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Abstract 

Background  Identification of difficult laryngoscopy is a frequent demand in cervical spondylosis clinical surgery. This 
work aims to develop a hybrid architecture for identifying difficult laryngoscopy based on new indexes.

Methods  Initially, two new indexes for identifying difficult laryngoscopy are proposed, and their efficacy for predict-
ing difficult laryngoscopy is compared to that of two conventional indexes. Second, a hybrid adaptive architecture 
with convolutional layers, spatial extraction, and a vision transformer is proposed for predicting difficult laryngoscopy. 
The proposed adaptive hybrid architecture is then optimized by determining the optimal location for extracting 
spatial information.

Results  The test accuracy of four indexes using simple model is 0.8320. The test accuracy of optimized hybrid archi-
tecture using four indexes is 0.8482.

Conclusion  The newly proposed two indexes, the angle between the lower margins of the second and sixth cervi-
cal spines and the vertical direction, are validated to be effective for recognizing difficult laryngoscopy. In addition, 
the optimized hybrid architecture employing four indexes demonstrates improved efficacy in detecting difficult 
laryngoscopy.

Trial registration  Ethics permission for this research was obtained from the Medical Scientific Research Ethics Com-
mittee of Peking University Third Hospital (IRB00006761-2015021) on 30 March 2015. A well-informed agreement 
has been received from all participants. Patients were enrolled in this research at the Chinese Clinical Trial Registry 
(http://​www.​chictr.​org.​cn, identifier: ChiCTR-ROC-16008598) on 6 June 2016.
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Introduction
Difficulty in airway management is one of the leading 
causes of anaesthesia-related cardiac arrest, death, and 
brain damage in patients undergoing surgery [1]. Unan-
ticipated difficult airway has always been an issue even 
for experienced anaesthesiologists [2]. Adequate evalu-
ation of airway structures prior to surgery is essential 
for safe and effective tracheal intubation, which is a pre-
requisite for safe anaesthesia, minimising distress, and 
reducing the need for additional sedation for reintuba-
tion [3]. Clinically, many factors are associated with dif-
ficult laryngoscopy, including head-neck trauma [4], 
airway abnormalities [5], gastroesophageal reflux disease 
[6], difficulty in opening mouth [7], impaired cervical 
mobility [8]. To achieve optimal laryngoscopic views, the 
oral, pharyngeral and laryngeal axes need to guarantee 
closest match, creating feasibility for anaesthesiologists 
to expose the glottis in patients with cervical spondylo-
sis [7]. However, gold standards and guidelines have not 
been laid out for difficult laryngoscopy detection. The 
Mallampati classification predicts intubation ease based 
on oral cavity visibility, however, despite suggested modi-
fications, adding neck mobility and mandibular space, 
it has limitations due to subjectivity and an inadequate 
assessment of airway problems.

Recent technological advancements in artificial intel-
ligence (AI) algorithms, computer hardware, and large 
medical imaging datasets have enabled computer scien-
tists and healthcare researchers to collaborate closely to 
improve airway management [9] and laryngoscopy pre-
diction [10–12]. As a potent subfield of AI, deep learn-
ing has the potential to analyse large medical databases in 
parallel [13] via its multiple computational nodes and to 
identify potential intubation hazards via its hidden layers 
[14]. As one of the popular deep learning applications, 
vision transformers employing self-attention structures 
are able to extract global information, recognise patterns, 
and capture long-distance relationships from images, 
enabling efficient imaging detection, such as difficult 
laryngoscopy identification.

This study aims to identify difficult laryngoscopy using 
a novel attention-based AI model on a large preoperative 
X-ray dataset, as well as to investigate the relationship 
between image-measured indicators and difficult laryn-
goscopy. Two new indicators will be introduced to reflect 
the range of motion of the upper and lower cervical spine 
in relation to difficult laryngoscopy, and their efficacy will 
be evaluated by comparing them to two published indi-
cators. Combining convolutional neural networks, spatial 
extraction, and vision transformer structures, this study 
will introduce a novel AI architecture for the identifica-
tion of difficult laryngoscopy. In order to enhance the 
performance of the hybrid AI model, an attention-based 

spatial extraction structure will be implemented and its 
optimal placement will be determined. For the first time, 
the performance of difficult laryngoscopy prediction 
using a single index and using multiple indexes will be 
validated uniformly. The ranking of the four indicators 
will also be provided.

Material and methods
Datasets and samples
This prospective cohort study recruited patients under-
going elective cervical spine surgery under general anaes-
thesia during the period June 2016 to December 2021. 
The following criteria were included: (1) Age range of 20 
to 70 years, (2) Psychiatric health, and (3) Intact radio-
logical and medical records. Rule-out conditions were as 
below. (1) Airway neoplasm or foreign objects (tumours 
of the larynx, pharynx, tongue, floor of the mouth, or 
cysts involving the mandible or medial neck), (2) Seri-
ous cervical vertebral trauma, (3) Cervical instability, 
(4) Unstable physical condition (ASA IV or V), and (5) 
Anticipated difficulty with facemask ventilations (previ-
ous surgical intubation difficulties, surgery, neck radio-
therapy). Ethics permission for this research was obtained 
from the Medical Scientific Research Ethics Commit-
tee of Peking University Third Hospital (IRB00006761-
2015021) on 30 March 2015. A well-informed agreement 
has been received from all participants. Patients were 
enrolled in this research at the Chinese Clinical Trial 
Registry (http://​www.​chictr.​org.​cn; identifier: ChiCTR-
ROC-16008598) on 6 June 2016.

Routine preoperative monitoring of non-invasive blood 
pressure, heart rate, pulse oximetry, and electrocardiog-
raphy was performed. Sufentani (0.3 µg/kg) and propo-
fol (2 mg/kg) were administered to induce anaesthesia. 
In unconscious patients, neuromuscular blockade was 
induced by rocuronium (0.6 mg/kg). The difficulty of 
laryngoscopy was ascertained by the single advanced 
anaesthesiologist using the Cormack-Lehane scales 
with the Macintosh laryngoscope for all participants 
in the olfactory position (Table  1) [15]. The anaesthesi-
ologist was not engaged in perioperative radiographic 
evaluations. Those with grade III or IV views were allo-
cated to the difficult laryngoscopy category, and those 
who had grade I or II views were allocated to the simple 

Table 1  The Cormack Lehane (C-L) scale

Classification Description

Class I Vocal cords were completely visible

Class II The arytenoids were visible

Class III Only the epiglottis was visible

Class IV The epiglottis was not visible

http://www.chictr.org.cn
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laryngoscopy category. Patients who were unsuccess-
ful with the Macintosh laryngoscope were addressed in 
accordance with the Difficult Airway Society 2015 guide-
lines [16]. No patients were involved in the radiological 
data measurements nor were they involved in develop-
ing plans for the design and accomplishment of the pre-
sent study. None of the patients was asked to advise on 
the interpretation. The radiology staff was blinded to the 
examination. The results will be disseminated to investi-
gators and patients through this publication.

A previous study showed that the incidence of difficult 
laryngoscopy was 24% [17]. In our preliminary study, 
the incidence of difficult laryngoscopy was 18.6%. It was 
estimated that the sample sizes of 610 would achieve to 
detect a difference in indicators between the difficult and 
easy laryngoscopy groups ( α = 0.05 and β = 0.1), and in 
consideration of 10% dropout rate, 671 patients were 
enrolled in this study.

Data pre‑processing
Patients’ clinical and radiological information was 
obtained from their medical records and the image 
archiving and communication system (PACS). Pre-
processing is a crucial step in medical image classifica-
tion, especially in the processing of large datasets. AI 
techniques for medical images typically rely on super-
vised learning, utilizing datasets containing data points 
(e.g., images) and labels (e.g., object classes) [13]. Pre-
processing including data segmentation, labeling, data 

enhancement [18], and data balancing was mainly per-
formed on histograms and labelled images in this study 
(Fig. 1). Feature extraction is vital for image classification. 
Medical image segmentation is one of the most promis-
ing methods in medical image analysis, which identifies 
pixels of organs or lesions from backgrounds such as 
X-ray images, providing critical morphologic and spatial 
information of these images [19]. In this study, hybrid 
segmentation methods were utilized to extract charac-
teristics and enhance the imaging detection performance, 
including grayscale conversion, binary transformation, 
skeleton extraction, central axis transformation, gradient 
extraction, and K-means method (Fig.  2). In (a), images 
were segmented using the watershed algorithm.

(A)	The original image.
(B)	 The original image after binarization. The thresh-

old ranged from 90 to 255, and the pixel value 255 
became 1 after binarization.

(C)	The gradient of the image obtained after noise fil-
tering, using gradients below 10 as the starting gra-
dient points.

(D)	The gradient and marker information are used to 
generate a gradient-based watershed map.

In (b), images were segmented using the K-means clus-
tering algorithm.

(A)	The original image.

Fig. 1  Dataset processing, including data labelling, data segmentation and data augmentation
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(B)	 This image was obtained using K-means cluster-
ing. CNNs have achieved leading-edge capability in 
numerous biomedical image categorization assign-
ments [20] including diverse modalities [21]. They 
require a richly tagged database, where the category 
of each of the pixels or voxels is known, to direct 
the processing of the database. Yet, collecting inten-
sively tagged biomedical pictures is challenging, 
as tagged medical databases demand field-specific 
information and the pixel level annotations are 
potentially time consuming [22].

Data enhancement is an efficient method for increas-
ing the number and diversity of datasets via stochastic 
moulding [23]; In the imaging field, commonly available 
augmentation techniques include image resizing, res-
caling, and vertical rotation. In this research, rotational 
variation, breadth variation, altitude variation, stochastic 
clipping, scaling variation, and horizontal flipping were 
implemented to execute data augmentation. After data 
augmentation, each image was resized to 64 x 64 pixels 
for the CNN models and 180 x 180 pixels for the transfer 
learning models.

Data segmentation is a useful technique for removing 
superfluous features from difficult laryngoscopy images; 
however, poor contrast and imprecise brightness distri-
butions in laryngoscopy imaging may result in unreliable 

segmentation [24]. Histogram equilibrium plays a crucial 
role in image quality enhancement [25], and it was uti-
lised to mitigate such issues in this study [26]. Category 
weights are utilized during model training to evaluate the 
loss function. This manipulation enables the target model 
to ’give more consideration’ to samples from representa-
tive categories. The weights are based on the proportion 
of difficult and simple laryngoscopy.

Proposed indexes
This study presents two new indicators that reflect the 
range of motion of the upper and lower cervical spine in 
relation to difficult laryngoscopy and compares them to 
two previously published indicators to determine their 
efficacy. Figure 3 depicts the two new indicators, Label-3 
and Label-4, in addition to the two previously published 
indicators, Label-1 and Label-2. The first new indica-
tor, Label-3, is the angle between the lower margin of 
the second cervical spine and the vertical direction. This 
measurement is of utmost importance because it reflects 
the degree of anterior laryngeal displacement, which is 
known to be associated with difficult laryngoscopy [27]. 
A smaller angle in this measurement indicates a higher 
likelihood of difficult laryngoscopy. The angle between 
the lower margin of the sixth cervical spine and the verti-
cal direction is the another new indicator, Label-4. This 
measurement is crucial because it reflects the degree of 

Fig. 2  Hybrid segmentation
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cervical flexion, which can also contribute to difficult 
laryngoscopy. The likelihood of encountering difficult 
laryngoscopy increases as the angle of this measure-
ment increases. Label-1: Vertical distance from the high-
est point of the hyoid bone to the mandibular body [28]. 
Label-2: Atlanto-occipital gap [29]. Label-3: The angle 
between the lower margin of the second cervical spine 
and the vertical direction, indicating the range of motion 
of the upper cervical spine [27]. Label-4: The angle 
between the lower margin of the sixth cervical spine and 
the vertical direction, indicating the range of motion of 
the lower cervical spine.

Each of the four indications pertains to cervical spine 
information; therefore, they are all intrinsically linked 
to the identification of a difficult laryngoscopy. No com-
parison of the four indicators was performed in previous 
studies. The work evaluated and contrasted the efficacy of 
four indicators and ranked them in order of efficacy. The 
neutral position was used for all cervical spinal x-rays.

Classical architecture
Various advances in artificial intelligence (AI) are rapidly 
sweeping the medical imaging field. They have the ability 
to correctly interpret external data, draw experience and 
lessons from it, and adapt flexibly to achieve particular 
objectives [30]. The key deep learning technique lever-
aged in these tasks is the convolutional neural network 
(CNN), a type of deep learning algorithm that hardcodes 
translational invariance, which is a key feature of image 
data. CNNs have achieved extraordinary success in medi-
cal video classification and detection [31], medical image 
regression [32], medical image classification [33], medi-
cal image segmentation, or image registration tasks. This 
work applied a six-layer CNN model to identify difficult 
laryngoscopy. The implementation of maxpooling struc-
tures and sigmoid functions came after each CNN layer. 
At the end of the model, a dense layer was applied.

Many deep learning and data mining algorithms 
assume that the training data and the future real data 

Fig. 3  Labelled laryngoscope imaging
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must have the same characteristics and distribution. 
However, this assumption may not hold true in many 
real-world applications. Transfer learning models, in con-
trast, use different domains, tasks, and distributions for 
training and testing [34]. Pre-training on widely accepted 
large datasets, such as ImageNet or COCO, can improve 
the ability of artificial intelligence models to general-
ize to new medical imaging datasets. This work applied 
three different transfer learning model: DenseNet-121, 
ResNet-50, and VGG-16.

Proposed hybrid structure
This work proposes a hybrid artificial intelligence (AI) 
architecture for the analysis of laryngoscopy images 
that integrates Convolutional Neural Networks (CNN), 
spatial extraction, and Vision Transformers (ViT) with 
attention mechanism (MSCNN) (Fig. 4). The proposed 
architecture is made up of a CNN for low-level feature 
extraction, such as lines and blocks, a spatial extraction 
structure (STN) for capturing multi-scale information, 
and a ViT for high-level representation learning, such 

Fig. 4  Adaptive multi model structure
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as cervical spine curvature. Specifically, vision trans-
formers are designed to capture long-range depend-
encies and global context by calculating loss using 
positional and patch features from the transformer 
encoder layers, which has the potential to enhance the 
efficacy of difficult laryngoscopy prediction; the spa-
tial extraction component can divide the input image 
into multiple regions and independently process each 
region, allowing the model to concentrate on relevant 
areas and increase its localization accuracy.

CNNs are capable of extraction and classification 
of features. However, they may not be able to capture 
long-range dependencies and contextual information 
in the images, which can limit their performance on 
more complex tasks, such as identification of difficult 
laryngoscopy imaging. The hybrid model proposed has 
the potential to enhance performance by leveraging 
the benefits of its AI structures, specifically by incor-
porating contextual information from the entire image 
and learning discriminative features from each struc-
ture. Four additional structures, CNN, DenseNet-121, 
ResNet-50, and VGG-16, were utilized to validate the 
MSCNN.

The application of large CNN with many layers on 
a dataset will lead to over-fitting, that is, the models 
perform well on the training set, but with poor gen-
eralization ability. Therefore, it cannot predict on the 
unknown samples. This causes the CNN model to 
identify difficult laryngoscopy database of patients in 
the dataset used, but it cannot be generalized to iden-
tify whether other patient images are difficult. In this 
study, the method of learning employed by the model 
is adaptive, and its hypeparameters degrade automati-
cally. If the loss value stays the same within ten steps, 
the early stop will be performed, and the learning rate 
will decrease. The resolution ratio of the square images 
of the training and validation sets was reduced to 64 x 
64 pixels. The learning rate hyperparameter automati-
cally decreases. Specifically, If the loss function does 
not decrease over three runs, the model will adapt 
and reduce the learning rate to 0.6 times, contribut-
ing to slower run times and more efficient models, and 
the model with the lowest loss will be selected. Vision 
Transformer has evolved into one of the most contem-
porary and predominant architectures in medical imag-
ing. Transformer is a deep neural network based on a 
self-attention mechanism that facilitates substantially 
large receptive fields. It can capture global context with 
respect to CNN with local receptive fields [35]. Multi-
head attention transformer, ViTBase16, was applied to 
capture global context of input images. Visual trans-
fer models were utilized to improve the accuracy of 

difficult laryngoscopy detection. It first segments the 
imported picture to patches and casts the flattened ones 
into a feature space, which is processed by its encoder 
to generate the resulting classified outputs (Fig. 5).

Optimization of proposed hybrid structure
AI is emerging as a formidable implement in the analysis 
of biomedical imaging, with deep learning employed to 
categorize airway prediction imaging for advanced detec-
tion of difficult laryngoscopy. Standard convolutional 
actions in deep learning do not expressly consider space-
related interaction; therefore, space interactivity is con-
sidered as it has the potential to improve the efficiency 
of difficult laryngoscopy categorization by effectively 
preserving the spatial information of various scales prior 
to processing, resulting in robust information extrac-
tion. In this research, several granular spatial interaction 
structures were employed to eliminate the constant size 
limitation of this model. The spatial extraction structure 
was added on top of the final convolution layer, with the 
combination of three max-pooling structures positioned 
after the second, fourth, and sixth convolutional layers. 
The spatial extraction structure aggregates characteristics 
and produces a constant-length outcome, which is then 
sent to a fully concatenated layer (or another classifier). 
In other words, in order to avoid clipping or twisting at 
the beginning, certain “aggregation” is carried out at a 
higher stage of the model hierarchy (between convolu-
tion and fully connected hierarchies) [36] (Fig. 6) shows 
the structure of a Fine-grained Spatial Interaction. Here, 
256 is the filter number of the last convolutional layer. 
In this study, three visual transfer learning methods 
(ResNet-50, DenseNet-121, and VGG-16) were used for 
feature extraction from the laryngoscopy images. All the 
transfer learning models were pretrained on the Ima-
geNet dataset. The hidden deep layers used in the deep 
transfer learning map input data to indexes to analyse 
hidden patterns in complicated data.

Label-1,2,3,4 was used by all of the AI models in this 
study to validate their performance. Additionally, the fol-
lowing five different label image data were employed on 
DenseNet-121, CNN+SPP, and Hybrid Model, respec-
tively, in order to completely verify the importance of 
various variables in discriminating difficult laryngoscopy: 
Label-1,2,3,4, Label-1, Label-2, Label-3, and Label-4.

Statistical analysis
This research presents a comprehensive approach to 
binary classification using CNN, ResNet-50, VGG-16, 
DenseNet-121, CNN+SPP, and a hybrid model that 
incorporates both CNN, SPP and Vision Transformer 
(ViT). It compared various aspects, including deep 
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learning techniques, evaluation metrics, Python imple-
mentation, and descriptive components such as loss 
functions, activation functions, optimizers, and model 
architecture.

This study leverages Python, a versatile programming 
language, and popular deep learning library, TensorFlow. 
It provides the necessary tools for model construction, 
training, and evaluation. For binary classification, this 
research employed binary cross-entropy. ReLU (Rectified 
Linear Unit) and sigmoid are utilized in this study, they 
are crucial for introducing non-linearity into the model. 
They enable the network to learn complex patterns and 
make predictions. Adam and SGD (Stochastic Gradi-
ent Descent) are used to update model parameters dur-
ing training. The selection of an optimizer influences the 
convergence speed and final model performance.

Model performance is assessed using various evaluation 
metrics, including test accuracy and the average precision 
score. Test accuracy is a commonly used evaluation met-
ric for classification models. It measures the proportion of 
correctly classified instances in the test dataset. In binary 
classification, it calculates the ratio of true positives (cor-
rectly predicted positive instances) and true negatives 

(correctly predicted negative instances) to the total num-
ber of instances in the test set. The average precision score 
was calculated in this research. It quantifies the area under 
the precision-recall curve (PR curve), which plots preci-
sion against recall for different classification thresholds. It 
provides a single value that summarizes the model’s ability 
to make precise positive predictions while considering all 
possible classification thresholds. The higher the average 
precision score, the better the model’s performance. To 
compute the average precision score, you can use libraries 
like Scikit-Learn in Python.

This research implements the binary classification 
model using Python code, leveraging deep learning 
libraries for model construction and training. Visualiza-
tion libraries like Matplotlib and Seaborn are employed 
for result visualization.

Results
Trial setup
A total of 671 patients preoperative cervical spine X-ray 
images are collected and used in this study, including 548 
easy and 123 difficult laryngoscopy patients. The pro-
cessor uses GPUs. The optimal model is preserved by 

Fig. 5  Visual multi head self attention transformer
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keeping the model checkpoint with the least loss value. 
The dataset is shuffled and divided into training, test, and 
validation sets in a ratio of 7:1:2. The resolution of each 
image of the training, test and validation sets is reduced 
to 224 x 224 pixels. The dimension of each image is 700 x 
700 with a bit depth of 8.

Accuracy of classical structures using proposed indexes 
and classical indexes
Figure 7 depicts CNN and three transfer learning mod-
els (DenseNet-121, VGG-16, and ResNet-50) without 
labelling. These results represent the mean of ten itera-
tions of the model on the laryngoscopy imaging dataset. 
According to the results, DenseNet-121 outperformed 
ResNet-50 and VGG-16. DenseNet outperforms VGG 
on the ImageNet dataset; this study supports this finding 
using a difficult laryngoscopy image dataset.

Accuracy of optimized hybrid structures using proposed 
indexes and classical indexes
The optimized hybrid structure is combined with convo-
lutional layers, spatial extraction, and vision transformer 

structures. Four indicators were applied collectively and 
separately on this optimized hybrid structure. Label-
1,2,3,4 indicates that all four indicators were simultane-
ously applied to the model, whereas Label-1 indicates 
that only the first indicator was used to identify difficult 
laryngoscopy, as do Label-2, Label-3 and Label-4. The 
efficacy of these indicators in identifying difficult laryn-
goscopy was evaluated using the X-ray dataset, and a 
ranking order was established.

Figure 7 shows the results of CNN, DenseNet-121, and 
vision transformer applying segmentation. No indicators 
were labelled on the imaging dataset for difficult laryngo-
scopy, when applying segmentation. Vision Transformer 
represents the optimized hybrid structure combined 
with vision transformer structure in Figs.  7 and 8. The 
hybrid model achieved the best accuracy of 0.8125 before 
segmentation. Figure  9 depicts the results of compar-
ing four indicators collectively and separately, as well as 
simple and hybrid model combined with Vision Trans-
former. The prediction accuracy of the four indicators 
were compared separately (0.8309 vs. 0.8320 vs 0.8318 
vs 0.8320). The rank of the four indicators was proposed, 

Fig. 6  A network structure with a Fine-grained Spatial Interaction
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and Label-2 was the best. Under the combined effect of 
the four indicators, MSCNN provided the highest level 
of efficacy, which was 0.8482. Table 2 showed the results 
of extracting spatial information from different locations. 
The best place to extract spatial information is to place 
the spatial extraction structure after each convolutional 
layer and before batch normalization (Fig. 10). The results 
showed that the addition of the four indicators improved 
the performance of difficult laryngoscopy identification.

Data are presented as mean ± standard deviation or 
number (proportion, %).

Presently, the popular bedside physical predictors con-
tain inter-incisor gap, thyromental distance and modi-
fied Mallampati test. Table  3 displays the performance 
of the modified Mallampati test in predicting difficult 
laryngoscopy.

Discussion
Proposed indexes
The sufficient prediction of difficult laryngoscopy is con-
sidered amongst pivotal priorities for anaesthesiologists 
in day-to-day work. Nevertheless, the underlying rea-
sons for difficult airways are complicated and there is an 

absence of gold standards concerning difficult laryngos-
copy. Not much research has been done on applying peri-
operative X-ray databases to differentiate participants 
with difficult laryngoscopy. This study introduced two 
new indicators for identification of difficult laryngoscopy: 
Label-3, the angle between the lower margin of the sec-
ond cervical spine and the vertical direction, denoting 
the extent of movement at the higher cervical vertebrae, 
and Label-4, the angle between the lower margin of the 
sixth cervical spine and the vertical direction, denoting 
the extent of movement of the lower cervical vertebrae.

Label-1, the vertical distance from the greatest point 
of the hyoid bone to the mandibular body, reflects the 
location of the epiglottis, which has been described by 
Naguib [37] and Chou [38] among earlier researches. 
Naguib noticed the absence of a distinction in Label-1 in 
the difficult laryngoscopy and easy laryngoscopy catego-
ries. Nevertheless, Chou discovered Label-1 was length-
ier for the difficult laryngoscopy category compared to 
the easier laryngoscopy category. The test accuracy for 
Label-1 was 0.8309, suggesting a favourable forecast 
success. Consistent with the study of Chou HC, Label-1 
plays an essential role and produces significant results in 

Fig. 7  The test accuracy results of CNN, DenseNet, VGG and ResNet
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predicting difficult laryngoscopy. Horton et al. [39] have 
proved that the space between the mandible and hyoid 
is always about 50% of the space between the mandible 
and the glottis. The large distance between the body of 
the mandible and the peak of the hyoid bone suggests 
that the vocal fenestra is profound. In such situations, it 
was extremely challenging for the anaesthesiologist to 
reveal the vocal folds due to the presence of tissues in 
front of the vocal cords. Label-2 is the space separating 
the occipital bone and the first cervical vertebrae in neu-
tral-positioned intubation participants. Individuals with 
atlantooccipital damage are at greater risk than normal 
patients for experiencing difficulties during laryngoscopy 
[40]. Label-2 is related to the atlantooccipital complex 
as well as to mandibular prominence. Higher prevalence 
of distressed airways in those suffering from atlantooc-
cipital composite lesions [40]. The Label-2 has a testing 
accuracy of 0.8320, indicating a premium level of perfor-
mance. In addition, the smaller Label-2 length appears to 
mirror, to some extent, a reduction in movement scope 
and a slight atlantooccipital joint union. The atlantooc-
cipital was markedly significant in detecting difficult 

laryngoscopy among the Macintosh laryngoscopy and 
assistant technical groups during the research.

Proposed hybrid structure
The proposed MSCNN yielded substantial results. Using 
MSCNN on a large dataset, the first unified verification 
of the performance of difficult laryngoscopy identifica-
tion with a single metric and a combined multimeric was 
performed. In the study, the predictive accuracies of the 
four indicators Label-1, Label-2, Label-3, and Label-4 
were meaningful (0.8309 vs. 0.8320 vs 0.8318 vs 0.8320). 
When the four indexes were applied simultaneously, the 
testing accuracy was 0.8482. The performance of the 
four indexes, both individually and collectively, was sta-
tistically significant. The results showed that the hybrid 
model reached remarkable levels of performance, sur-
passing other statistical methods [41] and has the abil-
ity to predict difficult laryngoscopy. The usage of four 
indicators improved the performance of difficult laryn-
goscopy identification. Jointly and separately, the out-
comes of four indicators are comparable, suggesting that 
clinicians have the clinical discretion to select the most 

Fig. 8  The outcomes of combining CNN, DenseNet-121, and the hybrid model applying segmentation
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suitable measures for predicting problematic laryngos-
copy in clinical practise.The findings demonstrate that it 
is reasonable to consider substituting alternative indexes 
when some labelling information in an image dataset is 
obscured or difficult to annotate due to pose or other 
factors.

A ranking of the significance of four determinants was 
presented to assist the anaesthesiologist in recognizing 
difficult laryngoscopy. As a result, label-2, the atlantooc-
cipital, was discovered to be the most reliable indicator in 

determining the difficult laryngoscopy outcomes of the 
research; it behaved marginally better than label-4, the 
inferior border of the sixth cervical vertebrae in relation 
to the perpendicular angle, denoting the extent of move-
ment of the inferior cervical vertebrae; followed by label-
1, perpendicular to the mandible from the peak of the 
hyoid bone, then label-3, the corner of the inferior border 
of the second cervical vertebrae in relation to the perpen-
dicular, showing the extent of movement of the superior 
cervical spine.

Fig. 9  The outcomes of CNN and visual transfer applications using four indicators collectively and individually

Table 2  The results of extracting spatial information from different locations. SPP is spatial pyramid pooling

Models Location Test accuracy Average precision score

CNN+SPP_1 Location 1: After three convolutional layers 82.93% 82.93%

CNN+SPP_2 Location 2: After each convolutional layer, before Batch 
Normalization

83.33% 83.74%

CNN+SPP_3 Location 3: After each convolutional layer, after Batch 
Normalization

83.26% 83.20%
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The Mallampati test’s categorization outcome is 
0.5960, according to Table  3, this study’s 0.8482 out-
come utilizing the MSCNN model is far better than the 
Mallampati test. The comparison between the simple 
models and the hybrid model demonstrated that the 

proposed model enhanced the performance of difficult 
laryngoscopy identification, and DenseNet-121 out-
performed other transferred structures, demonstrating 
its adaptability to the laryngoscopy database. Ima-
geNet is the pre-trained dataset for all of these transfer 

Fig. 10  The results of extracting spatial information from different locations. SPP is spatial pyramid pooling

Table 3  Clinical predictors of the easy and difficult laryngoscopy groups and their values for predicting difficult laryngoscopy

aAbbreviations: IIG inter-incisor gap, TMD thyromental distance, MMT modified Mallampati test, AUC area under the curve

Items Easy laryngoscopy group ( n = 548) Difficult laryngoscopy group ( n = 123) P values AUC​

IIG (cm) 4.4 ± 0.6 4.1 ± 0.6 < 0.001 0.659

TMD (cm) L7.9 ± 1.5 7.6 ± 1.7 0.028 0.560

MMT [class I II/class III IV] 371(67.7%)/177(32.3%) 64(52.0%)/59(48.0%) 0.003 0.596
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learning structures, and it differs significantly from 
the difficult laryngoscopy databases. For the spatial 
extraction structure, it is determined that the optimal 
location for extracting spatial information is to posi-
tion the spatial-extraction structure after each convo-
lution phase and before batch normalisation. Future 
emphasis will be placed on pre-training transfer learn-
ing structures on open-source medical datasets such 
as Medmnist [42]. Further work will also concentrate 
on the comparison of a wider variety of metrics related 
to the difficult laryngoscopy categorization, both sepa-
rately and holistically.

Conclusion
Causes of difficult laryngoscopy vary widely and there is 
no gold standard. The first unified validation of difficult 
laryngoscopy decision-making under both singular and 
combined multi-indicators is presented. This study dem-
onstrated the reliability and efficacy of two new indicators 
related to upper and lower cervical motion for identifying 
difficult laryngoscopy. The efficacy of predicting difficult 
laryngoscopy was improved by combining two new and 
two established indicators.The classification of the four 
indicators independently revealed that the atlantooccipi-
tal clearance was slightly better than the other indicators. 
The MSCNN method outperforms all the other methods 
in difficult laryngoscopy prediction most of the time. The 
proposed MSCNN supported by deep learning, spatial 
extraction and vision transformer structures, enables effec-
tive and dependable predictions of difficult laryngoscopy.
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