
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Nguyen et al. BMC Medical Research Methodology           (2024) 24:21 
https://doi.org/10.1186/s12874-023-02133-x

important part of this literature is based on the idea that 
place-based features of multiple types (e.g., economic, 
social) and levels (e.g., macro and micro) influence HIV 
outcomes, and should be targets of interventions -- see, 
e.g., the risk environment model [1]. These studies assess 
the links from neighborhood characteristics to HIV diag-
nosis, HIV care engagement and retention, and viral 
suppression [2–18]. Many found that adverse neigh-
borhood-level economic and social characteristics were 
associated with poor outcomes [2–5, 7, 9, 10], others sug-
gest inverse or no effect [6, 15–17], and there are some 
inconsistent findings across different outcomes [11–14].

In addition to being a primary exposure, there is impor-
tant potential for place-based factors to play the role of 
third variables (confounders or moderators) in studies of 

Introduction
The places where people live and go about their life 
activities are connected to HIV-related outcomes. This 
connection is an active research field; a simple Google 
Scholar search for the combination of “neighborhood” 
and “HIV,” for example, results in 129,000 articles. An 
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Abstract
The relationships between place (e.g., neighborhood) and HIV are commonly investigated. As measurements of 
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of variables), which is then used to characterize place. Typical dimension reduction methods seek to capture the 
most variance of the raw items, resulting in a type of summary variable we call “disadvantage score”. We propose to 
add a different type of summary variable, the “vulnerability score,” to the toolbox of the researchers doing place and 
HIV research. The vulnerability score measures how place, as known through the raw measurements, is predictive 
of an outcome. It captures variation in place characteristics that matters most for the particular outcome. We 
demonstrate the estimation and utility of place-based vulnerability scores for HIV viral non-suppression, using data 
with complicated clustering from a cohort of people with histories of injecting drugs.

Keywords Vulnerability score, Place, Place characterization, Place and health, HIV, Dimension reduction

Estimation of place-based vulnerability scores 
for HIV viral non-suppression: an application 
leveraging data from a cohort of people 
with histories of using drugs
Trang Quynh Nguyen1*, Laken C. Roberts Lavigne2, Carly Lupton Brantner3, Gregory D. Kirk4, Shruti H. Mehta4 and 
Sabriya L. Linton1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-023-02133-x&domain=pdf&date_stamp=2024-1-24


Page 2 of 17Nguyen et al. BMC Medical Research Methodology           (2024) 24:21 

individual-level exposures or risk factors and HIV out-
comes – which constitute an important part of the HIV 
literature. A small number of studies have examined 
neighborhood factors as moderators of the association 
between race/ethnicity [4–6, 8] (but to our knowledge, 
not other individual-level variables) and HIV outcomes. 
It is less common that analyses of individual-level expo-
sures adjust for place-based factors as confounders. Yet 
confounding by place of individual-level associations has 
been recognized elsewhere (e.g., the association of air 
pollution exposure and cognitive functioning [19]), and 
such confounding is theoretically justified for many indi-
vidual-level exposures and HIV outcomes, as they may 
both be influenced by structural factors at the neighbor-
hood or a higher level. Also, as a helpful reviewer pointed 
out, relationships among individual-level exposure, 
place-based factors and HIV outcomes may be complex 
with intertwined processes that unfold over time. To fur-
ther advance knowledge on how HIV-related outcomes 
arise and inform policy and practice, it is important both 
to examine place as a cause and to assess the role of indi-
vidual-level causes while accounting for place.

Whichever role place is conceptualized to play (expo-
sure, confounder or moderator), an important question 
in any analysis is how to characterize place as an analy-
sis variable (or variables). Measurements of place are 
generally multivariate, and in the current age of big data, 
increasingly high-dimensional. For example, a study may 
collect measures of economic (e.g., poverty) and social 
characteristics (e.g., crime), physical features (e.g., green 
spaces), and health-care features (e.g., distance to ser-
vices), etc. at a certain neighborhood scale (e.g., census 
tract or ZIP code) from multiple sources. A common 
approach to handling such data is to apply dimension 
reduction techniques to obtain a single variable (or a 
small number of variables) that captures the most rel-
evant information from the original measurements in 
some way, then use this variable in analysis. In this paper, 
after a brief review how this dimension reduction is 
typically done, we propose an additional approach that 
is useful when a specific outcome is of interest. We will 
demonstrate this approach by leveraging outcome (viral 
non-suppression) data from a vulnerable population – 
Black people living with HIV who have injected drugs in 
Baltimore city [20].

Common characterization of place: disadvantage scores
Two typical dimension reduction methods are principal 
component analysis (PCA) [21, 22] and factor analysis 
(FA) [23, 24]. They both try to capture, in some sense, 
the most variance present in a set of raw items. PCA 
takes the data as points (defined by a set of k variables) 
in k-dimensional space and rotates the axes so that the 
points are most varying along the first new axis, the 

second most varying along the second new axis, etc. 
This gives an alternative representation of the data in 
composite variables (principal components) along these 
axes, which are linear combinations of the original vari-
ables, and usually only the first principal component (or 
the first two) is retained for use in subsequent analysis. 
FA takes a different approach, assuming that there are a 
small number of shared underlying causes (latent vari-
ables or latent factors) that give rise to the observed vari-
ables. The fitted factor model is used to predict the latent 
variables, which can be used in subsequent analysis. Or 
the factor structure is simply used to group variables, and 
variables within the same factor are averaged (after stan-
dardizing) to form a summary score.

Examples of PCA- and FA-based characterization of 
place abound. Using data from the American Community 
Survey (ACS), Gebrezgi et al. [25] conducted PCA on 13 
ZIP code level indicators of socio-economic status (SES 
– including income, income disparity, poverty, education 
and occupation) and constructed a “neighborhood SES 
index” out of seven indicators, which was then examined 
as a predictor of retention in HIV care and viral suppres-
sion among youth in Florida. Combining ACS statistics 
with data from SimplyAnalytics, Sheehan et al. [15] con-
ducted FA on 25 ZIP code level variables capturing SES, 
race/ethnicity, language, housing stability and homi-
cides, and created two composite measures of neighbor-
hood deprivation (based on 16 variables) and residential 
instability/crime (based on two variables); these indices 
were then analyzed as predictors of HIV viral suppres-
sion among men who have sex with men in a county 
Ryan White program. Similar PCA- and FA-based neigh-
borhood measures have been constructed by authors 
studying a range of other topics outside of HIV, includ-
ing maternal child health [26], cardiovascular health [27], 
and health care management [28].

Aside from PCA and FA, another common approach 
is to manually combine (by standardizing and then aver-
aging) variables that have been carefully hand-picked 
to reflect the aspect of place that one wishes to mea-
sure, rather than using a statistical tool to create parsi-
mony. This approach was used by Decuir et al. [29] and 
Singh [30] to create area economic deprivation indices 
(analyzed in association with high-risk drug injection 
behaviors and mortality inequalities, respectively). It was 
also used by Frank et al. [31] to create a neighborhood 
walkability index, and by Lawal & Osayomi [32] in their 
creation of an index of place characteristics deemed to 
confer social vulnerability to COVID-19 in Nigeria.

For convenience we will refer to a summary variable 
resulting from PCA, FA or items averaging as a “disad-
vantage score” (or D-score). This is often (though not 
always) appropriate, as most of the neighborhood indi-
ces in the HIV and health literature are about negative 
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aspects of place that may poorly affect health. This termi-
nology also aligns with standard practice in the literature 
[5, 8, 27, 29] .

Note that the construction of a D-score does not 
require using any outcome data – be it HIV diagnosis or 
viral load, preterm birth or birth weight, physical activity 
or heart health, or COVID-19 outcomes. In some cases, 
however, to demonstrate that a D-score is relevant to the 
research area that motivated it, some authors show that it 
is associated with a relevant outcome [26, 28, 31]; this is 
akin to assessing construct validity.

Outcome-agnostic methods have the advantage of pro-
ducing summary scores that tend to be generally appli-
cable to multiple outcomes, even if the items have been 
selected with a specific outcome in mind. However, a 
drawback is that the D-score might not capture all ele-
ments of place that is relevant to a specific outcome of 
interest. For example, if an important aspect of place for 
the specific outcome is in the fourth principal component 
of a PCA, a first principal component-based D-score will 
miss it.

Expanding the toolbox
Vulnerability scores based on an outcome-oriented 
approach
We propose to add to the researcher’s toolbox a differ-
ent kind of place-based summary score, which we call the 
“vulnerability score” (or V-score) for a specific outcome. 
This is meant to serve as an additional tool, not to replace 
D-scores. Like D-scores, a V-score is also a function of 
the original place variables, but the difference is that this 
function is defined based on a model for a given outcome 
where the original place variables are predictors.

For the sake of exposition, with a set of k place vari-
ables, X1, . . . , Xk , using the first principal component, 
we have a disadvantage score of the form

 D-score = a0 + a1X1 + . . . + akXk,

where a1, . . . , ak  are principal loadings, and the optional 
a0 can be set to pin down a mean for the disadvantage 
score. With a continuous outcome Y , if we use the sim-
plest prediction model, linear regression, we obtain a vul-
nerability score that is the linear predictor from the fitted 
model,

 V-score = b0 + b1X1 + . . . + bkXk.

While these two scores have the same functional form, 
the coefficients are different, and the V-score is more 
predictive of Y than the D-score. Both are summary 
scores of place characteristics; the V-score is a summary 
that is more relevant to the outcome Y. Conceptually, a 
V-score can be used in similar ways to a D-score, e.g., 

to characterize place in subsequent analyses looking at 
place as a risk factor, or to control for place while exam-
ining the role of individual level factors.

A convenience of the V-score approach is that it is not 
restricted to a linear model but can benefit from flexible 
modeling (via machine learning). This allows searching 
for a flexible function,

 V-score = β(X1, . . . , Xk)

of the place measurements that is most predictive of the 
outcome. It thus can draw from knowledge that has been 
gained and tools that have been developed for predictive 
modeling from other contexts. We refer the interested 
reader to [33] for an accessible introduction to machine 
learning, and [34] for a textbook treatment of prediction 
models.

Regarding interpretation, it should be clarified upfront 
what the V-score is and what it is not. The V-score is a 
function of the place variables (X ), not of the outcome. 
It is also not an estimate of the outcome for a place. What 
it is is the expectation of the outcome for any place with 
such values of the X  variables. Different places with the 
same X  values share the same V-score, but likely vary in 
the outcome because there are many causes of the out-
come beyond the X  variables. The V-score simply indi-
cates vulnerability to the outcome based on the place 
characteristics being considered.

A case of V-score estimation and examples of V-score use
In this paper we demonstrate the estimation of V-score 
for HIV viral non-suppression based on census tract-level 
data on crime/policing activities and economic and hous-
ing conditions. The data used includes place-based vari-
ables for a range of years, and individual-level outcome 
data from a longitudinal study that aligns with the same 
years of place-based variables. This data structure is com-
plicated due to several types of clustering. Our goal here 
is to showcase how we address these clustering issues.

Many tools can be used to fit flexible models (e.g., gen-
eralized linear models with splines, generalized additive 
models, random forests, neural nets), all of which can 
generally be used for V-score estimation. For our data, 
we need a tool that can handle clustering. We choose to 
use random forests [35], a tree-based method for fitting 
flexible models that handles nonlinearity well. More spe-
cifically we use an implementation of random forests that 
handles clustering [36].

A challenge with the use of outcome data in estimat-
ing V-scores (and to establish construct validity of 
D-scores) is that this results in the outcome data being 
in a sense “spent” and thus no longer suitable for use in 
subsequent analyses that use the V-score to characterize 
place. We craft a careful way to minimize this issue using 
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“out-of-bag” prediction (explained later) so that out-
come data in a place (a census tract) are completely not 
involved in the computing of the V-score for the place. 
A secondary motivation to demonstrate V-score estima-
tion using random forests is that out-of-bag prediction is 
a built-in operation with random forests. While our data 
requires a manual solution, in simpler settings this built-
in option suffices.

We will also illustrate how the estimated V-score is 
used in subsequent analyses (i) examining the associa-
tion of living in a census tract with higher versus lower 
V-score and HIV viral non-suppression one year later, 
adjusting for individual-level covariates; and (ii) examin-
ing the association of current injection drug use with the 
same outcome, adjusting for individual-level covariates 
and census tract-level V-score.

Data
Place data
The place units are 200 census tracts (with boundaries 
defined according to the 2010 Census) of Baltimore city. 
The census tract data we use include variables compiled 
by the Baltimore Neighborhoods Indicators Alliance and 
extracted from the US Census Bureau American Com-
munity Survey (ACS). They include crime/policing event 
counts tracked by Baltimore City Police Department 
(seven variables); housing conditions tracked by the Bal-
timore City Department of Housing and other agencies 
(five variables), and economic conditions tracked by ACS 
(seven variables) – see Table 1. We restrict the analysis to 
the period 2009–2016 when most census tract variables 
and outcome data are available.

The place data come at the level of place-by-time, spe-
cifically census tract by year. We aim to first estimate a 
V-score at this level (with a value for each census tract for 
each year), and then collapse the years to create a version 

Table 1 Place variables
Variable Description
Crime/policing (rates per 1000 residents) – from Baltimore City Police Department
part1 Part 1 crimes (including homicide, rape, aggravated assault, robbery, burglary, 

larceny, auto theft)

violent violent crimes (including homicide, rape, aggravated assault, other robbery)

gunhoma homicides by firearm

narcotic drug market activity (measured in emergency calls for narcotic-related offenses)

shoot emergency calls for shootings

domviob emergency calls for domestic violence

juvedrugc arrests of juvenile persons for possession, sale, manufacture or abuse of illegal 
drugs

Housing conditions – numerator from Baltimore City Department of Housing (unless otherwise stated) / denominator from US Census 
American Community Survey
foreclose percentage of housing units receiving foreclosure filing (from Maryland Judiciary 

Case Search System, MJCSS)

ownoccupyd percentage of housing units that are owner-occupied (from MJCSS)

renovate percentage of housing units with permits to renovate at $5K+

vacant percentage of housing units that are vacant or abandoned

codeviol percentage of housing units with housing code violations

Economic deprivation – from US Census American Community Survey (ACS)e

lowwage percentage of employed persons aged 16 + in low wage occupations

poverty percentage of individuals whose income in the past 12 months is below the 
poverty line

femalehh percentage of households that are female-headed households with children 
under 18

pubassist percentage of households on public assistance

nohschool percentage of adults aged 25 + without high school diploma/GED

unemploy percentage of persons 16 + in labor force who are unemployed

nocar percentage of occupied housing units that do not have a vehicle
a not available for 2009
b available only for 2009–2011
c not available for 2016
d not available for 2013 and 2015
e These variables result from aggregation of ACS data over a five-year interval ending in the year of interest
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that is not year-specific. Both versions may be useful 
depending on the subsequent analyses that use them.

More information about the distributions of place 
variables are shown in Appendix A (in the supplemental 
material). The crime/policing variables are highly skewed 
and with a lot of zeros. The housing and economic depri-
vation variables are proportions bounded by 0 and 1. The 
crime/policing variables are positively correlated with 
one another, as are the economic deprivation variables. 
The housing variables have correlations with mixed signs. 
As mentioned above, while these features of the data 
would require close attention for D-score procedures, 
they are not of concern for V-score estimation where we 
will use a flexible modeling tool.

Outcome and target population
HIV viral non-suppression is the outcome of interest. We 
investigate this outcome among Black people who have 
ever injected drugs (PWID) and are living with HIV in 
Baltimore city – a predominantly Black city where injec-
tion drug use is prevalent. This is a population that is dis-
proportionately burdened by HIV [16, 37, 38], and may 
be particularly vulnerable to adverse neighborhood con-
ditions due to the manner in which structural racism and 
stigmatization of drug use intersect [15, 17, 39, 40].

Outcome data
Before describing the outcome data used, for concep-
tual clarity it helps to consider what would be the ideal. 
The ideal outcome data for V-score estimation would 
be the outcome prevalence (i.e., prevalence of HIV viral 
non-suppression among Black PWID living with HIV) in 
each census tract for each year. With such data we would 
fit a model for the prevalence with place characteristics 
as predictors and compute the V-score as the model-
predicted prevalence given place characteristics. Yet 
prevalence at such a level of place-by-time resolution is 
unknown in most settings and for most outcomes.

The second ideal would be to have, for each place-by-
time (here census tract by year) cell, a random sample 
from the target population – with similar cell-specific 
sample sizes. Intuitively, with such data we could use a 
two-step method of first obtaining estimates of outcome 
prevalence for each cell and then using them to fit the 
model that estimates the V-score. Or we could use a one-
step method of regressing the outcome on cell-specific 
place variables (appropriately handling clustering) and 
computing the V-score based on that model. Like the 
first ideal, this second ideal is not available for the current 
application, and unrealistic generally.

Instead, we will make the best use of a source of HIV 
non-suppression data we have access to, the AIDS Linked 
to the IntraVenous Experience study (ALIVE) [20]. 
Located in Baltimore city, ALIVE is the longest-running 

community-based cohort of people with histories of 
injecting drugs in the United States. The cohort began 
with 2,921 adults recruited between 1988 and 1989 
through community street outreach. Participants were 
eligible if they were ≥ 18 years, reported injection drug 
use within the past 11 years, and if HIV positive, were 
not diagnosed with AIDS at enrollment. To make up 
for deaths and losses to follow up (about 7%/year), five 
recruitment cycles (1994–1995, 1998, 2000, 2005–2008, 
2015–2016) were implemented using similar eligibility 
criteria. Participants living with HIV attend semiannual 
visits, during which blood draws are taken for laboratory 
tests, including HIV RNA quantification via ultra-sensi-
tive assay. Participants give their addresses at each visit, 
which have been linked to census tracts. The data we use 
are restricted to those from self-identified Black partici-
pants who were living with HIV, reported at least one 
visit with an HIV care provider, and lived in a residential 
census tract in Baltimore city during the period of inter-
est, 2009–2017. We specifically restricted to Black par-
ticipants because over 90% of ALIVE participants living 
with HIV are Black, so prediction for other race groups 
would be unreliable given limited data. Observations 
prior to seroconversion and prior to the first reported 
use of highly active antiretroviral therapy were dropped. 
Viral non-suppression is defined as having a viral load of 
400 + copies.

The outcome data we have is thus a sample that is fol-
lowed up and replenished over time. It includes 464 indi-
viduals who provided a total of 3890 observations, which 
fall in 161 of the 200 residential census tracts for which 
we have place data, and cover 957 place-by-time cells. 
The number of observations contributed per individual 
ranges from 1 to 17 (see Fig. 1), and the place-by-time cell 
sample sizes range from 0 to 30 (Fig. 2, top panel). This is 
a complicated situation of unbalanced data with cluster-
ing of several types. There is also a trend of decreasing 
viral non-suppression over time. We will discuss these 
issues one by one and propose some strategies for resolu-
tion or mitigation.

V-score estimation
To remind of the big picture, we want to fit a model for 
the outcome (HIV viral nonsuppression) using place 
characteristics and time as predictors, and then use the 
model to compute predicted outcome for each place at 
each time. This prediction is at the place-by-time cell 
level because the predictor variables are at this level 
and not the individual level. There are a lot of subtleties 
about the fitting of such a model and about how to con-
struct the V-score based on outcome predictions. We will 
consider those issues after a pause to introduce random 
forests.
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A brief introduction to random forests
As mentioned earlier, a strength of the V-score approach 
is that it can benefit from flexible modeling tools that 
have been developed for prediction. Many machine 
learning algorithms can be used for this purpose. Here we 
use random forests [35]. Random forests are extensions 
upon regression trees [41]. Roughly speaking, a regres-
sion tree fits a flexible regression model by recursively 
partitioning the covariate space, i.e., making splits on 
covariates where each split is chosen (among all poten-
tial splits) to maximize the difference in outcome mean 
between the two sides of the split. This is called growing 
the tree, where each non-terminal split creates branches, 
and the terminal splits define the leaves of the tree. Once 
the tree is grown, the regression function is obtained 
by taking the mean of the outcome within the leaves. 
A random forest is the collection of a large number of 

regression trees, each fit to a randomly selected sub-
sample rather than to the full sample, and each using a 
random subset of the covariates. A random forest is used 
for prediction via averaging the predictions of the trees. 
Intuitively, trees are noisy fits, so averaging them pro-
vides a smoother fit and thus better prediction; and data 
and covariates are randomly subset to reduce the correla-
tion among the trees. Many software packages have been 
developed to fit random forests offering different features 
for parameter tuning, missing data methods, handling 
clustered data and accommodating big data, etc. In the R 
language well-known packages include ranger [42], party 
[43], randomForest [44] and grf [36], to name a few.

When a random forest is used for prediction on a 
new data point (not part of the original sample), that is 
called out-of-sample (OOS) prediction. This is done by 
averaging the predictions by all the trees in the forest. 

Fig. 2 Dot plots of sample sizes of place-by-time cells: raw sample sizes (top panel, total 3890) and expected sample sizes with rough balancing (bottom 
panel, total 1167)

 

Fig. 1 Histogram of number of observations per individual in the raw dataset

 



Page 7 of 17Nguyen et al. BMC Medical Research Methodology           (2024) 24:21 

Prediction for a data point in the original sample, on 
the other hand, is not done by averaging all the trees, as 
the trees that have seen that data point may overfit that 
point. Instead, prediction for an in-sample data point 
is done by averaging all the trees fit to subsamples that 
did not include that data point; this is out-of-bag (OOB) 
prediction. With OOB prediction, the outcome of a data 
point is not used in the computation of the prediction. 
This is helpful, as it allows use of the outcome data in 
subsequent analyses.

Aside from the high-level themes of flexible model-
ing and OOS/OOB prediction, the specifics of V-score 
estimation depend on the data. We now address five 
challenges posed by our data source, which may also be 
present elsewhere. Readers are welcomed to focus on the 
challenges that are relevant to their applications and skip 
those that are not. For ease of reference, Table  2 sum-
marizes the issues and the gist of the strategies used to 
handle them.

Method issue 1: the place characteristics data is clustered 
in place units
When place data spans multiple time points (here years), 
such data is clustered in place units. We thus wish to 
use a modeling tool that handles clustering. Among the 
many software options for random forests, we use the 
R package grf [36] because it accommodates clustering. 
This package handles clustering properly both (a) when 
drawing subsamples to grow trees (clusters are sampled 
first and then units are sampled within clusters) and (b) 
when computing predictions (OOB prediction uses trees 
that do not include the cluster being predicted for). (a) 
ensures that the resulting model is not too confident due 
to wrongly treating the observations within clusters as 
independent (mistaking that there is more information 
than there actually is). (b) ensures that outcome data 
from a cluster is not involved in predicting for the cluster.

If the outcome data comes from repeated surveys (not 
a cohort as in our current application), clustering in place 
units is the only issue, and one could fit a single random 
forest, use OOB prediction for place-time units present 

in the sample and OOS prediction for place-time units 
outside the sample. For code, see Appendix A.

Method issue 2: places are connected by individuals
In our illustrative example, the outcome data is not from 
repeated surveys but from a cohort of individuals, who 
may be seen in multiple places at different time points.

The key point of OOB prediction is that the predic-
tion on a unit is based only on the values of its regressors 
and does not touch its outcome variable. The OOB pre-
diction from the clustered random forest above ensures 
that the prediction for census tract A is not based on out-
come data seen in census tract A. In our current example, 
however, some individuals may have lived in both census 
tracts A and B, so their outcome data in the two census 
tracts are connected. Therefore, we want to exclude from 
the building of the model used to predict for census tract 
A not only all outcome data seen in census tract A, but 
also all outcome data of such a census-tract-crossing 
individual that is seen elsewhere.

To achieve this, instead of simply using OOB predic-
tion from a single random forest as mentioned above, we 
manually implement a leave-one-out (LOO) procedure 
where for one census tract at a time, we remove data of 
that census tract and data from all persons connected 
to that census tract, fit a random forest to the remain-
ing data and use it to predict for the census tract that has 
been left out. The code for this method (see Appendix 
A) is slightly more complicated and would take longer 
to run, as it requires fitting one LOO random forest for 
each of the 161 census tracts that are in the sample. For 
the 39 out-of-sample census tracts, we would compute 
outcome predictions based on a random forest fit to the 
whole sample.

Method issue 3: outcome data is clustered in individuals 
and unbalanced
This feature of the data causes two problems: individuals 
who were seen for many visits overall have more influ-
ence than those with few visits (see Fig. 1); and individ-
uals who stayed in the same census tract (or who move 

Table 2 Method issues in the application and strategies for resolving or mitigating them
Method issues Resolution/mitigation strategies
1. The place characteristics data is clustered in place units. Use random forest procedure that handles clustering, specifically when drawing 

subsamples to grow trees and when computing out-of-bag (OOB) predictions.

2. Places are connected by individuals. Manual leave-one-out (LOO) procedure where prediction for each census tract 
is based on a model fit to data where not only that census tract is excluded but 
also all persons ever seen in that census tract are excluded.

3. Outcome data is clustered in individuals and unbalanced. “Rough balancing”: sample a maximum of 3 time points (years) per individual 
and 1 place per individual-year.

4. Some place variables are not available for all years. Attempt using as proxy the adjacent year version of the variable. If mean square 
error is not improved, revert back.

5. There are time trends in the data. Remove time trends by standardizing the predictions for the census tracts 
within each year (to mean 0, variance 1), and use this as the V-score.
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around but within census tracts that have similar char-
acteristics) have high influence on that (those) census 
tract(s) and may skew the results.

As a first step to reduce the problem of varying influ-
ence, within each place-time cell, we downweight indi-
viduals that appear more than once so each person has a 
count of at most 1 in each cell. This pares down some of 
the large individual weights.

It remains, however, that some individuals are present 
in the sample for all time points, and for up to 14 place-
time cells, while others are present for only one or two 
points. The cleanest way to deal with this problem would 
be to sample one data point for each individual and dis-
card all the rest. This would completely remove the 
dependence of outcome data within individuals, which 
is desirable. However, it would drastically reduce sample 
size and throw away a lot of data, which is not desirable.

We make a less extreme choice, which we call “rough 
balancing”: to sample a maximum of three time points 
(i.e., years) for each individual, and sample one place per 
year (if the individual reported residing in more than one 
census tracts in a year). This allows each individual to 
contribute a maximum of three data points. Our moti-
vation in making this choice is to make the data more 
balanced and reduce the disproportionate influence of 
long-run participants. We accept the remaining depen-
dence in the data to prevent too large a sample loss (the 
resulting sample, n = 1167, is 30% of the naive sample 
size).

As this is random sampling, to stabilize estimates, we 
do this multiple times and average the predicted values. 
We implement ten repetitions. Each repetition includes 
one LOO random forest for prediction on each of the in-
sample census tracts, and one non-LOO random forest 
for prediction on the out-of-sample census tracts (see 
code in Appendix A). Since the repetitions are separate, 
they can be parallelized to speed up computing, or they 
can be run one at a time and results from each run can be 
saved to clear memory.

The expected sample of these random repetitions is 
represented in the bottom panel of Fig. 2. Compared to 
the raw place-time cell sizes of 0 to 30, the effective cell 
sizes are substantially smaller, 0 to 8.

A note on parameter tuning: The algorithm that fits 
random forests uses hyper parameters that govern 
tree-growing behavior (number of trees, sampling frac-
tion, split balance tolerance and minimum node size) 
and for the grf package also honesty behavior. (Honesty 
uses one subsample to grow a tree and then another 
subsample to compute leaf values, whereas convention-
ally the same subsample is used for both.) These param-
eters have default values, but tuning them may improve 
performance. As our LOO random forests are all part 
of the implementation of a single (albeit complicated) 

procedure, we want to fit them using the exact same algo-
rithm. Manual parameter tuning using several of these 
forests does not converge to a stable parameter set, how-
ever, so we mostly revert to default values. We opt to use 
honesty and increase sampling fraction to 0.7 (from the 
0.5 default) based on the fact that these give the non-
LOO forest good test calibration (see documentation of 
the related function).

After running this procedure, we examine the vari-
able importance metric to see which variables are most 
important for predicting the outcome. The right panel of 
Fig. 3 is the variable importance plot based on the single 
non-LOO random forest used to predict for out-of-sam-
ple census tracts, averaged over the ten repetitions; the 
left panel shows the average of variable importance over 
the 161 LOO random forests over the ten repetitions. 
The three top predictors are crime/policing variables 
juvedrug, domio and gunhom, followed by time (year).

The predictions (probabilities of viral non-suppres-
sion given place charactersticis) from this procedure are 
shown in the top panel of Fig. 4.

Method issue 4: some place variables are not available for 
all years
While restricting analysis to 2009–2016 greatly standard-
izes data availability, some variables are still not available 
for all the years in this range. Of the three place variables 
with the largest variable importance, domvio is available 
for only three of the eights years, so V-score estimation 
for those years benefit from more data. The other two 
variables, juvedrug and gunhom, each are available for all 
but one year – 2016 for juvedrug and 2009 for gunhom. A 
question is whether we can do better for these two years. 
A reasonable idea is to bring in a proxy for the unavail-
able variable if such a proxy variable is available. We need 
to be cautious about the use of proxy variables, though, 
as they bring both relevant information and noise. In 
the current case, the variable that might serve as proxy 
is the same variable from an adjacent year. This would 
introduce another layer of complexity, since the V-score 
estimated would have slightly different meaning depend-
ing on the year, which may complicate/limit its utility for 
users.

That said, we tried this ad hoc strategy. We ran the 
whole procedure described above twice, each time 
replacing one of the two variables juvedrug and gunhom 
with its adjacent year version. We then take the (raw) 
scores for 2016 from the first ad hoc procedure and for 
2009 from the second ad hoc procedure to replace the 
scores for those years from our original results. This 
increased the variability of the predicted outcome prob-
abilities for 2016 and 2009, but slightly worsened mean 
squared error. We thus revert to the results from the pre-
vious step and discard this ad hoc version.
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Method issue 5: time trends in the outcome data
As described earlier, ALIVE is a complicated sample in 
several ways. Putting aside the fact that observations are 
clustered in individuals (which we partially dealt with 
above), this being a cohort means that there is a ten-
dency for observations in a subsequent year to be one 
year older and one year later in HIV-positive life than 
those in the previous year; this is a continuous process as 
people age continuously. To some degree this is offset in 

a discontinuous way by the later recruitment waves. This 
means there may be different time trends in the data sim-
ply due to the aging of the participants and the multiple 
recruitment waves. In addition, there may be contextual 
changes of treatment becoming more accessible and/or 
effective over time.

What we observe is that in the sample (after rough 
balancing) the raw prevalence of viral non-suppression 
decreased from 53.1% in 2009 to 21.7% in 2016. This 

Fig. 4 Raw predictions (top panel) which reflect time trends, year-specific V-scores (bottom panel, black) standardized to remove time trends, and gener-
ic V-scores (bottom panel, blue) combining all years. Each point represents one of Baltimore’s 200 census tracts. Points are jittered horizontally for visibility

 

Fig. 3 Average variable importance of LOO (left) and non-LOO (right) random forests
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decreasing viral non-suppression trend is also reflected 
in the predicted probabilities (Fig.  4, top panel), where 
the average over the census tracts decreased from 40.6% 
in 2009 to 24.3% in 2016.

Note that our goal is to obtain a V-score that is a func-
tion of just place characteristics (which may vary with 
time), but not of time on top of place characteristics. 
(Any analyses that use the V-score can handle the effect 
of time by including a time variable.) To remove time 
trends (either general trends or trends due to the idio-
syncracies of the sample), we standardize the predicted 
probabilities (for the 200 census tracts) within each year, 
so they all have mean 0 and variance 1. This obtains the 
year-specific V-scores shown in black color in the bottom 
panel of Fig. 4.

Last consideration: year-specific and generic V-scores
While there is variation in V-scores across years – just 
like there is fluctuation in place characteristics – the pat-
tern of how the census tracts compare seems persistent 
over the years (see Appendix A), and the V-scores esti-
mated for the different years are highly correlated (Pear-
son correlations ranging from an average of 0.91 for 
adjacent years to 0.77 for a seven-year lag). We addition-
ally compute a set of generic V-scores that combine the 
scores across the eight years, shown in blue in the bot-
tom panel of Fig. 4. This set could be interpreted approxi-
mately as a general feature of the census tracts.

Both versions of the estimated V-scores may be avail-
able from the authors upon request.

Illustration of V-score use
To illustrate the utility of the V-score, we demonstrate 
analyses that treat the V-score either as a covariate to be 
adjusted (i.e., confounder) or as exposure (see Fig. 5 for 

relevant causal diagrams). R-code and computing outputs 
are in Appendix B (in the supplemental material). For 
convenience, these analyses use individual-level data also 
from the ALIVE cohort. The estimated V-scores, how-
ever, can be used in combination with other HIV-related 
samples from Baltimore. Also for simplicity, all these 
analyses use the generic version of the V-score.

These analyses are purely illustrative; results should not 
be interpreted as substantive findings. The intention is to 
demonstrate the utility of the V-score in some familiar 
types of analyses. Readers who find the usefulness of the 
V-score obvious are welcome to skip this section.

Example analysis 1: V-score as a confounder
This first analysis examines, in the ALIVE sample of 
people with drug injection history, whether (i) current 
injection drug use (IDU) is associated with (ii) being 
virally nonsuppressed a year later, after adjusting for both 
individual-level covariates and relevant neighborhood 
context that may confound the relationship. In this analy-
sis, current IDU is approximately captured by the binary 
variable “any IDU in the past 6 months”. Note that the 
focus here is not on IDU per se; this is just an example for 
an individual-level exposure variable.

To keep the example simple, we sample for each indi-
vidual in the ALIVE study two visits about one year (10–
14 months) apart, where at the first visit (aka baseline) 
the person reported current IDU or not, and at the sec-
ond visit (follow-up) the person had a recorded viral load. 
We restrict the first visit to be one that falls in 2009–
2016, the period for which we had estimated V-scores. 
This results in a sample of 405 persons, 110 (27.2%) of 
whom engaged in IDU at baseline. Individual-level base-
line covariates include age, sex, several prognostic vari-
ables (viral suppression status, viral load and CD4 count) 

Fig. 5 Two examples of conceptualization of role of place vis-à-vis HIV outcomes
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and several risk factors (low income, health insurance, 
depression, jail, homelessness, number of moves in the 
past 6 months) – see variable descriptions and summary 
statistics in Table 3. Importantly, this analysis also adjusts 
for the neighborhood V-score; the rationale is that neigh-
borhoods with higher V-scores tend to embody struc-
tural factors that increase vulnerability to persistent IDU 
or relapse and that may also poorly affect HIV outcomes.

We handle missingness in the covariates (including 
V-score) by multiple imputation (MI) by chained equa-
tions (using the mice package [46]), creating 50 imputed 
datasets. To combine MI and propensity score analysis, 

we use what is commonly known as the within method, 
where propensity score weighting is conducted in each 
imputed dataset before pooling estimates by Rubin’s rules 
[47]; this method has been proved to be consistent [48]. 
In this case, the combination of V-score and individual 
prognostic variables is hard to balance, so we estimate 
propensity score weights by generalized boosted models 
(using the gbm package [49]), which obtain better bal-
ance than weights based on logistic regression. The whole 
procedure on imputed data is run using the MatchThem 
package [50].

Table 3 Baseline covariates in the sample for analysis 1 – with V-score as a covariate
Not current IDU (n = 295) Current IDU (n = 110)
mean (SD) mean (SD)

Age 53.0 (6.56) 51.3 (6.52)

Sex number (percenta) number (percenta)

 male 198 (67.1) 78 (70.9)

 female 97 (32.9) 32 (29.1)

On antiretroviral treatment

 yes 235 (79.7) 79 (71.8)

 no 53 (18.0) 30 (39.1)

Viral non-suppression

 yes 112 (38.0) 65 (59.1)

 no 180 (61.0) 43 (27.3)

max max

Viral load 930 K 702 K

mean (SD) mean (SD)

CD4 count 450 (296) 344 (242)

Annual income < $5K number (percenta) number (percenta)

 yes 198 (67.1) 80 (72.7)

 no 93 (31.5) 28 (25.5)

Health insuranceb

 yes 286 (96.9) 103 (93.6)

 no 9 (3.1) 6 (5.5)

Elevated depressive symptomsc

 yes 54 (18.3) 32 (29.1)

 no 241 (81.7) 78 (70.9)

Any time in jailb

 yes 10 (3.4) 11 (10.0)

 no 261 (88.5) 92 (83.6)

Any time homelessb

 yes 18 (6.1) 15 (13.6)

 no 276 (93.6) 94 (85.5)

Number of movesb

 0 240 (81.4) 80 (72.7)

 1 28 (9.5) 14 (12.7)

 2 27 (9.2) 16 (14.5)

mean (SD) mean (SD)

Neighborhood V-score 0.43 (0.89) 0.63 (0.89)
SD = standard deviation
aProportions may not add up to 100% due to missing data
bThese variables are about the past 6 months
cDefined as scoring 23 + on the CES-D scale [45] for the past week
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Figure  6 shows that the weighting substantially 
improves covariate balance, including balance on the 
V-score. With the binary outcome, we estimate the asso-
ciation of interest on both the risk difference (RD) and 
conditional odds ratio (OR) scales. On the RD scale, 
after adjusting for individual-level covariates and neigh-
borhood V-score, current IDU is associated with an 
RD for viral non-suppression one year later of 7.8 per-
cetage points, 95% confidence interval (CI) = (0.6, 15.0), 
p-value = 0.03. On the conditional OR scale, current IDU 
is associated with an OR for viral non-suppression one 
year later of 2.02, 95% CI = (1.13, 3.59), p-value = 0.02.

Notably, the adjustment for neighborhood V-score 
seems warranted, as on average neighborhood V-score 
is higher for persons with than for persons without cur-
rent IDU (see Table 3; Fig. 5). Not adjusting for V-score 
would result in a larger RD (8.8  percentage points, 95% 
CI = (1.5, 16.1), p-value = 0.02), an overestimation of the 
relationship of interest.

Example analyses 2 and 3: V-score as exposure
The general goal of these two analyses is to examine 
the association of (i) living in a census tract with higher 
V-score with (ii) being virally nonsuppressed a year later, 
after adjusting for individual-level risk factors. Again, to 
keep things simple, we sample for each individual in the 
ALIVE study two visits about one year apart, where at the 

first visit the person was living in a Baltimore census tract 
for which we have a V-score, and at the second visit the 
person had a recorded viral load, resulting in a sample of 
383 persons. The Analysis 2 column of Table 4 summa-
rizes the baseline covariates relevant to the analysis.

With the continuous exposure variable, a researcher 
might choose to use regression analysis. We performed 
this analysis by first imputing missing covariates, and 
then fitting a logit model and pooling coefficients across 
imputed datasets. This analysis estimates that after 
adjusting for individual-level covariates, a difference in 
V-score of one standard deviation is associated with an 
OR of 1.15 for viral non-suppression one year later, 95% 
CI = (0.86, 1.54), p-value = 0.33.

Another researcher may be hesitant to use regression 
adjustment due to concern about V-score and covari-
ates being correlated, and instead would like to conduct 
an analysis where confounding is controlled via covariate 
balancing, like in Analysis 1. They may split the V-score 
variable into three equal-size bins and consider the dif-
ference between being in the top and bottom bins. The 
Analysis 3 part of Table  4 describes the high and low 
V-score subsamples. This analysis combines MI with 
propensity score weighting using the same method 
as in Analysis 1 but with high V-score as the exposure. 
Figure  7 shows that the weighting obtains covariate 
balance. On the OR scale, this analysis estimates that 

Fig. 6 Analysis 1 – Covariate balance before and after weighting between current IDU and not current IDU groups. The horizontal bars represent variation 
across imputed datasets. Mean differences for continuous variables (marked with *) are standardized
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conditional on individual-level covariates, high (vs. low) 
V-score exposure is associated with an OR for viral non-
suppression one year later of 1.16, 95% CI = (0.62, 2.16), 
p-value = 0.65. On the RD scale, high (vs. low) V-score 

exposure is associated with a RD for viral non-suppres-
sion one year later of 5.2  percentage points, 95% CI = 
(-7.7, 18.1), p-value = 0.43.

Table 4 Summary of sample baseline characteristics in the analyses with V-score as exposure
Analysis 2 Analysis 3
Full sample (n = 383) Low V-score (n = 128) High V-score (n = 133)
mean (SD) mean (SD) mean (SD)

Age 52.6 (6.62) 53.4 (6.13) 51.5 (7.17)

Sex number (percent)a number (percent)a number (percent)a

 male 258 (67.4) 92 (71.9) 86 (64.7)

 female 125 (32.6) 36 (28.1) 47 (35.3)

On antiretroviral treatment

 yes 295 (77.0) 103 (80.5) 92 (69.2)

 no 84 (21.9) 23 (18.0) 40 (30.1)

Viral non-suppression

 yes 128 (33.4) 37 (28.9) 58 (43.6)

 no 250 (65.3) 88 (66.8) 74 (55.6)

max max max

Viral load 550 K 525 K 550 K

mean (SD) mean (SD) mean (SD)

CD4 count 417 (266) 427 (262) 403 (271)

Annual income < $5K number (percent)a number (percent)a number (percent)a

 yes 259 (67.6) 80 (62.5) 96 (72.2)

 no 115 (30.0) 44 (34.4) 36 (27.1)

Health insurance coverageb

 yes 368 (96.1) 126 (98.4) 125 (94.0)

 no 13 (3.4) 2 (1.6) 7 (5.3)

Elevated depressive symptomsc

 yes 89 (23.2) 24 (18.8) 32 (24.1)

 no 292 (76.2) 103 (80.5) 100 (75.2)

Injection drug useb

 yes 104 (27.2) 29 (22.7) 44 (33.1)

 no 276 (72.1) 98 (76.6) 87 (65.4)

Crack cocaine useb

 yes 83 (21.7) 23 (18.0) 32 (24.1)

 no 298 (77.8) 104 (81.3) 100 (75.2)

Alcohol/drug treatmentb

 yes 164 (42.8) 46 (35.9) 65 (48.9)

 no 216 (56.4) 82 (64.1) 67 (50.4)

Any time in jailb

 yes 14 (3.7) 3 (2.3) 10 (7.5)

 no 334 (87.2) 118 (92.2) 113 (85.0)

Any time homelessb

 yes 30 (7.8) 11 (8.6) 13 (9.8)

 no 349 (91.1) 115 (89.8) 119 (89.5)

Number of movesb

 0 305 (79.6) 106 (82.8) 101 (75.9)

 1 35 (9.1) 10 (7.8) 14 (10.5)

 2 41 (10.7) 11 (8.6) 17 (12.8)
SD = standard deviation
a Proportions may not add up to 100% due to missing data
b These variables are about the past 6 months
c Defined as scoring 23 + on the CES-D scale [45] for the past week
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Discussion
In this paper we proposed a characterization of place 
for health research where the multivariate measure-
ment of place is distilled into a single score representing 
vulnerability to an outcome of interest (here viral non-
suppression) based on place characteristics (here census 
tract-level measures of crime/policing events, and eco-
nomic and housing conditions). We implemented this 
approach in a specific case of estimating V-score using 
HIV outcome data from a cohort of Black people with 
drug injection histories in Baltimore city, and illustrated 
the utility of the estimated V-score through some subse-
quent analyses.

A tangible output of this work is the set of estimated 
V-scores for Baltimore city census tracts, which could 
be of practical use for HIV researchers who wish to have 
a variable reflecting census tract level vulnerability to 
poor HIV outcomes. These scores are estimated for cen-
sus tracts, which are larger and less heterogeneous than 
census block groups and other geo-units that may bet-
ter reflect local social and economic dynamics. However, 
place data are more reliable and outcome data are less 
sparse at census tract level. Where data are richer and 
more abundant, V-score estimation for smaller spatial 
scales should be attempted.

We now offer a few general comments on V-score esti-
mation methods and on the usefulness of V-scores in 
HIV research.

On methods for V-score estimation
In this particular application, the methods we use for 
V-score estimation handle the complicated nature of the 
data by breaking it into multiple methodological issues 
and addressing them one by one. Using random forests as 
the modeling and prediction tool, we crafted a procedure 
tailored to the problem at hand. Because the data in each 
application is different (as evident in the diverse literature 
on place and HIV), the estimation procedure ultimately 
needs to respond to the features of the specific data. That 
said, this demonstration provides an example for how 
existing data, often complicated in one way or another, 
may be leveraged for the purpose of estimating place-
based V-scores, and showcases how some issues which 
are quite common may be handled.

A detail should be made explicit for complete clarity: 
V-score estimation does not involve the spatial features of 
the data, specifically, the models for V-score estimation 
use as inputs the census tracts’ characteristics captured in 
the X  variables (crime/policing, housing and economic 
deprivation) but not the census tracts’ locations relative 
to one other. The reason is that (as mentioned earlier) the 
V-score is not an estimate of the outcome for a specific 

Fig. 7 Analysis 3 – Covariate balance before and after weighting between high and low V-score groups. The horizontal bars show variation across im-
puted datasets. Mean differences for continuous variables (marked with *) are standardized
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place, but is the expectation of the outcome for any place 
with such values of the X  variables. While spatial infor-
mation might help explain more of outcome variation, it 
does not serve this purpose.

The methods in this paper produce a V-score that is 
specific to one outcome (here HIV viral non-suppres-
sion). There are times though when there may also be 
interest in dimension reduction of place characteristics 
that captures vulnerability to a range of outcomes (e.g., 
those along the HIV prevention-and-care continuum). 
Hence a natural extension to be investigated in future 
work is how to construct a V-score for multiple related 
outcomes. This could take either a two-step or a joint 
modeling approach. With the two-step approach one 
estimates for each outcome a V-score and then combine 
(e.g., using PCA on the V-scores). With the joint model-
ing approach, one could adopt a model where the place 
characteristics are causes of a latent variable which causes 
all the outcomes. This could be modeled parametrically 
via traditional structural equation modeling, or it could 
be modeled nonparametrically (which is the strategy of 
the current paper) using machine learning structures that 
involve latent variables such as neural networks.

On utility of V-score in HIV research
The illustrative examples show two different uses of 
V-score, reflecting two different roles played by place. 
In the first example, the V-score is a covariate that is 
used to control place-level confounding of the associa-
tion between an individual-level exposure (IDU) and the 
outcome (HIV viral non-suppression). We want to draw 
attention to the difference between adjusting and not 
adjusting for the V-score in the example: not adjusting 
for the V-score would inflate the exposure-outcome asso-
ciation. This is a classic example of effect estimate chang-
ing as we adjust for a confounder.

This simple example highlights a point that in a sense 
should be obvious but is often not considered (as men-
tioned in the Introduction section): when examining the 
effect of an individual-level exposure, place-level con-
founding should be considered. This matters because 
in many applications the exposure of interest is an indi-
vidual behavior. The researcher may be looking at how 
much a negative behavior puts the person at risk for a 
poor outcome, or may be ultimately interested in how the 
outcome could be improved by changing a risk behavior. 
Not accounting for place-level confounding may lead to 
over-estimation of the effect of the individual’s behav-
ior or an overly optimistic view of how much a behavior 
change may positively affect an outcome. The availability 
of a V-score for the outcome provides a simple way to 
adjust for that confounding by place factors and obtain 
more valid and realistic effect estimates.

It should be mentioned that another possibility for con-
trolling place-level confounding is to use a V-score for 
the exposure (here injection drug use) if a V-score for 
the outcome is not available. The rationale is that such 
a V-score captures elements of place (contained in the 
place measurements) that are relevant to the exposure, so 
adjusting for the V-score adjusts for those elements. The 
“remaining” elements may be relevant to the outcome but 
since they are not relevant to the exposure are less likely 
to have a confounding effect. Which V-score type works 
better (i.e., is more effective in removing confounding), 
or when one works better than the other, is a question for 
future research.

A related role to be considered for place is as a modera-
tor of individual-level exposure-outcome relationships. 
Such analyses could inform interventions targeting the 
individual-level exposures as well as interventions that 
both address individual-level exposures and intervene on 
structural factors that worsen or mitigate their effects. 
Also promising is the potential use of V-scores to exam-
ine place-based vulnerability as a mediator. In studies 
tracking residential relocation due to housing programs 
or natural disasters, initial poor health is associated with 
relocation to under-resourced communities [51–53]. This 
suggests that effects of poor health on long-term out-
comes may be mediated by the experience of place-based 
vulnerability resulting from “health selection into neigh-
borhoods” [52]. More broadly, settings where people are 
triggered to move present opportunities to study place-
based vulnerability mediating causal effects.

Illustrative analyses 2 and 3 treat V-score as the expo-
sure variable, examining whether living in higher vul-
nerability census tracts is associated with worse HIV 
outcome. This is closely related to analyses often seen 
in the place and HIV literature (and the majority of the 
work we have cited), which treat place characteristics 
as the risk factor of main interest. The only difference is 
how place is characterized. Putting the specific analyses 
aside and considering this strand of research generally, 
here the addition of the V-score to the HIV researcher’s 
toolbox provides another view of the effect of place. 
Even when we limit the notion of place to the collection 
of available variables, there is no one representation for 
the effect of that collection of variables on the outcome. 
With a measurement-centric characterization of place, 
we are looking at a slice of the complexity of place along 
specific pre-defined dimensions, e.g., summary measure 
of crime/policing activities (or of housing conditions, 
or of economic deprivation), or a composite of all three 
combined. With the current outcome-centric character-
ization of place, we have another slice of place in a pos-
sibly different dimension, one that is most relevant to the 
outcome.
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It is important to note that for analyses where place is 
the exposure (or a moderator or mediator), whether to 
choose the measurement-centric or the outcome-ori-
ented characterization of place should be determined by 
the research question. If the research question is about 
a specific dimension of place, e.g., how neighborhood 
economic deprivation puts people at risk for a given out-
come, then the measurement-centric approach should be 
used where the exposure variable is a summary measure 
of economic deprivation (a D-score, not a V-score). If 
the interest is more generally what is the effect of place 
on the outcome, where place is captured by a collection 
of possibly multidimensional measures (and the dimen-
sions themselves are not of interest), then we recommend 
the V-score approach, as the V-score is a summary mea-
sure that captures elements of place that matter to the 
outcome.

Conclusion
To conclude, we proposed a useful characterization of 
place in the form of a vulnerability score, based on place 
measurements, for a specific outcome of interest. Using 
data from a cohort of people with histories of injecting 
drugs and administrative census tract data, we estimated 
the V-score for HIV viral non-suppression for Baltimore 
census tracts. This provides an example for how exist-
ing sources of data, which are often complicated, can 
be leveraged for the purpose of V-score estimation. We 
provide some illustrative analyses using V-score to repre-
sent place, and discuss the potential utility of V-scores in 
analyses of HIV outcomes, where place can play the role 
of exposure, confounder, moderator or even mediator.
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