial to assess calibration on a problem-by-problem basis, 
as we found that SARD and LASSO tend to overestimate 
the risk for the mortality prediction task, which suggests 
overfitting. In literature it is common to use weighting in 
the objective function for problems where the outcome is 
rare. This guarantees that the model will be miscalibrated 
and overestimates risk. Such a model needs to be recali-
brated before use.

The assessment of clinical utility is crucial for clinical 
prediction models. One approach to evaluating clinical 
utility is through decision curve analysis, which has been 

Fig. 3 Feature importance for (a) readmission and (b) mortality. On y-axis are the hyperparameter and on the x-axis are the effects of those on the model 
output (validation AUC). Red color means higher values of the hyperparameter and blue is lower. lr: learning rates, num_head: number of attention heads, 
num_hidden: number of neurons in fully connected layers, attn_depth: number of attention layers
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overlooked in the deep learning literature. While models 
may demonstrate similar discrimination performance as 
measured by the AUC or AUPRC, differences in clinical 
utility across the thresholds used in practice can exist 
[26]. SARD not only improved overall discrimination in 
two problems, but also demonstrated enhanced clinical 
utility over the baselines. Specifically, SARD was able to 
identify more true positives without increasing the num-
ber of false positives, suggesting potential benefits with-
out added harm. However, the clinical relevance of these 
findings will ultimately depend on the specific context in 
which the model is being used, including the decisions to 
be made, the associated costs, and the potential benefits.

Medical problems in real-life often involve rare out-
comes, with outcome rates typically ranging from 1 to 
10% in our three cases. In such situations, relying solely 
on the AUC may not be sensitive enough to the abso-
lute number of false positives relative to true positives. 
Thus, a high AUC can be achieved even when a model 
has a significantly higher number of false positives than 
true positives. To capture this behavior more accurately, 
the AUPRC is a more sensitive measure [33]. Notably, for 
mortality prediction, our deep learning models demon-
strated the greatest improvement in AUPRC. This finding 
suggests that, on average, these models achieve higher 
precision and a higher ratio of true positives to positive 
predictions. In clinical practice, this metric is impor-
tant because it is closely related to the concept of alarm 
fatigue [34]. Alarm fatigue occurs when clinical staff are 
constantly inundated with unreliable or unactionable 
alarms. A prediction model with low precision can pro-
duce such alarms, so it is crucial to utilize a metric that 
accurately captures this situation.

The feature importance analysis indicated that the 
learning rates are the most important hyperparameters 
for the models. Overall, the best performing models pre-
ferred lower embedding sizes indicating that the features 
are compressed quite a bit to reduce overfitting. For the 
mortality problem, a lower alpha parameter was pre-
ferred when blending losses during reverse distillation. 
This suggests that the model only required initialization 
to match the performance of the linear model and subse-
quently relied less on its input. This was not the case for 
readmission where higher alpha values were preferred. 
This contrasts with the original paper where lower alpha 
values, even as low as zero, are preferred [12]. Higher 
alpha values could mean that there is more tendency to 
overfit and the model is using the linear model loss as 
regularization. By having high alpha values, the model 
is constraining itself to not deviate much from the linear 
model. Looking at the hyperparameter importance for 
the other models (supplementary Figs.  1–4) the learn-
ing rates seem to have most affect on the model output. 
Other important hyperparameter depend on the model 

but parameters such as embedding size, layer number 
and dimension are as well important.

There are some limitations to our study. First, we only 
assess internal validity. To develop a robust clinical pre-
diction model it is important to assess generalizability 
and reliability of predictions to slightly different popula-
tions through external validation [35]. Second, although 
we use three different problems it is all from the same 
database. To be able to generalize the results it is impor-
tant to replicate them across different databases. Differ-
ent database characteristics might already explain the 
difference of our results to some of the literature. The 
prediction problems we chose might themselves have 
their own limitations, for example dementia diagnosis is 
used to define the outcome in one problem but demen-
tia has a significant rate of underdiagnosis [36]. However, 
we believe the algorithms are affected by this equally and 
that this does not affect our comparison. Because of our 
data we only had available three prediction problems to 
test on. This precludes testing of statistical significance 
using appropriate tests such as a Friedman’s test and a 
critical difference diagram. Finally, we did not include 
labs/measurements as features. This was done to simplify 
the comparison since measurements have missing val-
ues that need to be accounted for. Most of the compared 
models did not use these features in their original papers. 
However, we believe using these features could improve 
the deep learning models considerably and this should be 
considered in future work.

Conclusion
In this paper we implement the state-of-the art 
approaches using attention based deep neural networks 
for supervised learning. We developed these models on 
the OMOP-CDM which allows others to reuse our code 
and replicate our findings. The study shows that deep 
learning with attention can outperform strong baselines 
in supervised learning, but performance depends on 
the problem. In terms of calibration, most deep learn-
ing models exhibit similar levels as the baseline meth-
ods except for the GNN model. SARD demonstrates 
enhanced clinical utility over LASSO and XGBoost for 
readmission and mortality prediction.
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