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Abstract 

Background In any single-arm trial on novel treatments, assessment of toxicity plays an important role as occurrence 
of adverse events (AEs) is relevant for application in clinical practice. In the presence of a non-fatal time-to-event(s) 
efficacy endpoint, the analysis should be broadened to consider AEs occurrence in time. 

The AEs analysis could be tackled with two approaches, depending on the clinical question of interest. Approach 
1 focuses on the occurrence of AE as first event. Treatment ability to protect from the efficacy endpoint event(s) 
has an impact on the chance of observing AEs due to competing risks action. Approach 2 considers how treatment 
affects the occurrence of AEs in the potential framework where the efficacy endpoint event(s) could not occur.

Methods In the first part of the work we review the strategy of analysis for these two approaches. We identify theo-
retical quantities and estimators consistent with the following features: (a) estimators should address for the presence 
of right censoring; (b) theoretical quantities and estimators should be functions of time. 

In the second part of the work we propose the use of alternative methods (regression models, stratified Kaplan-Meier 
curves, inverse probability of censoring weighting) to relax the assumption of independence between the potential 
times to AE and to event(s) in the efficacy endpoint for addressing Approach 2.

Results We show through simulations that the proposed methods overcome the bias due to the dependence 
between the two potential times and related to the use of standard estimators.

Conclusions We demonstrated through simulations that one can handle patients selection in the risk sets due 
to the competing event, and thus obtain conditional independence between the two potential times, adjusting for all 
the observed covariates that induce dependence.

Keywords Survival analysis, Adverse events, Competing risks, Dependent censoring, IPCW

Introduction and rationale
The evaluation of outcome following a novel therapeu-
tic regimen commonly considers a primary, possibly 
composite time to event(s) endpoint, related to disease 
control and survival. However, the assessment of toxic-
ity plays an important role as the occurrence of severe 
adverse events (AEs) (or reactions) that may be disabling 
(although not deadly) is required for a careful treatment 
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application in clinical practice. As an example, frontline 
intensive chemotherapy in children newly diagnosed 
with acute lymphoblastic leukemia (ALL) has remarkably 
increased in the last decades the ability to avoid relapse 
of the disease. Nowadays, more attention is given, when 
innovating the therapeutic approach, or applying it in 
clinical practice, to avoid or prevent undesirable disabling 
conditions (such as severe osteonecrosis) [1]. Thus, the 
analysis of outcome is broadened to evaluate and describe 
the occurrence of AEs such as osteonecrosis in addition 
to the primary endpoint of efficacy, such as relapse. This 
means that treatment failure considers the first event 
occurring between AE and relapse, thus placing the anal-
ysis in the context of competing risks. Yet, the occurrence 
of a relapse as first event does not exclude the possibility 
of observing a subsequent AE, but the relationship to the 
treatment under analysis is weakened because the patient 
undergoes a different treatment for relapse [2]. As a con-
sequence, the occurrence of relapse is considered as a 
competing risk, thus as a sort of right censoring. Another 
possibility when in the presence of a non-fatal time-to-
event efficacy endpoint (such as relapse) is the addition 
of a lag time where if the AE occurs within the lag time 
it can be still considered related to the initial treatment. 
For simplicity, we did not consider that lag time. Descrip-
tive methods commonly used to analyse AEs data are 
the crude proportion of AEs, obtained by dividing the 
observed number of AEs by the total number of subjects, 
and the classical epidemiological AEs rate, obtained by 
dividing the observed number of AEs by the total time 
spent free from treatment failure. These measures are 
commonly reported in clinical papers among the initial 
descriptive results [3–6].

In principle, the analysis of AEs could be tackled 
from two different points of view. Approach 1 requires 
a competing risk framework for analysis: the clinical 
question relates to the observed occurrence of AE as 
first event, in the presence of the event “relapse”. In this 
case, AE and relapse are competing events, and treat-
ment ability to protect from relapse has an impact on 
the chance of observing AEs due to the competing risks 
action [5].

Approach 2 requires a potential (or direct) frame-
work for analysis: the clinical question relates to the 
treatment causing AE occurrence as if relapse could 
not occur. In this case, one should consider the occur-
rence of AEs as if relapse would not exclude the pos-
sibility of observing AEs related to the treatment under 
analysis, thus in the absence of competing risks [7]. 
These two approaches have very different implications 
when the description of AEs (and relapse) occurrence is 
used to comparatively describe two different treatment 

approaches (novel vs standard, for example). Indeed, 
in approach 1, the more one of the treatments protects 
from relapse, the greater is the chance of observing an 
AE as first event [5]. On the other hand, with approach 
2, the effect of treatment on relapse is ruled out, in 
principle.

Regardless of the approach of interest, estimators and 
theoretical quantities used in clinical papers to describe 
AEs data should have the following features: 

(a) estimators should address for the presence of right 
censoring;

(b) theoretical quantities and estimators should be 
functions of time.

This work has two aims: the first is to critically review 
the standard theoretical quantities and estimators with 
reference to their appropriateness for dealing with 
approaches 1 or 2 and to the desired features (a) and 
(b). The second aim is to define a strategy to relax the 
assumption of independence between the potential 
times to the competing events, such as that to AE and 
that to relapse, of the commonly used estimators when 
potential approach 2 is of interest.

The paper is organized as follows: in “Notation, set-
ting and simulated example data”  section we define 
notation and setting and we introduce a simulated 
dataset that will be used to present the standard meth-
ods. In “Standard methods”  section we review the 
standard methods: the crude proportion of AEs and 
the epidemiological AEs rate, which fail in at least one 
of the two desirable features; the crude incidence and 
cause-specific estimators which are instead consist-
ent with the two features (a) and (b). In “The poten-
tial approach estimation of the cumulative incidence 
of AE”  section we clarify the impact of the crucial 
assumption of independence between potential times 
to competing events (AEs and relapse) of the standard 
estimators used in the potential approach. We pro-
pose the use of regression models, stratified Kaplan-
Meier curves and inverse probability of censoring 
weighting to relax the assumption of independence by 
achieving conditional independence given covariates. 
In “Motivating example: osteonecrosis in childhood 
acute lymphoblastic leukemia”  section we present 
results of the standard and regression-based methods 
on the motivating example on osteonecrosis in child-
hood ALL. “Simulation protocol” section describes an 
extensive simulation protocol developed to show the 
performance of the proposed methods and the impact 
of not accounting for an unmeasured covariate and 
“Simulation results” section presents the results of the 



Page 3 of 15Tassistro et al. BMC Medical Research Methodology            (2024) 24:3  

simulations. The paper ends with discussion in “Dis-
cussion and conclusion” section.

Notation, setting and simulated example data
The occurrence of AEs in time defines a survival time 
from origin TAE . Similarly, the occurrence of a relapse 
in time defines the survival time TRL . These survival 
times are called “potential” since only the minimum is 
observable as first event. The observable failure time 
is T = min(TAE ,TRL) and the observable cause of fail-
ure is E (equal to 1 if AE, equal to 2 if relapse). In the 
presence of a right censoring time C, the observed time 
is min(T,  C) and � = I(T ≤ C) is the failure indica-
tor. Finally, (ti, δi, δi · ei), i = 1, ...,N  , is used to denote 
the observed failure time, the failure indicator and the 
cause of failure, on a sized N sample.

In order to make the standard methods commonly 
used to analyse AEs data clearer, we simulated an 
example data of N = 300 subjects using the inversion 
method of Bender et  al. [8]. The potential times TAE 
and TRL were simulated from exponential distribu-
tions with parameters depending on two independ-
ent binary covariates X1 and X2 , with P(X1 = 1) = 0.3 
and P(X2 = 1) = 0.4 . The combination of X1 and X2 

identifies a different hazard profile in patients experi-
encing an AE or a relapse:

• if X1 = 0 and X2 = 0,TAE ∼ Exp(1) and 
TRL ∼ Exp(2)

• if X1 = 0 and X2 = 1,TAE ∼ Exp(3) and 
TRL ∼ Exp(6)

• if X1 = 1 and X2 = 0,TAE ∼ Exp(3) and 
TRL ∼ Exp(5)

• if X1 = 1 and X2 = 1,TAE ∼ Exp(9) and 
TRL ∼ Exp(15)

One may note that, fixed X1 (e.g. X1 = 0 or X1 = 1 ), 
if X2 changes from 0 to 1, both the hazard of AE and 
the hazard of relapse triple. For sake of simplicity, we 
do not consider the presence of censoring, but we will 
explain the influence of right censoring on each standard 
method. The distribution of TAE and TRL is presented in 
Fig. 1 panel a) and b).

At first glance, the dependence between times TAE and 
TRL is not evident. As expected, the times of patients 
with both covariates equal to 0 are systematically greater 
than the remaining ones. Indeed, median values for TAE 
and TRL are: 0.7 and 0.4 ( X1 = 0,X2 = 0 ), 0.2 and 0.1 

Fig. 1 a Scatterplot of the potential times TAE and TRL according to the four groups identified by the binary covariates X1 and X2 ; b Zoom 
of the scatterplot in panel a) selecting potential times TAE and TRL lower than 1; c histogram of the distribution of the failure times calculated 
as the minimum value between TAE and TRL , in the simulated data of N = 300 subjects
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( X1 = 0,X2 = 1 ), 0.2 and 0.2 ( X1 = 1,X2 = 0 ), 0.1 and 
0.0 (both covariates equal to 1) with a Spearman corre-
lation equal to 0.95. However the overall Spearman cor-
relation between times TAE and TRL is equal to 0.25, a 
moderate value due to the absence of correlation within 
each of the four groups of patients conditional on the 
covariate value identifying the groups. The distribution 
of the failure times T, calculated as the minimum value 
between TAE and TRL , is displayed in Fig. 1 panel c). The 
distinct failure times tj , the number of patients at risk 
nj at each time point and the number of subjects expe-
riencing an AE or a relapse as first event ( djAE and djRL 
respectively) are displayed in Table 1, where 80 subjects 
developed an AE and 220 relapsed.

Standard methods
The crude proportion of AE
The empirical crude proportion (CP) is defined as

where I(·) is the indicator function. CP is the count of 
patients who fail due to AEs during the entire follow-up 
over a total of N patients, regardless of the individual fol-
low-up length.

In our example data, this quantity is CP = 80
300 = 0.27 . 

CP is consistent with the first approach of analysis, since 
it can be thought as a naïve estimate of the probability of 
observing AEs over the entire follow-up. Of note, AEs 
are counted in the numerator of CP only if observed as 

CP =

N

i=1

I(δi · ei = 1)

N

first events, and relapse acts as competing risk. CP is not 
a function of time in the sense that is not calculated at 
different time points and it does not address properly for 
the presence of right censoring that affects the count in 
the numerator, but N is fixed. Thus, CP fails with respect 
to both features (a) and (b).

The crude incidence of AE
The theoretical CP can be generalized in time by the 
crude cumulative incidence (CI) probability (that in the 
remaining of the work will be called crude incidence) 
CIAE(t) = P(T ≤ t;E = 1) , which corresponds to the 
absolute risk of treatment failure due to AEs up to time t. 
The non-parametric maximum likelihood (ML) estimator 
of CIAE(t) is given by the Aalen-Johansen (AJ) formula

where Ŝ(tj−) = P̂(T > tj−) is the KM non-parametric 
ML estimator of the proportion of patients free from 
treatment failure, either caused by AE or relapse, up to 
time tj− and

is the instantaneous rate of AEs, which corresponds to 
the proportion of patients experiencing AEs at time t 
over the total number of patients at risk, i.e. free from 
AEs and relapse (and censoring), at that time. Of note, 
the denominator corresponds to the person-time spent 

(1)ĈIAE(t) =
∑

tj≤t

Ŝ(tj−) · ĥAE(tj)

(2)ĥAE(t) =

∑N
i=1 I(ti = tj; δij · eij = 1)

nj

Table 1 Simulated example data of N = 300 subjects and estimators

tj are the distinct failure times measured in years; nj is the number of patients at risk at time tj ; djAE and djRL are the number of patients developing AE or relapse at time 
tj , respectively; Ŝ(tj) is the survival function at time tj , estimated according to KM estimator on failures due to AE or relapse; ĥAE(tj) corresponds to the instantaneous 
rate of AE and it is the non-parametric ML estimator of the CSHAE (t) ; ĥAE(tj)Ŝ(tj−) is the product of instantaneous rate of AE with the KM estimator of the proportion 
of patients free from treatment failure up to time tj− ; ĈIAE(tj) is the AJ estimator of CIAE(t) of AE; ÂNAE (tj) and ˆKMAE(tj) are the AN and KM estimates of the CSHAE (t)

j tj nj djAE djRL Ŝ(tj) ĥAE(tj) ĥAE(tj)Ŝ(tj−) ĈIAE(tj) ÂNAE (tj) ˆKMAE(tj)

1 0.0 300 29 75 0.653 0.097 0.097 0.097 0.097 0.097

2 0.1 196 21 60 0.383 0.107 0.070 0.167 0.204 0.194

3 0.2 115 11 39 0.217 0.096 0.037 0.204 0.300 0.271

4 0.3 65 4 12 0.163 0.062 0.013 0.217 0.362 0.316

5 0.4 49 6 7 0.120 0.122 0.020 0.237 0.484 0.400

6 0.5 36 1 10 0.083 0.028 0.003 0.240 0.512 0.416

7 0.6 25 3 4 0.060 0.120 0.010 0.250 0.632 0.486

8 0.7 18 0 3 0.050 0.000 0.000 0.250 0.632 0.486

9 0.8 15 2 2 0.037 0.133 0.007 0.257 0.765 0.555

10 1.0 11 1 3 0.023 0.091 0.003 0.260 0.856 0.595

11 1.1 7 0 2 0.017 0.000 0.000 0.260 0.856 0.595

12 1.2 5 0 2 0.010 0.000 0.000 0.260 0.856 0.595

13 1.3 3 1 1 0.003 0.333 0.003 0.263 1.189 0.730

14 2.1 1 1 0 0.000 1.000 0.003 0.266 2.189 1.000
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at risk in the time window [tj , tj + 1) . In Table 1, at each 
time tj , the quantities needed to estimate ĈIAE(t) are dis-
played and in Fig. 2 panel a) the graph is shown.

The AJ estimator of CIAE(t) is consistent with the first 
approach of analysis, since it can be thought as an esti-
mate of the probability of treatment failure due to AEs 
over the course of time, where, since AEs are counted 
only if observed as first events, relapse acts as a compet-
ing event. One may note in (1) the indirect protection of 
relapse, that lowers down Ŝ(tj−) when relapse occurs. 
The CIAE(t) has both features (a) and (b): it addresses for 
the presence of right censoring, due to the non-paramet-
ric ML estimator property, and it is a function of time. 
In this setting, the possible impact of covariates on the 
CIAE(t) can be assessed by the Fine and Gray model or 
the regression model based on pseudo-values.

The epidemiological AE rate
The epidemiological AE rate is defined as

and it originates from the count of patients observed to 
fail due to AEs during the entire follow-up divided by the 
total time spent free from treatment failure, i.e. spent free 
both from AEs and relapse. The AE rate represents the 

Rate =

∑N
i=1 I(δi · ei = 1)

∑N
i=1 ti

number of observed AEs per 1 unit of person-time spent 
at risk.

In our example, the AE rate is Rate = 80
56.4·12 = 0.12 

with the total time at the denominator calculated in 
months from Table 1. The AE rate can be thought as an 
estimate of the probability of observing AEs in the next 
time unit for a patient that is now free from AEs and 
relapse (and censoring), assuming this probability con-
stant in time. If this probability cannot be reasonably 
assumed constant, the AE rate can be interpreted as an 
“average” rate over the follow-up. The AE rate is con-
sistent with the second approach of analysis, where the 
focus is on treatment action in the development of AEs 
in patients relapse free in time. Indeed, the occurrence of 
relapse (or of right censoring) implies a contribution to 
the denominator of the time to relapse (or to right cen-
soring) and a null contribution to the numerator. The AE 
rate addresses feature (a) but not (b), due to the assump-
tion of constancy in time. The AE rate can be proved 
to be the parametric ML estimator of the probability of 
observing AEs in the next time unit for a patient free 
from treatment failure (either caused by relapse or AE) 
assuming this probability constant in time.

The cause‑specific hazard of AE and related quantities
The theoretical AE rate can be easily generalized in time 
by relaxing the assumption of constancy in time by

Fig. 2 a CIAE(t) estimated through the AJ formula; b ANAE (t) and KMAE(t) step curves of the cumulative CSHAE (t) and of the cumulative incidence 
of AE, respectively
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This quantity corresponds to the cause-specific hazard 
(CSH) of AEs and the estimator of the instantaneous haz-
ard is ĥAE(t) in (2). Based on cause-specific hazard, two 
important cumulative step function estimators can be 
derived, as described below.

The Aalen‑Nelson estimator of the cumulative hazard of AE
We may consider the cumulative sum of CSHAE(t) 
to obtain an estimator of the cumulative hazard 
∫ t
0 CSHAE(u)du by the Aalen-Nelson (AN) formula

which is based on the non-parametric ML estimator 
ĥAE(t) in (2). The ANAE(t) estimator is consistent with 
the second approach of analysis, as there is no indirect 
protection from the competing event (relapse). One may 
observe by comparing (1) and (4) that Ŝ(tj−) , which is 
lowered down in (1) when a relapse occurs, is replaced in 
(4) by the fixed value 1, as if relapses were removed.

Estimator (4) addresses for the presence of right cen-
soring (feature (a)) since ĥAE(tj) does so, and it is a func-
tion of time (feature (b)). The values of the estimates are 
reported in Table 1 and the corresponding curve is dis-
played in Fig. 2 panel b).

The ANAE(t) curve can be interpreted as a naïve esti-
mator of the expected number of AEs a patient may 
experience in the time interval up to t when he/she can 
develop recurrent AEs in time as if relapse was removed.

The Kaplan‑Meier estimator of the cumulative incidence of AE
One may consider the cumulative product of (1− ĥAE(t)) 
terms, with the complement to 1 to obtain an estimator 
of the cumulative incidence function that corresponds to 
1− exp

(

∫ t
0 −CSHAE(u)du

)

 , by the KM formula

which is based on the non-parametric ML estimator 
ĥAE(t) in (2).

Estimator (5) addresses for the presence of right cen-
soring (feature (a)) since it is addressed in ĥAE(tj) , and it 
is a function of time (feature (b)). In Table 1 the values of 
the estimates obtained with this method are reported and 
the corresponding curve is displayed in Fig. 2 panel b).

The ˆKMAE(t) curve can be interpreted as a naïve esti-
mator of the cumulative incidence of treatment failure 
only due to AEs, as if relapse was removed. This ˆKMAE(t) 

(3)CSHAE(t) = lim
�t→0+

P(t < T ≤ t +�t;E = 1|T > t)

�t

(4)
ˆANAE(t) =

∑

tj≤t

1 · ĥAE(tj)

(5)
ˆKMAE(t) = 1−

∏

tj≤t

(1− ĥAE(tj))

corresponds to a KM estimator where relapse is just a 
censored observation. Also, 1− ˆKMAE(t) is often used 
to naïvely estimate the so called “AE free survival curve” 
that is the cumulative probability of not having AEs in 
time (censoring time to relapse).

The potential approach estimation 
of the cumulative incidence of AE
Issues on the meaning of AN and KM estimators
At first glance, the ANAE(t) and KMAE(t) curves could 
be interpreted only in terms of treatment action in 
determining AE occurrence, regardless of the impact of 
relapse. This interpretation comes natural since hAE(t) 
is related only to the velocity of development of AEs 
in time. It is not so for the crude incidence CIAE(t) , 
where the presence of S(tj−) in (1) makes evident that 
the occurrence of relapse has a direct influence on the 
estimate.

One may note, however, that the occurrence of relapse 
may exclude “not at random” patients from the risk set 
on which the instantaneous rate of AEs is calculated in 
(2). This indirect patients selection due to relapse may 
influence the interpretation of CSHAE(t) and of the cho-
sen step function. Due to this, the CSHAE(t) in (3) may 
not capture entirely how treatment influences the occur-
rence of AE at time t in patients who, at that time, would 
be free from AE, which is theoretically represented by the 
potential hazard (pH) of AE

with corresponding potential cumulative incidence

that represents treatment action on AE, regardless of the 
impact of relapse.

Only if there is independence between TAE and TRL , 
the sub-sample of patients with T > t in (3) is a ran-
dom sample of patients with TAE > t in (6) and thus the 
two expressions (3) and (6) coincide. As a consequence, 
under the assumption of independence, ˆKMAE(t) in (5) 
is the suitable estimator of pIAE(t) . A similar argument 
follows for ˆANAE(t) as estimator of 

∫ t
0 pHAE(u)du This 

assumption, however, is often not reasonable and cannot 
be tested.

To enlighten the problems related to the interpretation 
of ˆANAE(t) and ˆKMAE(t) in the absence of independence, 
we simulated different datasets according to the setting 
specified in “Notation, setting and simulated example 
data” section, with increasing sample size from N = 100 
to N = 1000 , and we compared these quantities with the 

(6)

pHAE(t) = lim
�t→0+

P(t < TAE ≤ t +�t|TAE > t)

�t

pIAE(t) = P(TAE ≤ t)
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potential cumulative hazard function pHAE(t) and inci-
dence function CFIAE(t) . The potential cumulative haz-
ard function can be calculated as −log(pSAE(t)) , where 
the potential survival function pSAE(t) = 1− pIAE(t) 
defined as

corresponds to an average of exponential distributions 
weighted by the proportion of patients with covariates 
values X1 = k , k = 0, 1 and X2 = l, l = 0, 1.

In Fig.  3 panels a) and b) the ˆANAE(t) and ˆKMAE(t) 
curves calculated in the simulated datasets are displayed 
together with the potential quantities. One can notice 
that, independently from the sample size of the dataset 
and from the low overall Spearman correlation between 
times TAE and TRL (0.17, 0.33, 0.20, 0.26 for sample sizes 
N = 100,N = 300,N = 500,N = 1000 respectively), 
the ˆANAE(t) and ˆKMAE(t) curves do not fit the potential 
quantities.

To relax the assumption of independence between 
the two potential times TAE and TRL one possibility is to 
estimate the hazard of AE in strata defined by covariates 
(that influence the AE and relapse time distributions) 
assuming that only within each stratum there is inde-
pendence between TAE and the indirect selection due 

(7)

pSAE(t) = P(X1 = 0)P(X2 = 0)exp(−�00AE · t)+

+ P(X1 = 0)P(X2 = 1)exp(−�01AE · t)+

+ P(X1 = 1)P(X2 = 0)exp(−�10AE · t)+

+ P(X1 = 1)P(X2 = 1)exp(−�11AE · t)

to TRL . This approach can be carried out by averaging 
stratum estimates obtained either non parametrically 
or by the use of the Cox regression model on CSHAE(t) 
leading to a weighted average survival probability. An 
alternative method is addressing the presence of selec-
tion due to relapse through inverse probability of cen-
soring weighting (IPCW) [9–11]. This method aims at 
creating a pseudo-population that is similar to the one 
observable in the absence of relapse by adding a weight 
to patients who do not develop relapse. On this pseudo-
population a survival probability is then calculated and 
the incidence is derived as its complement to 1.

Weighted average survival probability
The survival probabilities for each combi-
nation of the observed covariates values 
pSklAE(t) = P(TAE > t|X1 = k ,X2 = l), k = 0, 1 and 
l = 0, 1 , can be estimated through the KM estimator 
within each stratum or by a Cox proportional hazards 
(PH) model including these covariates among regressors:

where CSH0,AE(t) is the baseline hazard.
The overall average survival is determined by weight-

ing the survival probabilities in each level of the covari-
ates by the proportion of subjects having that covariate 
levels. If both covariates X1 and X2 are observed, the 
weighted average survival is calculated as

CSHAE(t) = CSH0,AE(t) exp(β1X1 + β2X2)

Fig. 3 a ÂNAE (t) calculated for different sample sizes; b ˆKMAE(t) calculated for different sample sizes
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where p̂S
kl

AE(t) indicates the survival probability at time 
t obtained through the KM estimator or predicted by 
the Cox model for a patient having X1 = k , k = 0, 1 , and 
X2 = l, l = 0, 1 . This is an estimator of the AE free sur-
vival probability curve and the complement to 1 of this 
estimator represents the incidence probability.

IPCW estimator of the survival probability
The unitary contribution of a subject i in the count of 
subjects at risk of experiencing an AE at time t is replaced 
in (2) and (5) by the weight wi(t) =

1

p̂S
X1i ,X2i
RL (t)

 where 

p̂S
X1i ,X2i

RL (t) is the estimate of the potential conditional 
probability pS

X1,X2
RL (t) = P(TRL > t|X1,X2) of being 

relapse free until time t. The lower is the probability of 
being relapse free, the greater are the weights, given the 
inverse proportionality. The estimate of pSX1,X2

RL (t) can be 
based on the KM estimator within each combination of 
the observed covariates or on the fit of a Cox PH model 
for relapse CSHRL(t) = CSH0,RL(t) exp(β1X1 + β2X2) in 
which prognostic factors for AE and relapse are entered 
as covariates. Alternative survival regression models can 
also be considered as for example the Aalen additive 
model which does not rely on the PH assumption [12]. 
Once the weights are calculated, one can estimate the 
survival probability for time to AE in the absence of 
relapse, i.e. the AE free survival curve, using the KM esti-
mator [13] and then derive the incidence probability as 
its complement to 1.

Motivating example: osteonecrosis in childhood 
acute lymphoblastic leukemia
We show here the application of methods revised in 
“Standard methods” section and of those proposed in 
“The potential approach estimation of the cumulative 
incidence of AE” section to data on children with ALL 
enrolled in two subsequent multicenter clinical trials 
conducted in Italy with the Italian Association of Pedi-
atrical Hematology and Oncology (AIEOP) [1]. The aim 
is to assess how front line chemotherapy treatment is 
related or affects children with a relatively rare, yet disa-
bling, complication such as severe osteonecrosis (ON). 
The primary evaluation of outcome usually considers a 
composite time-to-event endpoint, i.e. time to failure 

(8)

p̂SAE(t) =

∑n
i=1 I(X1i = 0,X2i = 0)

n
p̂S

00

AE(t)+

+

∑n
i=1 I(X1i = 0,X2i = 1)

n
p̂S

01

AE(t)+

+

∑n
i=1 I(X1i = 1,X2i = 0)

n
p̂S

10

AE(t)+

+

∑n
i=1 I(X1i = 1,X2i = 1)

n
p̂S

11

AE(t)

(where failure is defined as resistance, relapse, death or 
second malignant neoplasm, whichever occurs first). 
The analysis with focus on ON broadens the evaluation 
of treatment efficacy to relevant toxic events, as if this 
relevance would justify considering them as failures, in 
other words as competing events. In particular, here ON 
is an AE of the frontline treatment protocol administered 
to children with ALL and acts as competing risk for death 
(not due to relapse) or first relapse (which is followed by 
another type of treatment).

We analysed data on 3691 children aged 1-17 years at 
diagnosis of ALL and, of those, 99 experienced an ON 
during or after the end of the front line treatment while 
725 children experienced a competing event of the pri-
mary endpoint (596 developed a relapse, 96 died, 23 
experienced a second malignant tumour and 10 were 
resistant); all others were right censored at last follow-up. 
In the following, we will identify the competing event as 
relapse or death.

The crude proportion of ON is CP = 99
3691 = 0.027 , 

meaning that 2.7% of the study population developed an 
AE before relapse or death. In Fig. 4 panel a) the crude 
incidence of ON calculated through the AJ estimator is 
displayed. The CI probability of failure due to an ON is 
lower than 3.0% after 6 years from diagnosis of ALL.

The epidemiological AE rate, calculated as the num-
ber of subjects experiencing an ON over the total time 
at risk of developing an ON (i.e. time at risk is time to 
ON, relapse/death, censoring) is Rate = 99

19940.96 = 0.005 , 
meaning that 5 ONs per 1000 person-years occurred. The 
estimates of the CSHON (t) obtained through the AN and 
KM estimators are displayed in Fig. 4 panel b). Multiply-
ing by 100 the AN estimator at 6 years from diagnosis, 
the expected number of ONs in 100 hypothetical chil-
dren is 3.11. The estimated cumulative incidence at 6 
years is 0.0306 ( SE = 0.003 ) and it is close, as expected 
due to rarity, to the CSHON (t) estimate (0.0311).

In this context two covariates are of relevance: age at 
diagnosis of ALL, since incidence of ON and of relapse 
tends to be higher with higher age, and risk group, which 
is the stratification of the children, based on genetic fea-
tures and cytological/molecular early response to treat-
ment, that defines the intensity of the administered 
treatment (the higher the risk, the higher the intensity). 
In order to correctly account fo the presence of a depend-
ence between the potential time of ON and the potential 
time of relapse or death we derived the estimate of the 
potential incidence of ON from formula (8), including 
first only risk group as a covariate and then adding also 
age at diagnosis ( > 10 versus ≤ 10 years).

In Fig.  5 the estimates of the cumulative incidence 
probability obtained with different methods are dis-
played. One can see that the naïve KM estimator and the 
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weighted average method considering only risk group as 
covariate give the same estimates of the incidence prob-
ability. Including also age at diagnosis as covariate, a 
similar but higher incidence probability is obtained. The 

distance between these two groups of curves suggests 
that the inclusion of the second covariate removes part 
of the dependence between time to ON and to relapse/
death. However, overall the inclusion of the covariates 
does not change remarkably the incidence probability 
compared to the naïve estimator. This could be due to 
either to the low ability of the covariates to remove the 
dependence or to the fact that the two potential times do 
not have a strong dependence as the pathways to relapse 
or death are not so much related to the determinants of 
ON.

Simulation protocol
Data generation
We extended the simulation setting of “Notation, set-
ting and simulated example data”  section (1000 data-
sets with N = 300 each) by considering 4 different 
scenarios [8, 14].

The 4 scenarios differ in the parameters of the exponen-
tial distribution from which the potential competing time 
TRL is generated (Table 2). In scenario 1 none of the covari-
ates has an impact on the hazard of the potential time TRL 
and potential times TAE and TRL are independent. In the 
other three scenarios there is at least one covariate with 
an impact on the hazard of the potential time TRL and the 
hazard of the potential time TAE that generates depend-
ence between these potential times. In particular, in sce-
nario 2 only X1 has an impact on both hazards whereas in 

Fig. 4 a) CION(t) estimated through the AJ formula; b) ANON(t) and KMON(t) step curves of the cumulative CSHON(t) and of the cumulative 
incidence of ON, respectively

Fig. 5 Incidence probability estimates obtained with the naïve KM 
estimator, the weighted KM estimator stratifying only for 1 covariate 
(risk group) or for 2 covariates (risk group and age at diagnosis) 
and the weighted Cox model including only risk group or both risk 
group and age at diagnosis as covariates
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scenarios 3 and 4 both covariates have an impact on both 
hazards (scenario 4 is the same of “Notation, setting and 
simulated example data” section).

We simulated also an additional scenario varying the 
imbalance of the covariates, with two cases, in scenario 
4. In case A we set the parameters of the Bernoulli distri-
butions from which the binary covariates X1 and X2 are 
generated in order to construct the “worst” situation that 
may happen when analysing real data, that is both covari-
ates are very frequent in the population under study. 
To do so, we changed the Bernoulli parameters from 
the original P(X1 = 1) = 0.3 and P(X2 = 1) = 0.4 to 
P(X1 = 1) = P(X2 = 1) = 0.5 . Then, in case B we set the 
Bernoulli parameters in order to obtain the “best” scenario, 
that is at least one covariate (here X2 ) is rare in the study 
population. In this case, we kept fixed the prevalence of the 
first covariate P(X1 = 1) = 0.3 and we changed that of the 
second one to P(X2 = 1) = 0.1.

We added another simulation where the parameters of 
the exponential distributions of the hazard of relapse where 
changed in order to reduce the impact of the competing 
event in scenario 4. First we set the parameters in order 
to have, fixed X1 = 0 (or X1 = 1 ), when X2 changes, an 
increase of 2 times in the hazard of relapse (case A) and then 
an increase of 1.5 times in the hazard of relapse (case B).

Simulations were carried out using the R software ver-
sion 4.0.3 available at http:// cran.r- proje ct. org/.

Estimated quantities
For each scenario, we calculated the potential incidence 
probability in an hypothetical world where relapse is 
absent deriving it from formula (7) at two fixed time-
points ( t = 0.2 and t = 0.3 ). In addition, we estimated the 
expected number of subjects at risk of developing an event 
(AE or relapse) at these time-points for an hypothetical 
sample of N = 300 patients as

N · P(TRL > t,TAE > t) =

= N · [P(X1 = 0)P(X2 = 0)exp(−�00RL · t)exp(−�00AE · t)+

+ P(X1 = 0)P(X2 = 1)exp(−�01RL · t)exp(−�01AE · t)+

+ P(X1 = 1)P(X2 = 0)exp(−�10RL · t)exp(−�10AE · t)+

+ P(X1 = 1)P(X2 = 1)exp(−�11RL · t)exp(−�11AE · t)]

where the calculation of P(TRL > t,TAE > t) in each 
stratum is obtained by the product of P(TRL > t) and 
P(TAE > t) due to the conditional independence, given 
covariates.

We compared the estimators that can be used to 
estimate the potential incidence probability for each 
dataset: 

1. the naïve KMAE(t) presented in formula (5)
2. the complement to 1 of the weighted average survival 

probability, obtained through the KM estimator in 
strata defined according to the observed covariate X1 , 
thus considering covariate X2 as unobserved

3. the complement to 1 of the weighted average survival 
probability, obtained through the KM estimator in 
strata defined according to the observed covariates 
X1 and X2

4. the complement to 1 of the weighted average sur-
vival probability, obtained through the Cox model 
with only the observed covariate X1 , thus considering 
covariate X2 as unobserved

5. the complement to 1 of the weighted average survival 
probability, obtained through the Cox model with the 
observed covariates X1 and X2

6. the complement to 1 of the KM survival probability 
on the pseudo-population obtained by the IPCW 
estimator (Cox based) where weights are estimated 
according to the observed covariate X1 , thus consid-
ering covariate X2 as unobserved

7. the complement to 1 of the KM survival probability 
on the pseudo-population obtained by the IPCW 
estimator (Cox based) where weights are estimated 
according to the observed covariates X1 and X2.

Simulation results
Simulation results in the four scenarios are presented in 
Fig. 6. At each time-point the expected number of sub-
jects at risk of developing an event is displayed and the 
distance between the estimate and the potential inci-
dence probability (bias) is represented in a boxplot for 
each of the 7 estimators.

Table 2 Parameters of the exponential distributions of the potential times TAE and TRL

�klAE and �klRL are the parameters of the exponential distributions of TAE and TRL , respectively, when X1 = k, k = 0, 1 , and X2 = l, l = 0, 1

Scenario AE Relapse

�00AE �01AE �10AE �11AE �00RL �01RL �10RL �11RL

1 1 3 3 9 2 2 2 2

2 1 3 3 9 2 2 5 5

3 1 3 3 9 2 6 5 5

4 1 3 3 9 2 6 5 15

http://cran.r-project.org/
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In scenario 1, where the hazard of relapse is independ-
ent from the covariates values, the results of all methods 
are similar: the median value of the bias of the incidence 
estimated through each method and the potential inci-
dence is equal to 0. Of note, also the estimate of the inci-
dence obtained with the naïve KM estimator censoring 
relapsed subjects is unbiased.

In scenario 2, where only X1 has an impact on the haz-
ard of relapse, the naïve KM estimator gives a biased 
incidence probability. With the other methods unbiased 
estimates are obtained. Of note, the methods in which 
only the X1 covariate is considered perform slightly bet-
ter with respect to those in which both covariates are 
included, due to the fact that X2 does not have an impact 
on relapse.

In scenario 3 the hazard of relapse depends on X1 and, 
when X1 = 0 , also on X2 . Methods in which only X1 is 
included give biased estimates. Methods with X1 and X2 
covariates give unbiased estimates with the exception of 
the IPCW estimator, where there is an overestimation of 
the incidence probability. This is due to the fact that in this 
scenario also an interaction between the two covariates is 
present: X2 has an impact on the hazard of relapse only 
when X1 = 0 . However this interaction is not accounted 
for in the model to estimate weights. To corroborate 
this result, Fig. 7 shows the results of weighted Cox and 

IPCW approaches when X1,X2 and their interaction are 
considered. The reader may observe that the inclusion of 
the interaction overcomes the bias in the IPCW method, 
while it is not needed in the Cox model since, conditional 
on X1 and X2 , this model requires an assumption of inde-
pendence between TAE and TRL that is present even if 
there is an interaction between X1 and X2 . In this regard, 
the Cox model is robust also in the presence of an interac-
tion between the covariates on the hazard of relapse.

In the last scenario displayed in Fig.  6, when both 
X1 and X2 have an impact on the hazard of relapse, 
all methods including one covariate only give simi-
lar biased results. However, the distance between the 
estimated and the potential incidence probabilities is 
lower than that obtained with the naïve KM estimator. 
The estimates from the weighted KM or the Cox model 
and from the IPCW are unbiased when the methods 
account for the presence of all covariates that have an 
impact on the hazard of relapse. Of note, the estimates 
from the IPCW have a greater variability with respect 
to the others.

In the additional simulations on variations of scenario 
4, all the proposed methods with the exception of the 
IPCW were compared.

Figure  8 shows results when the Bernoulli parameters 
change, named case A when P(X1 = 1) = P(X2 = 1) = 0.5 

Fig. 6 Simulation results in the four scenarios at times t = 0.2 and t = 0.3 . The grey horizontal line is the reference null bias
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and case B when P(X1 = 1) = 0.3 and P(X2 = 1) = 0.1 . 
As expected, in both cases only estimates obtained from the 
weighted KM and the weighted Cox model methods with 
the inclusion of both covariates are unbiased. Compar-
ing the results of case A with the corresponding results of 
scenario 4 in Fig. 6 one may observe the greater variability 

due to the lower number of patients at risk of developing 
an event (AE or relapse). Comparing the results of case B 
with the corresponding results of scenario 4 in Fig. 6, the 
estimates of all methods are less biased.

Figure  9 shows results when the parameters of the 
exponential distributions from which the hazard of 

Fig. 7 Simulation results for scenario 3 of the IPCW estimator accounting for the presence of an interaction between X1 and X2 in the estimate 
of the weights. The grey horizontal line is the reference null bias

Fig. 8 Simulation results for the variation of scenario 4 when P(X1 = 1) = P(X2 = 1) = 0.5 (Case A) or P(X1 = 1) = 0.3 and P(X2 = 1) = 0.1 (Case 
B). The grey horizontal line is the reference null bias
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relapse was simulated change, named case A when 
�00RL = 2, �01RL = 4, �10RL = 5, �11RL = 10 and case B 
when �00RL = 2, �01RL = 3, �10RL = 5, �11RL = 7.5 . Com-
paring the results with the corresponding results of 
scenario 4 in Fig.  6 one can observe that the lower is 
the hazard of relapse, the lower is the bias of the esti-
mated incidence probability. Of note, in this simu-
lation setting the bias obtained from the naïve KM 
censoring time to relapse reduces, but it is still the 
worst incidence estimator.

Discussion and conclusion
In the majority of clinical studies on novel therapies with 
time-to-event endpoints, toxicity, related to the occur-
rence of AEs, is analysed with different estimators (such as 
crude proportions and rates) apparently disregarding the 
critical aspects that intervene due to the competing risks 
of AEs versus the primary endpoint event(s). In this work 
we propose solutions that relax the assumption of inde-
pendence between the potential time to AE and the poten-
tial time to the efficacy endpoint event(s), thus allowing a 
proper estimate and interpretation of the cumulative inci-
dence of AE. We addressed the particular case of non-fatal 
time-to-event efficacy endpoint. Of note, if failure was a 
fatal endpoint, the analysis of the occurrence of AE over 
time in principle could be carried out in the same way if 
the fatal endpoint is considered as a competing risk. How-
ever, the interpretation would be rather artificial. This is an 
obvious limitation of the method we proposed.

In the first part of this work we reviewed two different 
approaches starting from the type of clinical question 
when analysing AEs data and considering, for simplicity, 
one event for the efficacy endpoint, i.e. relapse. When the 
aim is the description of the observed occurrence of AE 
as first event in a competing risk framework (approach 
1), treatment ability to protect from relapse has an impact 
on the chance of observing the AE due to the competing 
risks action. While the frequently presented crude pro-
portion is not a function of time and does not properly 
account for censoring [5, 14], the Aalen-Johansen esti-
mator of the crude incidence of AEs, commonly used 
for competing risks analysis [15], gives a proper esti-
mate of the probability of treatment failure due to AEs 
over the course of time, where relapse acts as compet-
ing event (since AEs are counted only if observed as first 
events). The description of the observed occurrence of 
AE through the crude incidence together with the crude 
incidence of the efficacy endpoint enables to quantify the 
risks and benefits from the patient perspective [16]. Of 
note, the methods described in the previous citation can 
be useful to perform hypothesis testing on the two types 
of competing risks.

When the aim is the description of the potential 
occurrence of AE in relapse free patients, in a potential 
framework (approach 2), the epidemiological AE rate, 
which is not a function of time [4, 5], is often replaced 
by the Aalen-Nelson or Kaplan-Meier estimators of the 
cause-specific hazard of AE (as first event) and of the 

Fig. 9 Simulation results for the variation of scenario 4 when fixed X1 = 0 (or X1 = 1 ), if X2 changes, the hazard of relapse increases of 2 times (Case 
A) or of 1.5 times (Case B). The grey horizontal line is the reference null bias
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cumulative incidence of AE, regardless of relapse occur-
rence. However, the occurrence of relapse may exclude, 
not at random, patients from the risk sets on which the 
instantaneous rate of AE is calculated. This indirect 
patients selection operated by relapse, which is due to the 
dependence between the two potential times to AE and 
to relapse, leads to biased estimates.

One possibility to handle this dependence could be 
that of resorting to copula models treating the problem 
as a bivariate problem. This approach would go beyond 
our aim which is focused on a single marginal (that of the 
adverse event) and would require the specification of the 
type of copula. We think that resorting directly on a sin-
gle marginal distribution is a more direct approach and 
has the advantage of not requiring a parametric specifica-
tion of the type of copula [17].

We proposed alternative methods, such as weighted 
average survival probability (estimated either by the 
Kaplan-Meier estimator or by the use of the Cox model) 
and inverse probability of censoring weighting, and we 
proved through simulations that they overcome the prob-
lem due to the dependence between the potential times 
to AE and to relapse. In particular, we proved through 
simulations that one can handle patients selection in 
the risk sets, and thus obtain conditional independence 
between the two potential times, adjusting for all the 
observed covariates that induce dependence. Of note, we 
also show that, adjusting only for one observed covari-
ate, thus ignoring the full dependence structure, gives 
anyway a less biased estimate compared to the naïve 
Kaplan-Meier estimator. The naïve Kaplan-Meier esti-
mator, censoring time to relapse, is always biased, unless 
the hazard of relapse is independent from the covariates 
values. In a hypothetical scenario where all the covariates 
are observed, the weighted average incidence estimate 
obtained either non parametrically or by the Cox model 
and the inverse probability of censoring weighting would 
give an unbiased estimate of the incidence probability 
of AE or of the AE free survival curve. The same applies 
(data from simulations not shown) for the Aalen-Nelson 
estimator of the cumulative hazard of AE.

In addition, we pointed out that with the inverse prob-
ability of censoring weighting method one could obtain 
biased estimates when all the possible interactions 
between the observed covariates are not included in the 
model to estimate the weights (scenario 3 in Table  2). 
However, the inclusion of the interaction is not needed 
when the weighted Cox model is used, since conditional 
on the observed covariates, this model is robust in esti-
mating the average incidence. Nevertheless, a limitation in 
the use of the weighted average survival method is given 
by the fact that it may be applied only in the presence of 
binary (or categorical covariates), since if the covariate is 

continuous it is impossible to identify the subgroups in 
which the incidence function can be estimated.

In general, our extended simulation protocol confirms 
that patients selection in risk sets is stronger and thus the 
bias is larger in the naïve KM estimator the higher is the 
imbalance in covariate values or the hazard of the com-
peting event, relapse for given covariates [18].

Of note, we did not include the presence of right cen-
soring in the simulation protocol since the estimators we 
investigated already can account for this additional com-
plexity in the data.

Although clinical trials usually have an efficacy end-
point as a primary endpoint, safety analysis is always an 
important secondary endpoint, especially for non-inferi-
ority trials. The approaches we proposed can be used for 
the comparison of the risk of developing adverse events 
depending on the treatment assigned and will be matter 
of future work.
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