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Abstract
Background Community optometrists in Scotland have performed regular free-at-point-of-care eye examinations 
for all, for over 15 years. Eye examinations include retinal imaging but image storage is fragmented and they are not 
used for research. The Scottish Collaborative Optometry-Ophthalmology Network e-research project aimed to collect 
these images and create a repository linked to routinely collected healthcare data, supporting the development of 
pre-symptomatic diagnostic tools.

Methods As the image record was usually separate from the patient record and contained minimal patient 
information, we developed an efficient matching algorithm using a combination of deterministic and probabilistic 
steps which minimised the risk of false positives, to facilitate national health record linkage. We visited two practices 
and assessed the data contained in their image device and Practice Management Systems. Practice activities were 
explored to understand the context of data collection processes. Iteratively, we tested a series of matching rules 
which captured a high proportion of true positive records compared to manual matches. The approach was validated 
by testing manual matching against automated steps in three further practices.

Results A sequence of deterministic rules successfully matched 95% of records in the three test practices compared 
to manual matching. Adding two probabilistic rules to the algorithm successfully matched 99% of records.

Conclusions The potential value of community-acquired retinal images can be harnessed only if they are linked to 
centrally-held healthcare care data. Despite the lack of interoperability between systems within optometry practices 
and inconsistent use of unique identifiers, data linkage is possible using robust, almost entirely automated processes.
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Introduction
Retinal images, either from fundus photography or from 
imaging devices such as optical coherence tomography 
provide valuable insights into ophthalmic and systematic 
diseases. This has the potential to improve the ability to 
detect sight or life-threatening conditions at an earlier 
stage. Development of robustly labelled, real-world data-
sets is essential for obtaining the large number of images 
need to develop and validate tools for disease detection 
and risk stratification, however, to date the majority of 
such datasets have been derived from images obtained in 
secondary care and therefore may not be generalisable if 
tools are to be used in primary care or population-based 
settings.

There is widespread public support for the use of 
linked, routinely collected data to support health 
research [1]. This support is conditional on perceived 
public benefit and concerns about potential harms. 
Awareness about existing practice around data linkage 
is reported to be low. The need for ‘adaptive governance’ 
which remains responsive to both researcher and public 
needs and expectations (which may change over time) 
has been highlighted as a key element in maintaining 
public acceptability in this field [2].

Scotland has several decades of health data linkage 
between hospital discharges, cancer registrations, medi-
cations and deaths [3–5]. The process of robustly linking 
electronic records benefited from the development in the 
1970s of a national unique identifier (Community Health 
Index (CHI)), initially applied to primary care data [6]. 
Multiple National Health Service (NHS) healthcare data-
sets are now routinely collated centrally by Public Health 
Scotland and populated with CHI [7–9]. Accurate and 
efficient linkage of information for the same individual 
from different sources, is fundamental to allow meaning-
ful and up to date research.

Scotland has a unique model of primary care eye 
examinations which, since 2006, have been funded by 
the NHS, removing the cost barrier to accessing eye care. 
Eye examinations are conducted by community optom-
etrists and involve a thorough assessment of eye health, 
including fundus examination, visual field assessment, 
and refractive error. Retinal photography became stan-
dard for all patients over 60 years of age in 2008 [10]. 
This means that many community optometry practices 
have been capturing and storing retinal images for well 
over a decade and nationally optometrists now take mil-
lions of retinal images every year. The large number of 
retinal photographs obtained across the older population 
including both healthy and diseased individuals provides 
a valuable potential resource for longitudinal analysis, 
particularly as images acquired in primary care as part of 
the routine eye examination are likely to make the dataset 

more representative of the population in which screening 
or early diagnostic tools would be employed.

The Scottish Collaborative Optometry-Ophthalmology 
Network e-research (SCONe) project was set up [11] as 
a result of a shared vision among clinicians, research-
ers and patient-supporting charities, that these retinal 
images could yield enormous benefit beyond the delivery 
of individual health care [12–14]. The SCONe resource 
would be a valuable addition to the current array of 
ophthalmic datasets many of which are created with a 
bias towards inclusion of cases with one particular dis-
ease [15]. To achieve this, SCONe is retrieving retinal 
images captured routinely at community optometry 
practices and linking them to NHS data within the Scot-
tish National Safe Haven (NSH), creating a longitudinal 
research resource to support development of new tech-
nologies for early detection of eye disease, risk predic-
tion, and discovery of retinal biomarkers of body and 
brain health [13, 14]. The NSH provides a secure tech-
nical and governance framework for linked data proj-
ects including secure access to NHS data, and ethical 
approval for research conducted there (https://www.
ed.ac.uk/edinburgh-international-data-facility/services/
safe-haven-services/scottish-national-safe-haven).

The benefits and risks of bringing separate datasets 
together to support health research are well documented 
[16, 17]. Ideally a unique and common identifier is avail-
able [18, 19]. Without this, it is necessary to develop 
a bespoke approach to matching records using robust 
techniques which must be guided by features in the 
data. Probabilistic (which calculate the likelihood of a 
match comparison) and deterministic (which result in a 
binary yes/no result) matching methods potentially bring 
together records with different degrees of efficiency, sen-
sitivity and specificity [20–22]. For this work to be done 
at scale, manual intervention must be minimised, with-
out introducing false matches.

Most optometry data are collected in busy patient envi-
ronments and in systems which may not be interoperable 
with each other. Whereas these data meet the require-
ments of the practice to provide healthcare services, 
they may not meet the stringent quality requirements 
for research through linkage to other healthcare data, 
such as the routine inclusion of CHI. The SCONe Proof 
of Concept study aim was to test the technical feasibility 
of exporting colour fundus photographs for patients aged 
60 and over from practice camera devices, with enough 
patient information to facilitate linkage to national hospi-
tal and ophthalmic data within the NSH [23].

The objectives of this study were to develop a novel 
automated linkage process which accurately identified 
PMS records for patients with retinal images captured 
in community optometry practices which are commonly 

https://www.ed.ac.uk/edinburgh-international-data-facility/services/safe-haven-services/scottish-national-safe-haven
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identified only by forename, surname and date of birth, 
and validate this against manual linkage.

Methods
Following SCONe’s early engagement (surveys, pre-
sentations, newsletters, social and mainstream media 
articles) with community optometry across Scotland in 
2020, some highly motivated practitioners (optometrists 
and practice directors) came forward to volunteer as 
pilot practices for the Proof of Concept study. The NHS 
Scotland Public Benefit and Privacy Panel for Health and 
Social Care approved the study in 2021. The NSH is the 
host of an existing imaging project which hosts radiologi-
cal scans for research, and SCONe is working with the 
same team [24, 25].

A data sharing agreement was set up between each 
pilot practice’s data controller and the study’s co-spon-
sors (University of Edinburgh and NHS Lothian) and 
the authors arranged site visits to each practice in turn. 
Practices provided details of the hardware and software 
used by the practice to store retinal images and patient 
data. Test exports were run within practice in advance 
where possible to establish whether password access 
would be necessary at any point in the process, gauge the 
time required to carry out each tasks, verify that outputs 
would be in a usable format and explore any additional 
technical input which might be necessary. Additional 
information was sought from device manufacturers.

For robust linkage to national data to be performed 
within the NSH, six fields are required: patient forename, 
surname, date of birth (DOB), sex, address, and postcode. 
In optometry practices the Practice Management System 
(PMS) is used to register new patients, manage book-
ings and store clinical information; PMS records typically 
contains all six required linkage fields. Retinal images 
captured in practice are often stored in structured query 
language databases and the associated patient records 
tend to contain only the patient’s forename, surname, and 
DOB. On site, PMS data were exported to a spreadsheet 
and images were exported from the databases as jpeg, tiff 
or png images with an associated extensible markup lan-
guage file containing image filename, forename, surname, 
and DOB.

Data preparation
Patient forename and surname from the image device 
and PMS were first cleaned by converting all charac-
ters to lower case and removing non-letter characters or 
spaces using R v4.1.3 [26]. Match comparisons were cre-
ated using “phonics” and “stringdist” packages.

Developing “ground truth” for match comparison
Within each of two test practices, an inner join opera-
tion was applied between image and PMS data, with 

perfect matches identified and removed from subsequent 
matching steps. Assessment of the PMS data and imaging 
records which did not match, revealed many potential 
missed matches due to slight differences. These appeared 
to include both intentional and unintentional differences 
with apparent ‘errors’. Perceived intentional differences 
included truncation or expansion of names and unin-
tentional ones included incorrect dates of birth, spelling 
errors, missing or extra spaces, hyphens and apostrophes. 
For the purpose of matching these were all considered 
‘errors’ in patient information. They were more preva-
lent on the camera device exports compared to the more 
complete PMS records.

Review and discussion of these cases by the authors, sup-
plemented by professional experience in optometry prac-
tices led to a consensus around the extent of error which 
should be tolerated and therefore which potential matches 
to include and reject. To create optimal matching rules for 
the algorithm, several different deterministic and proba-
bilistic matching techniques were explored iteratively. We 
evaluated the range of acceptable typographical errors and 
alternative names identified without inadvertently linking 
records erroneously. Based on the literature, deterministic 
rules were considered preferable to probabilistic rules to 
minimise the need for manual review of scores in the algo-
rithm [22].

A list of manual matches was created for each practice 
(i.e. the “ground truth”) based on individual review of cam-
era device records which had not matched to a PMS patient 
record, but for which the author perceived that the mis-
match fitted within the agreed rules and that the mismatch 
was likely due to an error. Whereas this approach identified 
many more linkable images, it was very time consuming 
(approximately three person-days for a single practice with 
2,000 unmatched images) and included the risk of human 
error.

Based on the information gathered from the first two 
practices, we developed a sequential set of rules to match 
patients from the image device data to the PMS patient 
list with a high true positive rate and low false positive rate 
compared to the manual matching process. We tested this 
same sequence in three further practices.

The following definitions were used to calculate true and 
false positive rates when comparing the matching done via 
the automated sequence to the manual process (Fig. 1):

  • true positive: image was associated with the same 
individual in the automated and manual match lists

  • false positive: image was associated with a different 
individual in automated and manual match lists

  • false negative: image was not associated with an 
individual in automated list but was in manual list

  • true negative: image was not associated with an 
individual in automated or manual match lists.
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Results
Development of automated matching sequence
The most useful techniques for matching names were 
selected based on iterative exploration of the early pilot 
practices. Variations such as Muhammad and Moham-
med were matched by converting each string to a Soun-
dex code (M530) based on a phonetic comparison [26]. 
Truncations or expansions (e.g., “Elizabeth” to “Eliza”) 
could be detected using the Longest Common Substring 
(LCS) calculation [27]. This is based on the longest string 
that can be obtained by pairing characters in the two 
names while keeping the order of characters intact. The 
LCS distance is calculated from the number of unpaired 
characters meaning that low scores usually indicate 
stronger matches.

Other ‘edit distance’ calculations comparing names 
such as Levenshtein and Jaro-Winkler distance did not 
improve detection of matches [27]. The Jaro-Winkler dis-
tance (whereby a perfect match between two strings gives 
a score of one) in some cases returned a low score for 
what appeared to be clear matches during manual review. 
The Levenshtein distance (where zero indicates a perfect 
match, but the maximum score depends on the number 
of characters in the longer of the two strings) performed 
similarly to LCS, but as the latter was a simpler measure 
on which to apply a cut-off given the observed naming 
errors, it was used. A score of 6 was found to be a suitable 
threshold.

With respect to DOB, after review of commonly occur-
ring errors, it was decided that an error in one number 
(day, month, year) or the reversal of day and month was 
acceptable in the presence of other matching details.

Validation
In the three validation practices, the first step (identical 
forename, surname and DOB) matched between 84% and 
91% of images to a patient in the PMS. These cases were 
not further scrutinised. Manual matching typically added 

a further 8-15% of images successfully linked to a PMS 
patient record.

The success of each automated matching step com-
pared to the manual match list in each practice was cal-
culated, with those matches removed from subsequent 
steps (Table 1).

1. Exact forename, surname and DOB
2. Exact forename and surname, DOB error tolerated
3. Exact DOB, Soundex forename and surname
4. Soundex match on forename and surname with DOB 

error tolerated
5. Exact DOB and surname, LCS forename under 

threshold (6 used in these tests)
6. Exact DOB and forename, LCS surname under 

threshold (6 used in these tests).

All of the false positive matches identified during the final 
two stages in practice 1 were manually reviewed, and 
were deemed to be true matches, but for which informa-
tion had been manually corrected in the PMS data to fill 
missing details from another source. By eliminating this 
process from the 2nd and 3rd practices, no false positives 
were created using the automated linkage steps.

Beyond the pilot
Work on SCONe has continued with seven more prac-
tices visited at the time of writing. Further deterministic 
steps have been found to be necessary to catch obvious 
potential matches where new local anomalies in data 
entry were evident after the final step described above. 
For example, some practices include middle names with 
forename and double-barreled surnames in the PMS but 
not the image record. The additional steps added (but 
not validated with a full manual check) were: forename 
from image list contained entirely within PMS forename; 
surname from image list contained entirely within PMS 
surname and forename and surname reversed in image 
list. To minimise the two probabilistic matching steps 

Fig. 1 Schematic showing definition of the four potential outcome matches for an image comparing manual and automated matching processes
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(and therefore the number of matches requiring manual 
review) these three steps have been added before using 
LCS. In subsequent practices the ranked match scores 
have been reviewed, and the score of 6 remains a useful 
threshold to minimise false positives, however occasion-
ally obvious outliers can be matched by making a manual 

intervention. All useful steps identified to date are shown 
schematically in Fig. 2.

Discussion
We have developed an algorithmically-defined match-
ing sequence with deterministic and probabilistic rules 
which, applied to limited data (three identifying fields 

Table 1 Number of true and false matches made between image and Patient Management System records within each practice by 
each rule when compared to manual matching after step 1. True positive and false positive rates provided in brackets
Practice (number of 
patients)

Match step True positive (rate) True negative False positive (rate) False negative Number 
of images

Practice #1 (2,339)
1 18,699 (0.859) 4,890 0

(0)
3,079 26,668

2 19,338 (0.888) 4,881 0
(0)

2,449 26,668

3 20,696 (0.95) 4,881 0
(0)

1,091 26,668

4 20,735 (0.951) 4,866 0
(0)

1,067 26,668

5 21,495 (0.986) 4,823 43 (0.009) 307 26,668
6 21,547 (0.988) 4,788 78 (0.016) 255 26,668

Practice #2 (309)
1 1,003 (0.836) 803 0

(0)
197 2,003

2 1,043 (0.869) 803 0
(0)

157 2,003

3 1,133 (0.944) 803 0
(0)

67 2,003

4 1,133 (0.944) 803 0
(0)

67 2,003

5 1,155 (0.963) 803 0
(0)

45 2,003

6 1,185 (0.988) 803 0
(0)

15 2,003

Practice #3 (133)
1 247 (0.911) 5 0

(0)
24 276

2 249 (0.919) 5 0
(0)

22 276

3 263
(0.97)

5 0
(0)

8 276

4 263
(0.97)

5 0
(0)

8 276

5 266 (0.982) 5 0
(0)

5 276

6 269
(0.993)

5 0
(0)

2 276

Match steps:

1. Exact forename, surname and DOB

2. Exact forename and surname, DOB error tolerated

3. Exact DOB, Soundex forename and surname

4. Soundex match on forename and surname with DOB error tolerated

5. Exact DOB and surname, LCS forename < 6

6. Exact DOB and forename, LCS surname < 6

True positive rate = true positive / (true positive + false negative)

False positive rate = false positive / (false positive + true negative)
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for each image), facilitated rapid matching to a more 
detailed patient record, on a different and unconnected 
system with high true and low false positive rates. The 
first step (perfect match of three fields) yielded at least 
an 84% match and application of the rules increased this 
to 99% with no false positives compared to ground truth. 
These rules were selected, based on a thorough review of 
the datasets in multiple practices, considering the known 
behavioural and technological factors at play in practice 
to assess the likelihood of error. Assuming that the man-
ual match is adequately accurate, these examples suggest 
that the algorithm rules can deliver a robust and efficient 
matching process for future practices including those 
with very large patient lists. The process continues to be 
developed and refined in response to new experiences in 
practice.

Real world data challenges
The lack of interoperability between image capture 
devices and PMS in most community optometry practice 
is challenging on multiple levels. It means that staff must 
manually enter patient details in order to take a retinal 
image, despite the full patient record already existing just 
metres away. This is inefficient and inevitably leads to the 
potential for error. From a research perspective, it makes 
the data harder to incorporate into healthcare datasets, 
as these must be linked to the patients’ unique identifier 
which needs accurate and detailed patient information.

The Scottish Government’s Digital health and care 
strategy, refreshed in 2021, emphasised the need for data 
to be used to benefit the country’s citizens, and acknowl-
edged that people are frustrated at the lack of co-ordina-
tion and links between different parts of the healthcare 
system [28]. This work, and the SCONe project gener-
ally, is an example of the innovation required to securely 

bring together elements of that system which are cur-
rently fragmented, to harness benefits which are impos-
sible with data stored in isolation.

Patients whose images were not matched to the full 
PMS record, risk not being matched to their unique 
identifier (CHI) within the NSH and will therefore be 
missing from the linked research resource. If these indi-
viduals are lost at random from practice lists, then this 
will not be problematic other than the loss of beneficial 
data to any work done on the images. However, if there 
is a systematic reason behind the lack of matches, the 
cohort may not be representative of the community. For 
example we may disproportionately lose married women 
who have changed their surname (in systems where this 
is not retained in their record), or people from ethnic 
groups among which names don’t neatly fit into systems 
with a single forename and surname format. If an image 
is incorrectly matched to the wrong CHI, the wrong indi-
vidual’s health records will be included in the linked data-
set. Clearly this has the potential to lead to inaccurate 
research findings which would undermine the project, so 
methods for quality assessment need to be built in [16, 
29]. It also poses a problem from the governance per-
spective, in that the project has permission to use records 
from a defined subset of the population. Both adverse 
implications must be avoided at all costs, and we have 
therefore taken a strict approach whereby the risk of los-
ing true matches is preferable to including false matches.

Limitations
The risk of matching a patient’s image with a different 
patient’s record within each practice based on the three 
available fields, was considered to be much lower than a 
similar matching process conducted nationally (for which 
six fields are considered necessary). The relatively (and 

Fig. 2 Schematic of deterministic (D) and probabilistic (P) rules used in the matching algorithm. Green indicates an exact match, amber indicates that 
the match between the image and Patient Management System (PMS) record met a pre-defined rule. Date of birth (dob) is based on year (yyyy), month 
(mm) and day (dd)
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in some cases absolutely) small number of patients and 
localised geographical area from which each practice 
population was drawn meant that this novel approach 
with the agreed error tolerance was considered accept-
able to the authors. All practices involved in this exercise 
were independently owned with small numbers of staff 
inputting information into the image device and PMS. 
Different rules and error tolerance may be required if 
matching involved larger practices with more staff and 
more potential variation in data input. The data collec-
tion and systems are also likely to vary between practices 
meaning that there is likely no single set of rules which 
would apply optimally in every practice. However, these 
rules, based on a logical sequence of low risk measures, 
worked in practices with very different size of patient list 
(20,000 vs. 27,000) and we have continued to develop the 
process as we visit more sites. We currently do not have a 
method to verify image matching, i.e. does any given reti-
nal image actually belong to the named patient.

Conclusion
To date the SCONe team have delivered retinal images, 
captured over many years, for 4,000 patients to NSH, 
where they were matched to CHI. This study describes 
the necessary intermediate step of linking retinal images 
stored with just three personal data fields, to the six 
fields required for CHI linkage, which facilitated the cre-
ation of a cohort of 28,947 community-acquired images 
linked to routinely-collected healthcare data within the 
NSH for the first time. Evaluating the images linked to 
NHS data will allow us to assess the potential they con-
tain, and work towards establishing a rich, longitudinal 
retinal image repository, which could grow year on year 
with the full support of Scottish Government [30]. This 
would realise SCONe’s potential to support the detec-
tion of pre-symptomatic disease and the development of 
improved diagnostic tools and treatments, directly ben-
efitting the public whose images are its defining and most 
valuable feature.
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