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Abstract 

Background  Although aggregate data (AD) from randomised clinical trials (RCTs) are used in the majority of net-
work meta-analyses (NMAs), other study designs (e.g., cohort studies and other non-randomised studies, NRS) can 
be informative about relative treatment effects. The individual participant data (IPD) of the study, when available, are 
preferred to AD for adjusting for important participant characteristics and to better handle heterogeneity and incon-
sistency in the network.

Results  We developed the R package crossnma to perform cross-format (IPD and AD) and cross-design (RCT 
and NRS) NMA and network meta-regression (NMR). The models are implemented as Bayesian three-level hierarchi-
cal models using Just Another Gibbs Sampler (JAGS) software within the R environment. The R package crossnma 
includes functions to automatically create the JAGS model, reformat the data (based on user input), assess conver-
gence and summarize the results. We demonstrate the workflow within crossnma by using a network of six trials 
comparing four treatments.

Conclusions  The R package crossnma enables the user to perform NMA and NMR with different data types 
in a Bayesian framework and facilitates the inclusion of all types of evidence recognising differences in risk of bias.

Keywords  R package, Network meta-analysis, Network meta-regression, Real-world evidence, Observational studies, 
Risk of bias

Background
Background to network meta‑analysis
Studies that estimate treatment effects are identified, 
evaluated, and synthesized in systematic reviews to 
obtain evidence that answers treatment-related questions 
[1]. Systematic reviews may include a pairwise meta-
analysis (PMA) [2, 3], which is a statistical summary of 
findings from multiple studies comparing two inter-
ventions. The PMA extends to network meta-analysis 
(NMA) to compare multiple competing interventions, 
providing estimates for the relative effects of each pair of 
competing treatments [4]. The final NMA estimates are a 
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combination of direct estimates derived from combining 
study findings and indirect estimates obtained using one 
or more intermediate comparators under the consistency 
assumption.

Most NMAs use aggregate data (AD) obtained from 
published studies. To explore between-study heteroge-
neity and between-comparison inconsistency in NMA, 
we need to study the role of important patient- and 
study characteristics, typically in subgroup analyses 
or meta-regressions [5]. As relationships at study level 
often fail to reflect associations at individual patient 
level, aggregated data are not suitable to explore the role 
of patient-level characteristics in modifying the treat-
ment effects [6]. However, retrieving individual par-
ticipant data (IPD) is a difficult and time-consuming 
endeavour. The most common scenario is to obtain IPD 
of some of the included studies, and then combine IPD 
and AD in a single model.

The vast majority of published NMAs synthesise 
data from randomised clinical trials (RCTs). Although 
RCTs are by design less prone to selection bias than 
non-randomised designs, biases can still arise from in 
their conduct [7–9] and reported findings [10] or from 
conflict of interest that can distort the body of evi-
dence [11]. Generalisability of their findings to inform 
clinical practice is challenged by several of their fea-
tures: RCTs include patients not necessarily represent-
ative of those encountered at the point of care, they 
are more likely to use placebo or other legacy treat-
ments which are not an option in practice [10–12], and 
they often do not provide data on long-term benefit 
and safety of interventions. Pragmatic trials offer an 
alternative, but they can also be costly and difficult to 
conduct to study rare conditions, so that randomized 
evidence can be sparse in some health research fields. 
For these reasons, researchers on evidence synthesis 
consider sometimes evidence from non-randomised 
studies (NRS) despite the risk of confounding and sev-
eral other biases inherent in their design. To assess the 
risk of bias (RoB) in the results of a study, tools have 
been created: the ROBINS-I for NRS [13] and the RoB 
2 for RCT [14].

To handle different types of studies and data types, we 
recently introduced a suite of four Bayesian NMA and 
network meta-regression (NMR) models [15] extended a 
previously described three-level hierarchical model that 
combines IPD and AD [16–18] and included methods to 
combine these data when they come from RCT and NRS. 
The four models can be broadly described as an unad-
justed (“naïve”) NMA model, where differences in bias 
between different study designs are ignored; a model that 
synthesises only RCT data with prior distributions for the 
relative treatment effects constructed from NRS evidence 

and potentially discounted according to RoB; and two 
bias-adjusted models where the relative treatment effect 
of each study is adjusted according to the underlying risk 
of bias.

We have implemented the different cross-NMA models 
in a new R package called crossnma (cross-design and 
cross-format network meta-analysis and network meta-
regression). The package enables researchers to perform 
NMA and NMR on data that are available in different 
formats as IPD, AD or a combination of both, and each 
format can come from different study designs as RCT, 
NRS, or a mixture of both.

This work has been done within the HTx Horizon 2020 
project. HTx is supported by the European Union, lasting 
for 5 years from January 2019. The main aim of HTx is to 
create a framework for the Next Generation Health Tech-
nology Assessment (HTA) to support patient-centered, 
societally oriented, real-time decision-making on access 
to and reimbursement for health technologies through-
out Europe.

Synthesis models available in crossnma
Below we provide a brief description of the four NMR 
models implemented in crossnma; NMA models can be 
obtained by simply ignoring covariate terms. Of note, 
the NMR model is described with one covariate for sim-
plicity and ease of explanation. However, our crossnma 
package is designed to handle up to three covariates. 
The model used in the analysis is defined in R function 
crossnma.model(). The notation used is summarized in 
Table 1. More details are available in the methodological 
publication [15].

Table 1  Notations used in synthesis models

Notation Description Argument in 
crossnma.model()

i participant id

j study id study

k treatment index trt

yijk outcome (IPD) outcome

yjk outcome (AD) outcome

b study-specific reference / 
baseline

A network reference reference

xijk covariate (IPD) cov1, cov2, cov3

xj mean covariate for study j  (AD) cov1, cov2, cov3

zj study characteristic to estimate 
the bias probability πj

bias.covariate

w common variance inflation factor 
for NRS estimates

run.nrs.var.infl

ζ common mean shift of NRS 
estimates

run.nrs.mean.shift
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Unadjusted synthesis of data from RCTs and NRS 
This analysis combines the RCT and NRS evidence with-
out accounting for the fact that different studies pertain 
to different risk of bias (argument method.bias = "naive" in 
crossnma.model()). Data from each study can be available 
as IPD or AD. The different types of studies and data for-
mat are combined using a three-level hierarchical model.

Level 1 (individual participant level)  When IPD is avail-
able, we observe the outcome yijk for participant i in study j 
receiving treatment k . Each study has a reference treatment 
b . Observed outcomes are assigned an appropriate likeli-
hood distribution with unknown parameters ϕijk . Then, 
using a link function g(.) , these parameters are linked to the 
treatment and covariate effects. The distribution and link 
function in the model depend on the nature of the data and 
the effect measure we want to estimate. For example, when 
we observe binary data and want to estimate odds ratios, a 
Bernoulli likelihood is considered for the outcome and g(.) 
is the logit function. The general form of the NMR model is

g ϕijk = ujb + δjbk + β0jxijk + βW
1bkxijk + (βB

1bk − βW
1bk )xj.

where xijk and xj are covariate value and its study mean, 
respectively. The prognostic effect of the covariate is 
quantified by β0j ; βB

1bk is the between-study interaction 
effect, which represents the associations between treat-
ment and study’s mean covariate, and βW

1bk quantifies the 
within-study interactions between treatment effect and 
covariate. When xijk = xj = 0, ujb can be interpreted as 
the average g(.)-transformed outcome in the study refer-
ence arm b , and δjbk is a study-specific relative effect of 
treatment k versus b.

Level 2 (study‑level)  In AD studies, we observe the 
mean outcome per study arm, yjk , which is also assigned 
an appropriate likelihood distribution with unknown 
parameter ϕ.jk . Then this parameter is linked to the 
model parameters via the link function:

Level 3 (cross‑studies synthesis)  We combine the param-
eters from different studies assuming either a random-
effects or a common-effect model. Table  2 summarizes 
the different assumptions supported by crossnma along 

g
(

ϕ.jk
)

= ujb + δjbk + βB
1bkxj.

Table 2  Assumptions of synthesis model parameters

Random-effects model assumes treatment/covariate effects vary across studies

Common-effect model assumes a single treatment/covariate effect shared by all studies

Independent effects model considers covariate effects in studies independently

Parameter Assumptions Argument in crossnma.model()

Relative treatment effect ( δjbk) Random-
effects: δjbk ∼ N(dAk − dAb , τ

2)

trt.effect = ’random’

Common-effect: δjbk = dAk − dAb trt.effect = ’common’

Covariate effect ( β0j) Independent 
effects: β0j ∼ N(0, {15 ∗MLmax}

2)

reg0.effect = ’independent’

Random-effects: β0j ∼ N(B0, τ
2
0 ) reg0.effect = ’random’

Within-study covariate-treatment interaction ( βW
1,jbk) Independent 

effects: βW
1bk ∼ N(0, {15 ∗MLmax}

2)

regw.effect = ’independent’

Random-
effects: βW

1bk ∼ N(BW
1Ak − BW

1Ab , τ
2
W )

regw.effect = ’random’

Common-effect: βW
1j = BW1 regw.effect = ’common’

Between-study covariate-treatment interaction ( βB
1,jbk) Independent 

effects: βB
1j ∼ N(0, {15 ∗MLmax}

2)

regb.effect = ’independent’

Random-
effects: βB

1j ∼ N(BB
1Ak − BB

1Ab , τ
2
B )

regb.effect = ’random’

Common-effect: βB
1bk = BB1 regb.effect = ’common’

Bias effect ( γm,jbk), m = 1, 2 Random-
effects: γm,jbk ∼ N(gm,bk , τ

2
m,γ )

bias.effect = ’random’

Common-effect: γm,jbk = gm,bk bias.effect = ’common’

Mean bias effect gm,bk The treatment k is active. gm,bk = gm 
( b inactive), gm,bk = 0 ( b active & 
no bias) gm,bk = gactm (b active & bias)

unfav, bias.group

Bias probability ( πj) πj ∼ Beta(a1, a2) pi.high.nrs,pi.low.nrs,pi.high.rct,pi.low.rct

logit(πj) = e + fzj bias.covariate
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with corresponding arguments to set each assumption in 
the package. It is important to highlight that studies with 
AD do not contribute to the estimation of β0j and βW

1bk.

By default, we assign minimally informative prior 
distributions to the main parameters following Valken-
hoef et al. [19]: normal distribution N(0, {15 ∗MLmax}

2) 
for ujb,β0j ,B0,B

W
1 ,BB

1 , dAk and uniform distribution 
Unif(0,MLmax) for  τ , τB0 , τB, τW  . The quantity MLmax 
is calculated by first computing the maximum likeli-
hood estimate of the relative treatment effect for each 
study and then taking the maximum value of these 
estimates. Users can provide their own prior distribu-
tion for the heterogeneity standard deviation param-
eters τ , τB0 , τB, τW .

Use NRS priors for basic parameters in RCT model
In this model, we use NMR to estimate the rela-
tive treatment effects using only the NRS (argument 
method.bias = "prior" in crossnma.model(); arguments 
starting with run.nrs can be used to control this pro-
cess). We use the mean dNRSAk  and variance VNRS

AK  of 
the NRS posterior distribution of the relative treat-
ment effects to construct prior distributions for 
the treatment effects and fit the model in the RCT 
data; dAk ∼ N(dNRSAk ,VNRS

AK ) . To limit the impact of NRS 
on RCT estimates, we can either inflate the prior vari-
ance by dividing it by a common inflation factor w with 
0 < w < 1 or shift NRS means by ζ (see reference [20] 
for more discussion on how to set ζ or reference [21] to 
choose a value based on elicited expert opinion). Treat-
ment effects not observed in NRS are given the default 
priors; dAk ∼ N(0, {15 ∗MLmax}

2).

Bias‑adjusted model 1
In this and the next model, we adjust treatment effects 
according to each study’s RoB [22]. The level 1 model in 
Unadjusted synthesis of data from RCTs and NRS sec-
tion is extended for bias-adjusted model 1 (method.

bias = "adjust1") is extended as follows (additional terms 
are printed in bold):

g
(

ϕijk
)

= ujb + δjbkγ
Rj

1,jbk + δjbk + γ 2,jbkRj
+ β0jxijk + βW

1bkxijk + (βB
1bk − βW

1bk)xj

and the level 2 model becomes 
g
(

ϕ.jk
)

= ujb + δjbkγ
Rj

1,jbk + δjbk + γ 2,jbkRj
+ βB

1bkxj.

Rj is sampled from a Bernoulli distribution with bias 
probability πj, for each study. Then πj is assigned a beta dis-
tribution; πj ∼ Beta(a1, a2) where the values of a1 and a2 
reflect the RoB (low, high or unclear) within RCTs or NRS. 
The ratio a1/a2 controls the skewness of the beta distribu-
tion. When the ratio a1/a2 approaches 1, the mean proba-
bility of bias gets closer to 1 and the study acquires ’major’ 
bias adjustment. The default beta priors in the package 
are: high bias RCT prior.pi.high.rct = "dbeta(10,1)", low 
bias RCT prior.pi.low.rct = "dbeta(1,10)", high bias NRS 
prior.pi.high.nrs = "dbeta(30,1)" and low bias NRS prior.
pi.low.nrs = "dbeta(1,30)". Alternatively, we can use study 
characteristics zj to predict πj through a logistic transfor-
mation (internally coded);  logit(πj) = e + fzj . When zj is 
a continuous outcome, exp(e) is the odds of bias at zj = 0 
and exp(f ) is the odds ratio of bias for a one unit increase 
in  zj . When f  has a positive value, the bias probability 
increases with increasing values of zj.

Table  2 shows how we combine the multiplicative 
(γ 1,jbk) and the additive ( γ2,jbk) treatment-specific bias 
effects across studies using random-effects or com-
mon-effect models.

Bias‑adjusted model 2
Another way to account for differences in RoB of the 
studies is to replace δjbk with a bias-adjusted relative 
treatment effect θjbk (method.bias = "adjust2") [23].

The equations become for level 1 and 2 are

and

Then θjbk is given either a random-effect bimodal normal 
distribution; θjbk ∼

(

1− πj
)

N
(

dAk − dAb , τ
2
)

+ πjN

(

dAk − dAb + γjbk , τ
2 + τ 2γ

) 
or assumed common across studies; θjbk = dAk − dAb + πjγjbk .

The likelihood of the unknown parameter θjbk is

Here, the bias probability πj determines the weight of the 
bias-adjusted distribution (second part of the equation) in 

g
(

ϕijk
)

= ujb + θ jbk + β0jxijk + βW
1bkxijk + (βB

1bk − βW
1bk )xj.

g
(

ϕ.jk
)

= ujb + θ jbk + βB
1bkxj .

L
�

θjbk ; dAk , dAb, τ , τγ ,πj
�

=

�

1− πj
�

√
2πτ 2

exp

�

−

�

θjbk − (dAk − dAb)
�2

2τ 2

�

+
πj

�

2π
�

τ 2 + τ 2γ

�

exp







−

�

θjbk −
�

dAk − dAb + γjbk
��2

2
�

τ 2 + τ 2γ

�







.
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the overall likelihood L
(

θjbk ; dAk , dAb, τ , τγ ,πj

)

 . The term 
γjbk is the bias effect, as in bias-adjusted model 1.

Implementation
We implement the Bayesian models in a new R pack-
age called crossnma. The user can install the package 
with the command install.packages("crossnma") and 
then load the library into the current R session with 
library("crossnma").

The Bayesian model is run in the background using 
Just Another Gibbs Sampler (JAGS) software [24]. 
Therefore, the JAGS programme must be installed on 
the user’s local computer (see https://​sourc​eforge.​net/​
proje​cts/​mcmc-​jags/). A vignette with a binary data 
example is part of crossnma which can be opened using 
vignette(“crossnma”). Package updates providing new 
features or fixing bugs will be posted on the package 
website: https://​github.​com/​htx-r/​cross​nma.

Workflow within crossnma
Figure 1 presents the workflow for conducting analyses 
within crossnma. Before running crossnma(), we dis-
play the network of evidence using netgraph() (which is 
a generic function in netmeta) to display the network 
of evidence. To conduct the data synthesis, there are 
two main steps: use crossnma.model() to produce the 
JAGS code and reformat the data, then pass the output 
to crossnma(), which matches the data with the model, 
runs the analysis and estimates all model parameters. 
The generic function plot() can produce a trace plot 
to evaluate the Markov chain Monte Carlo (MCMC) 
convergence for each model parameter. The functions 
summary(), league() and heatplot() can be used, with 

the output of crossnma() as input, to produce a numer-
ical and graphical summaries of the treatment effect 
estimates. More details on how to use of the functions 
and their arguments can be found in Supplementary 
Document S1.

 Comparison with some of the available packages
We compare the output of crossnma (version 1.2.0) with 
BUGSnet (version 1.1.0), gemtc (version 1.0.2), multi-
nma (version 1.1.2) bnma (version 1.5.1) and netmeta 
(version 2.8-2) concerning various features in Table  3. 
Additionally, we assess the performance of some of these 
packages using a dataset provided by crossnma, which we 
describe in the next section. As BUGSnet and gemtc can 
only synthesize aggregate data, we summarize IPDs at the 
arm level (Supplementary Data S1). Then we perform NMA 
with a random-effects model using all packages. Treatment 
effect estimates (odds ratios) from crossnma and the three 
other packages do not differ beyond the MC error, how-
ever, the BUGSnet estimate of the between-study variance 
( τ ) is substantially larger compare to other packages. This 
can be attributed to the fact that BUGSnet uses an unre-
alistic default prior distribution σ ∼ Unif (0, 1.62) where 
τ = 1/σ 2 . In crossnma, we set τ ∼ Unif (0, 1.62) . R code 
and detailed output of our analyses are provided in Supple-
mentary Data S2, Supplementary Tables S1, S2, S3 and S4.

We performed NMR for age using crossnma and 
multinma. Supplementary Table S5 shows the esti-
mated treatment effects. The disagreement in the esti-
mation is due to the differences in the implemented 
models and variations in each package’s built-in analy-
sis settings. The code for conducting this comparative 
analysis is provided in Supplementary Data S4.

Fig. 1  Workflow within the R package crossnma. The direction of arrow indicates a function’s output is used as input to another function

https://sourceforge.net/projects/mcmc-jags/
https://sourceforge.net/projects/mcmc-jags/
https://github.com/htx-r/crossnma
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Working example
In the following, we illustrate NMA and NMR in cross-
nma. We analyse fictitious data, simulated to mimic real 
RCTs with IPD and AD [25]. The code for each analysis is 
available in Supplementary Data S3 (as well as presented 
in the vignette).

Description of the network
The evidence network consists of four drugs examined in 
six studies, with aggregate data (two RCTs) or individual 
participant data (three RCTs and one cohort study). The 
IPD dataset contains 1944 rows, i.e., study participants. 
The AD dataset is provided in arm-level format, with 
each row representing a study arm and the same vari-
able names as the IPD dataset. Below, we present the two 
datasets: the first few rows of the IPD dataset and the 
complete set of rows for the AD dataset. We evaluate the 
treatment effect using a binary outcome of relapse after 
two years of follow-up. The relative treatment effects are 
expressed as odds ratios, where an OR below 1 indicates 
the treatment is preferable to the reference.

Data synthesis using the four models available in crossnma
We continue with the analysis as the network is con-
nected. We begin with creating a JAGS model and refor-
matting both datasets using crossnma.model(). Then, 
as the network is connected, the output of crossnma.
model() is passed to crossnma(), which runs NMA with 

MCMC for 5000 iterations, 2000 burn-in, one thinning 
and two chains (default settings). In this example, we 
use drug A as a reference treatment except in the analy-
sis in Using non-randomized studies as a prior in net-
work meta-regression section drug D is the reference.

Unadjusted network meta‑analysis
First, we synthesize data from RCT and NRS with-
out distinguishing between them (method.
bias = ’naive’). Because there are few studies in 
the network, we expect the heterogeneity parameter 
to be estimated inefficiently and thus assume a more 
informative prior to improve estimation, τ ∼ N (0, 1/3) . 
The data is analyzed using odds ratio as a summary 
measure sm = "OR"(which is the default for binary 
outcomes). By choosing trt.effect = ’random’ 
(default), we are assigning a normal distribution to 
each relative treatment effect to allow the synthesis 
across studies, Table 2 lists all supported options.

We can also compute the values of Surface Under 
the Cumulative Ranking (SUCRA) (by enabling the 
sucra = TRUE option), but it’s essential to specify a 

negative preferred direction for the outcome (using 
small.values = "desirable"). This setting indi-
cates that lower values of the relative treatment effect 
signify the treatment’s effectiveness. Conversely, if 
positive values are preferred, you can set small.
values = "undesirable".
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The network graph in Fig. 2 was generated with the 
following command:

In the graph, the thickness of the edges corresponds to the 
number of studies, while the number of studies is displayed 
on the edges. Additionally, the node size reflects the number 
of participants who received each intervention.

Next, we fit the NMA model using crossnma() where 
we can set the number of iterations, burn-in, thinning 
and chains. We run all subsequent models under the 
same settings. Note that for our example, we run the 
MCMC with settings different from the default to ensure 
convergence.

The R command print(jagsfit1, backtransf = FALSE)  
produces Table  4a which shows summary statistics for the 
results (Table 4b-e are also produced using the print() function 
for other models). The estimated OR of B vs A can be obtained 
as exp(d.B), and similarly exp(d.C) and exp(d.D) are the ORs of 
C and D relative to A.

Function print() also produces the SUCRA rank esti-
mates, where treatment D notably excels with the highest 
score of 0.941, signifying a strong likelihood of achiev-
ing favorable outcomes. In contrast, treatment A has the 
lowest score at 0.007, implying that it is the least likeli-
hood choice for yielding positive outcomes.

Unadjusted network meta‑regression
Next, we include age in the model as a potential effect 
modifier. Because we have few studies and little vari-
ation between them, we assume that the age effect 

within and between studies is equal (argument split.
regcoef = FALSE).

In addition to relative treatment effects and its heteroge-
neity, we obtain estimates of the age effect (b_1 is BW

1 = BB
1 ) 

and the heterogeneity standard deviation (tau.b_1 is 
τB = τW ) in the effect of age across studies (Table 4b).
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We could add two more covariates to the NMR 
model using arguments cov2 and cov3.

The MCMC is run under the same set up as in Unadjusted 
network meta-analysis section. The league table of the esti-
mates of each treatment vs comparator can be shown as fol-
lows (we just display the first two lines of the output).

Using non‑randomized studies as a prior in network 
meta‑regression
We use the single NRS study to construct priors for a 
subsequent NMA fitted on RCT data. The prior vari-
ance is inflated by 60% to reduce the contribution of 
NRS on the final estimation ( w = 0.6 ). Table  4c pre-
sents the estimates where the reference treatment is 
drug D as drug A is not examined in NRS.

The heat plot (Fig.  3) summarizes the relative effect 
with the 95% credible interval of each treatment on the 
top compared to the treatment on the left. All estimates 
are computed for participant age 38.

Bias‑adjusted model 1
To fit this model, data needs to include study-level RoB 
data and indicate the direction of bias (which treatment 
in the study is expected to be favoured). We assume 

that additive bias effects are equal across studies. We 
estimate the probability of bias using the year of study 
publication.

The common bias effect (g (R output)) is estimated to 
be -0.112, indicating that older studies tend to overes-
timate the relative treatment effect when compared to 
new studies (see Table  4d). We note that we obtained 

very uncertain estimates for the mean bias effect. This 
is because the dataset includes only three studies at low 
and three studies at high RoB. In the presence of more 
studies, estimation improves both in convergence and 
precision as shown in Hamza et al. [26].
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Bias‑adjusted model 2
This analysis requires data similar to bias-adjusted model 
1. We use the default beta priors to estimate the bias prob-
abilities. The overall bias effect (g (R output)=gm (model 
description)) is estimated to be 0.016 (Table 4e), implying 
that studies with a high RoB slightly underestimate treat-
ment effect when compared to studies with a low RoB but 
this estimate again comes with large uncertainty.

Models convergence
To evaluate the convergence of the MCMC chains 
of all models, we use the Gelman and Rubin statis-
tic ̂R and the number of effective sample sizes (n.eff ) 
shown in Table  4 [27]. Except for the common bias 
effect (g (R output)) in bias-adjusted model 1, ̂R val-
ues are approximately 1. The values of n.eff indicates 
that sufficient independent samples are used to gener-
ate the final estimates. We inspect the trace plot (gen-
erated by plot(jagsfit4)) in Fig.  4 to further investigate 
the convergence of g (besides other parameters of the 
bias-adjusted model 1), and we observe a great devia-
tion between samples. This is because the bias-adjusted 
model 1 includes the bias as a dichotomous variable, 
which requires having sufficient data at both low and 
high RoB. The dataset we analyze does not contain 
enough of this data (3 studies at low and 3 at high RoB).

In Fig. 5, we present density plots to visualize the distri-
butions of the variables derived from the MCMC samples. 
The density plots illustrate that most variables exhibit nor-
mal distributions, reflecting symmetrical data with a clear 
central tendency. However, in the case of τ , a positive-only 
normal distribution is observed, indicating values restricted 
to the positive range. Notably, the density distribution of g 
demonstrates a wide range of values, suggesting insuffi-
cient data for precise estimation. This finding underscores 
the importance of acquiring additional data to improve the 
accuracy and reliability of the estimation process.

Computational efficiency of crossnma
The five analyses were conducted using the crossnma 
package (version 1.2.0) in R (version 4.2.3) on a Mac-
Book Pro (13-inch, 2019, Two Thunderbolt 3 ports) with 
a 1.4 GHz Quad-Core Intel Core i5 processor and 8 GB 
2133  MHz LPDDR3 RAM. All analyses include 4 stud-
ies with IPD and 1944 participants and 2 studies with 
AD and 4 treatment arms, with a total of 4 treatments. 
The runtime of the analyses done in this article varied 
between 2 to 5  min, depending on the specific analysis. 
The longest runtime of 5 min was observed for network 
meta-regressions that included a single covariate (Unad-
justed network meta-regression and Using non-rand-
omized studies as a prior in network meta-regression 
sections). The two bias-adjustment models (Bias-adjusted 

model 1 and Bias-adjusted model 2 sections) took 
approximately 3 and a half minutes. The shortest runtime 
of 2  min was observed for NMA (Unadjusted network 
meta-analysis section) without adjustment for bias. For 
all analyses we run 100,000 iterations with a burn-in of 
40,000 and thinning of 5 to ensure convergence.

Discussion
In this paper, we introduce crossnma, an R package that 
performs Bayesian NMA and NMR using the JAGS soft-
ware. In crossnma, data can be collected from different 
study designs, as RCT or NRS, and provided in IPD or AD 
formats. The functions within the package enable analy-
sis, result representation and convergence evaluation. We 
provide detailed instructions on how to use crossnma 
and we demonstrate this with several analytic examples.

Fig. 2  Network plot
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Several R packages for performing NMA on aggregate 
data are available, such as gemtc [19], bnma [28] and 
BUGSnet [29] in a Bayesian setting, or netmeta [30] 
under a frequentist framework. However, data is increas-
ingly becoming available in a variety of formats and 

designs. For example, there is a growing in the number 
of IPD analyses, and only user-written code can be used 
to perform such analyses. The number of reviews that 
combine NRS and RCT data is rising as well, and unad-
justed synthesis is widely used due to its simplicity and 

Table 4  Summary statistics of estimates produced from the four models in crossnma, applied to the network presented in Fig. 2

Abbreviations: d.A, d.B d.Cand d.D are the log odds ratios ( dAk ) of each drug relative to the network reference (that is set D in (c) and A for the rest), tau is the 
heterogeneity standard deviation in treatment effect across studies τ , b_1 is the age effect (when BW1 = BB1 = B1 ) and the heterogeneity standard deviation 
( τB1 = τB = τW ) of age effect across studies, g is the mean bias effect ( gm ), Mean and SD are the mean and the standard deviation of the posterior distribution, 
respectively, 2.5%, 50% and 97.5% are the quantiles of the posterior distribution, Rhat is Gelman and Rubin statistic ̂R , n.eff is the effective sample size

Mean SD 2.5% 50% 97.5% Rhat n.eff

(a) Unadjusted network meta-analysis

  d.A 0 0 0 0 0 NaN 0

  d.B -0.766 0.214 -1.173 -0.77 -0.323 1.001 15,638

  d.C -0.467 0.229 -0.943 -0.459 -0.045 1.001 9265

  d.D -1.093 0.288 -1.665 -1.091 -0.528 1.001 12,634

  tau 0.221 0.201 0.009 0.168 0.738 1.003 2896

  SUCRA.A 0.007 0.051 0 0 0 1.011 20,158

  SUCRA.B 0.678 0.162 0.333 0.667 1 1.001 15,492

  SUCRA.C 0.375 0.14 0.333 0.333 0.667 1 16,108

  SUCRA.D 0.941 0.151 0.333 1 1 1.001 11,897

(b) Unadjusted network meta-regression

  b_1 0.002 0.068 -0.104 0.003 0.106 1.001 45,520

  d.A 0 0 0 0 0 NaN 0

  d.B -1.003 0.354 -1.699 -1.002 -0.307 1.004 1811

  d.C -0.492 0.394 -1.27 -0.493 0.272 1.001 1808

  d.D -1.039 0.513 -1.997 -1.054 0.021 1 1442

  tau 0.225 0.199 0.007 0.174 0.764 1.001 4199

  tau.b_1 0.056 0.102 0.001 0.024 0.349 1.002 1144

(c) Using non-randomized studies (NRS) to construct priors for randomized clinical trials model

  b_1 0.013 0.065 -0.076 0.013 0.102 1.059 10,998

  d.D 0 0 0 0 0 NaN 0

  d.A 0.954 0.375 0.222 0.949 1.699 1.001 2765

  d.B 0.069 0.431 -0.769 0.063 0.931 1 3937

  d.C 0.545 0.463 -0.342 0.54 1.474 1.001 3463

  tau 0.323 0.275 0.011 0.246 1.055 1 4940

  tau.b_1 0.045 0.096 0.001 0.017 0.297 1.075 961

(d) Bias-adjusted model 1

  d.A 0 0 0 0 0 NaN 0

  d.B -0.754 0.226 -1.178 -0.765 -0.266 1.016 15,190

  d.C -0.432 0.273 -0.991 -0.43 0.114 1.072 6478

  d.D -1.085 0.298 -1.675 -1.086 -0.491 1.006 16,110

  g -0.112 14.136 -32.759 -0.173 32.937 1.291 64,338

  tau 0.235 0.211 0.008 0.177 0.809 1.036 3495

(e) Bias-adjusted model 2

  d.A 0 0 0 0 0 NaN 0

  d.B -0.767 0.287 -1.348 -0.767 -0.189 1 9205

  d.C -0.481 0.28 -1.096 -0.464 0.03 1.001 7780

  d.D -1.108 0.377 -1.899 -1.1 -0.382 1 9057

  g 0.016 0.339 -0.626 0.003 0.723 1.002 5261

  tau 0.294 0.248 0.01 0.229 0.962 1 1788
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ease of implementation [31]. Network meta-regression 
using only aggregated data can be performed with bnma, 
rnmamod, gemtc and BUGSnet. Using the methodolo-
gies presented by Philippo et al. [32] the R package mult-
inma models jointly effects estimated in studies with IPD 
and AD formats. The package crossnma implemnets 
another methodology to merge estimates both formats 
[26]. Furthermore, crossnma can perform sensitivity 
analyses for study-level bias in RCT and NRS data [32]. 
Some functions in crossnma are similar to and inspired 
by the Bayesian NMA packages gemtc and BUGSnet. 
In addition to handling both AD and IPD, the crossnma 
package can be used to account for various levels of study 
risk of bias and their impact in the results.

In crossnma, we implemented, among others, a model 
for the synthesis of IPD and AD data previously described 
in [16, 17, 26] assuming that the relative treatment effect 
in IPD and AD synthesis models are the same after 
accounting for effect modifiers and prognostic factors. A 
method that makes less assumptions and with theoretical 
advantages has been presented in [32]. Future updates of 
crossnma could include an option of the model currently 
implemented in [33].

Regarding the inclusion of NRS data, it is important 
to note that in  situations where RCT data is unavail-
able for certain comparisons or treatment interventions, 
researchers may have to rely on NRS data to inform the 
analysis. However, it is crucial to recognize that NRS data 
are susceptible to various biases of unknown magnitude, 

which necessitates careful consideration when utilizing 
them in the analysis. In the crossnma package we imple-
mented methods that can decrease the impact that such 
biases may have in the final NMA results.

While crossnma allows effect modifying covariates to 
work in a range of ways, including a different regression 
coefficient for each treatment, data might not enable 
their estimation. Hence, in practice users are more likely 
to employ the model that assumes the same regression 
coefficient for all treatments.

Several limitations should be acknowledged regarding 
the statistical approaches implemented in crossnma. 
First, incorporating NRS evidence as prior in the analy-
sis of RCTs can be complicated in practice. Collecting 
expert opinion about the bias in NRS is time consum-
ing and often impractical. The use of priors from NRS 
should be implemented via a sensitivity analysis using 
a range of “downweighing” values for the impact of 
the prior in the results of NMA. Second, the model by 
Verde includes a parameter for the probability of bias, 
which is difficult to estimate from the current data, so 
informative priors are required. To establish these pri-
ors as subjectively as possible, trained data extractors 
are needed to evaluate the risk of bias in each study 
using established and reproducible tools, like RoB-2 
and ROBINS-I. Third, the identifiability of all model 
parameters, and in particular those that relate to bias, 
depend on the available data. Fourth, sensitivity to the 
choice of prior distribution necessitates conducting 

Fig. 3  League table heatmap of relapse odds ratio (and 95% credible intervals) of the treatment on the top vs treatment on the left 
when the network (shown in Fig. 2) is analysed
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thorough sensitivity analysis. While we provide recom-
mendations in our recent paper [26], further research 
is needed to explore alternative methods and enhance 
the applicability of bias-adjustment techniques in 

decision-making contexts. Fifth, the implemented mod-
els for the synthesis of AD and IPD are an approxima-
tions of the model implemented in multinma [33], 
and their performance is unknown. These models may  

Fig. 4  Trace plots of MCMC chains for the four basic parameters ( dAk ) and the heterogeneity standard deviation ( τ) and the mean bias effect ( g ) 
in bias-adjusted model 1 of network meta-analysis with the four treatments displayed in Fig. 2
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not be readily generalizable for time-to-event out-
comes. Future updates to the package will incorporate 
the models described in [32], thereby overcoming these 
limitations. Finally, crossnma assumes similar relative 
treatment effects in IPD and AD, which holds true only 
for non-collapsible outcomes. However, for non-col-
lapsible outcomes like logit, this assumption introduces 
aggregation bias [6].

The model to combine IPD and AD implemented in 
crossnma assumes distinct regression coefficients for 
interaction terms at the IPD and AD levels. In contrast, 
the integration approach implemented in multinma do 
not require AD-specific interaction terms, as these are 
inherently defined by the integration process. The models 
implemented in crossnma can be viewed as an approxi-
mation to the models by Philippo et al. [32] which have a 
theoretical advantage. However, application of the latter 
model requires additional data or assumptions to estab-
lish the correlation structure between covariates, which 

can be challenging in practice. A large-scale comparison 
of these two modelling approaches using realistic scenar-
ios would shed more light to the impact of model mis-
specification, violation of model assumptions and extend 
of aggregation bias.

In addition to the foundational assumptions that 
underlie conventional meta-analysis (e.g., the assumption 
that treatment effects are generalizable across patients 
from the included trials) and the assumptions inherent 
in NMA (e.g., a connected network and consistency of 
effects), all meta-regression models assume the absence 
of unobserved effect modifiers [16–18, 22, 23]. IPD net-
work meta-regression models rely on the assumption of 
conditional constancy of relative effects, which asserts 
that relative effects remain constant across different pop-
ulations at specific levels of a set of covariates.

We acknowledge the following crossnma shortcom-
ings. In addition to the current functions that generate 
league tables and summary statistics, we plan to develop 

Fig. 5  Density plots depicting the distributions of variables from the MCMC samples. This plot is generated for the four basic parameters ( dAk ) 
and the heterogeneity standard deviation (τ) and the mean bias effect (g) in bias-adjusted model 1 of network meta-analysis with the four 
treatments displayed in Fig. 2
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new functions to present results for the following pur-
poses: displaying the distribution of potential effect mod-
ifiers by study, treatment, or both; presenting SUCRA 
scores as plots and tables to enable ranking treatments, 
and producing a plot of the estimates of relative treat-
ment effects at various covariate values (for NMR model). 
Our package supports binary and continuous outcomes, 
analysed in the vast majority of published NMAs [34]. 
Future updates will include count and time-to-event 
outcomes. Also, we plan to develop a separate vignette 
that focuses specifically on continuous outcomes. These 
additional features and resource will provide users with 
a more comprehensive understanding of the package’s 
versatility and how it can be applied in various analysis 
scenarios. In terms of summary measure, crossnma ena-
bles expressing relative treatment effects in terms of odds 
ratio or risk ratio for binary data and mean difference or 
standardised mean difference for continuous outcomes.

The data in crossnma must be provided at the arm 
level which may require additional data manipulation. 
For example, contrast-level data can be transformed to 
the arm-level format using R function longarm() from 
R package meta. A future extension will expand this to 
provide contrast-level data directly. Methods for evaluat-
ing inconsistency, including node splitting and unrelated 
mean effect, are not yet implemented in crossnma. We 
intend to address these issues in upcoming version of 
crossnma.

The package crossnma should be used in conjunction 
with the technical article that describe the models, their 
assumptions, and limitations. The vignette accompany-
ing the crossnma package but mainly the publication by 
Hamza et al. [26] contains useful information to enable 
users to set up models that sensibly reflect the nature of 
their data. Users are advised in particular to pay close 
attention to the assumptions behind the models, which 
are described in [26].

Conclusions
The R package crossnma enables the user to perform 
NMA and NMR with different data types in a Bayesian 
framework and facilitates the inclusion of all types of 
evidence accounting for their differences in risk of bias.
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