
Yang et al. 
BMC Medical Research Methodology           (2024) 24:12  
https://doi.org/10.1186/s12874-024-02144-2

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Research
Methodology

Seamless phase 2/3 design for trials 
with multiple co-primary endpoints using 
Bayesian predictive power
Jiaying Yang1*, Guochun Li1, Dongqing Yang1, Juan Wu1, Junqin Wang1, Xingsu Gao1 and Pei Liu2 

Abstract 

Seamless phase 2/3 design has become increasingly popular in clinical trials with a single endpoint. Trials that define 
success based on the achievement of all co-primary endpoints (CPEs) encounter the challenge of inflated type 2 error 
rates, often leading to an overly large sample size. To tackle this challenge, we introduced a seamless phase 2/3 design 
strategy that employs Bayesian predictive power (BPP) for futility monitoring and sample size re-estimation at interim 
analysis. The correlations among multiple CPEs are incorporated using a Dirichlet-multinomial distribution. An alterna-
tive approach based on conditional power (CP) was also discussed for comparison. A seamless phase 2/3 vaccine trial 
employing four binary endpoints under the non-inferior hypothesis serves as an example. Our results spotlight that, 
in scenarios with relatively small phase 2 sample sizes (e.g., 50 or 100 subjects), the BPP approach either outperforms 
or matches the CP approach in terms of overall power. Particularly, with n1 = 50 and ρ = 0, BPP showcases an overall 
power advantage over CP by as much as 8.54%. Furthermore, when the phase 2 stage enrolled more subjects (e.g., 
150 or 200), especially with a phase 2 sample size of 200 and ρ = 0, the BPP approach evidences a peak difference 
of 5.76% in early stop probability over the CP approach, emphasizing its better efficiency in terminating futile tri-
als. It’s noteworthy that both BPP and CP methodologies maintained type 1 error rates under 2.5%. In conclusion, 
the integration of the Dirichlet-Multinominal model with the BPP approach offers improvement in certain scenarios 
over the CP approach for seamless phase 2/3 trials with multiple CPEs.
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Introduction
Recently, the efficiency and effectiveness of clinical tri-
als have become increasingly crucial for both the phar-
maceutical industry and public sectors. Adaptive design, 
which allows researchers to respond to interim data 
with adaptions such as futility stopping and sample size 

re-estimation, has been widely adopted in oncology drug 
development. According to Cerqueira et al. [1], the most 
prevalent type of adaptation is the seamless phase 2/3 
design, accounting  for 23.1% of all adaptive designs. In 
Bothwell’s research [2], this figure rose to 57%. Compared 
with traditional approaches that conducted phase 2 trials 
for learning and phase 3 trials to confirm treatment effect 
separately, the seamless phase 2/3 design combines these 
two stages into a single study with an interim analysis 
between them. Consequently, regulatory stand-by times 
between the two stages are skipped and sample sizes are 
saved. Several authors [3–7] have discussed the general 
concepts of seamless phase 2/3 design. While, seamless 
designs have been effectively implemented for years in 
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clinical trials with a single primary endpoint, trials with 
multiple co-primary endpoints (CPEs) present more 
complexity and challenges, as the presence of additional 
endpoints elevates the likelihood of false negatives, thus 
larger sample sizes are required to guarantee sufficient 
power for each endpoint [8].

Using two or more endpoints as CPEs for efficacy evalu-
ation is becoming increasingly common, particularly in the 
development biological  products. Examples include the 
bivalent AC meningitis vaccine, tetravalent influenza vac-
cine, 9-valent HPV vaccine, 23-valent pneumococcal poly-
saccharide vaccine and so on. Trials with CPEs are defined 
as a success if and only if all endpoints meet the efficacy 
requirement simultaneously [9]. Although no adjust-
ment is needed to control the Type 1 error rate [10, 11], 
the Type 2 error rate increases as the number of endpoints 
increases. As the sample size calculated to detect the effect 
on all of the endpoints is always larger than the sample size 
calculated for a single endpoint [8, 12], it becomes more 
appealing to incorporate features such as early stopping 
into seamless designs for trials with multiple CPEs com-
pared to those with a single endpoint. By including stop-
ping rules, researchers could save valuable resources and 
protect subjects from exposure to ineffective treatments 
by stopping the trial for futility if the experimental treat-
ment appears to be ineffective. Consequently, this work 
focuses on seamless phase 2/3 designs for trials with CPEs. 
Futility assessment at interim analysis was included for 
early stopping.

A well-accepted approach for futility assessment at 
interim analysis is to use a conditional approach [13–17]. 
This conditional approach can further be divided into 
conditional power (CP) [13, 18], a frequentist approach, 
and Bayesian predictive power (BPP) [17, 19], a Bayesian 
approach. The former estimates the probability of rejecting 
the null hypothesis at the end of a clinical trial based on 
the information accumulated [13]. It requires an assump-
tion of the true effect size derived from the observed or 
initial hypothesized values. Although  easy to  implement, 
the CP approach has been criticized [20, 21] for relying 
solely on success probabilities evaluated at a single value 
while ignoring the variability of treatment differences. One 
solution to this problem is the use of BPP [17, 19, 22–24], 
which averages the conditional power over a prior dis-
tribution of the true treatment effect, incorporating the 
uncertainty of the effect size using the Bayesian frame-
work, as opposed to assuming a single fixed value as with 
conditional power. Choi et al. [22] and Spiegelhalter et al. 
[19] introduced the use of BPP for binary endpoints. Choi 
et  al. [17] later extended this method to trials with con-
tinuous endpoints. Schmidli [25] proposed a seamless 
phase 2/3 design using BPP for trials with survival end-
points, and Kimani et  al. [26] presented a dose-selection 

procedure for binary outcomes in seamless phase 2/3 tri-
als where both efficacy and safety are considered. Despite 
extensive discussion, few studies have focused on the use 
of BPP in trials with multiple CPEs. In this paper, we aim 
to apply BPP approach to trials with CPEs.

Concerning CPEs, a clinical trial that has been pub-
lished was used as an example. This trial evaluated the 
efficacy and safety of quadrivalent meningococcal teta-
nus toxoid-conjugate vaccine [27], wherein the serore-
sponses for meningococcal serogroups A, C, W, and Y 
were considered as CPEs. These endpoints cannot be 
regarded as independent endpoints that follow a bino-
mial  distribution, as they are typically positively corre-
lated [28]. To solve the problem of multiple endpoints, 
Thall, Simon, and Estey [29] proposed a Dirichlet-mul-
tinomial model for monitoring both adverse events and 
efficacy outcomes in evaluating a single-arm clinical 
trial. This approach allows researchers to monitor multi-
variate discrete outcomes while considering the correla-
tion among endpoints. Zhou, Lee and Yuan [30] further 
adapted this model to accommodate co-primary efficacy 
endpoints in a Bayesian optimal phase 2 design. In this 
paper, the Dirichlet-multinomial model is employed to 
accommodate the outcomes representing the combina-
tion of seroresponses results for four binary endpoints in 
a non-inferior seamless phase 2/3 trial.

Methods
Notation
Consider a seamless phase 2/3 vaccine trial conducted 
using K endpoints under the non-inferior hypothesis. 
This trial is defined as a success if and only if all the K 
endpoints meet the efficacy requirement simultaneously. 
Assume each  group  includes  identical  samples. Let n1 
and n2 denote the sample sizes used for each group at the 
phase 2 and phase 3 stage, respectively. At the phase 2 
stage, M doses of an experimental vaccine, Tm (m = 1,.., 
M), are evaluated against a positive control, TC. The most 
promising dose, TS, is selected for go/no-go decision-
making with a pre-defined futility stop boundary, η. If the 
BPP for all dose groups based on the data from Phase 2 
trials is less than η, it is concluded that all doses are in 
effective and should be stopped early. However, if the 
BPP for the dose group with the best efficacy is greater 
than or equal to η, that dose group will continue to Phase 
3, and the required sample size for the Phase 3 stage is 
re-estimated. The final analysis is conducted based on 
the combined p-values, taking into account data from 
both phase 2 and phase 3 stages. If the combined p-value 
fall below the pre-specified significance level, the null 
hypothesis is rejected, indicating a successful trial; oth-
erwise, the trial is considered a failure. This approach is 
denoted as BPP approach. As a comparative baseline, an 
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alternative approach that utilizes CP for futility moni-
toring (denoted as CP method) will be implemented. A 
detailed design schema is presented in Fig. 1.

Assuming the same statistic, response rate, is used for 
interim monitoring and final analysis, πmk and πCk repre-
sent the response rates for the experimental and control 
groups in terms of endpoint k (k = 1, …, K). For dose m, 
the vector of response rates πm = ( πm1 , …, πmK  ) follows 
K-variate binomial distributions with the correlation 
matrix ρm,

where ρkk′ denotes the correlation coefficient between 
the kth and k’th endpoints for dose m.

To demonstrate non-inferiority of the trial at a one-
sided significance level of α with a power of 1-β, the null 
hypothesis, H0: πmk − πCk ≤ δ for at least one k, is tested 
against the alternatives H1: πmk − πCk > δ for all k, where 
δ is the non-inferiority margin, δ ∈ (−1, 0].

Dirichlet‑Multinomial model
The Dirichlet-multinomial model can be regarded as a gen-
eralization of the beta-binomial model when there are more 
than two categories. Suppose there is a trial with n subjects 
in each group. K binary endpoints are used as CPEs. A per-
mutation based on the four endpoints produces J mutually 
exclusive outcomes that each subject may experience. The 
Dirichlet distribution is used as the prior distribution for 
the probabilities of the J outcomes. Let π = π1, . . . ,πJ  

ρm =




1 · · · ρm1K

... ρmkk′
...

ρmK1 · · · 1





represent the probability vector, and α =
(
α1, . . . ,αJ

)
 

denote the hyperparameters of the Dirichlet distribution. 
The prior distribution can be expressed as:

Given the observed data x =
(
x1, . . . , xJ

)
 , where xj rep-

resents the number of subjects with a positive response for 
outcome j, the likelihood function of the Dirichlet-multino-
mial model can be written as:

Combining the prior distribution and the likelihood 
function, we obtain the posterior distribution, which is also 
a Dirichlet distribution. Let α

′ =
(
α

′
1, . . . ,α

′
J

)
 , where 

α
′
j = αj + xj . The posterior distribution can be expressed 

as:

The choice of hyperparameters a means the amount of 
information that is incorporated into the posterior model 

π ∼ Dir
(
α1, . . . ,αJ

)

p(π) ∝
J∏

j=1

π
αj−1

j

L(π |x) ∝
J∏

j=1

π
xj
j

π |x ∼ Dir(α
′
1, . . . ,α

′
J )

p(π |x) ∝
J∏

j=1

π
α
′
j−1

j

Fig. 1 Study design schema of seamless phase 2/3 design and traditional design
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through the prior. Generally, (α1, . . . ,αJ
) take the same 

value between zero and one [31].
In the presence of historical data, informative prior can 

be adopted with careful consideration and selection. Pos-
sible choices of informative priors and their impact on 
the results can be found in Supplementary Table  2 and 
3 (see “Additional file 1” and “Supplement table”). In the 
absence of historical data, it is recommended to use non-
informative priors. In this paper, Bayes-Laplace’s prior 
[32, 33], one of the most widely used non-informative 
priors, is taken with α1 = … = αJ  = 1 so that the same 
density is given to each value of the probability vector π . 
Thus, the posterior distribution of π is,

Test statistic for trials with multiple CPEs
At interim analysis, suppose an equal sample size, n1, is 
used for both the selected experimental dose (S) and the 
control group (C) in phase 2 stage. The Z-test statistic is 
employed to measure the effect size regarding the rate 
differences between group S and group C for a given end-
point k (k = 1, …, K), that is

where p̂Sk and p̂Ck are the estimated response rates for 
the group S and group C, respectively. We have,

where SE
�̂k

 is the standard error.
For trials with multiple CPEs, it is requisite to com-

pute the Z-statistic for each of the K CPEs. Subsequently, 
the predictive probability is ascertained using the sta-
tistic associated with each endpoint. The endpoint with 
the smallest Z2k value, indicating the least effect size, is 
selected for sample size re-estimation.

Type I error control and final analysis
Given the seamless Phase II/III design employed in this 
study, which falls under the category of confirmatory 
research, there’s an imperative need to control the type 
I error at final analysis. Two primary sources contrib-
ute to the type I error in this context. Firstly, the selec-
tion of a dose from multiple doses during Phase II stage 
might not necessarily be the optimal one, leading to a 
potential type I error. Secondly, the interim analysis, 
which involves a peek into the data followed by possi-
ble sample size adjustments, also introduces an inher-
ent risk of error.

π |x ∼ Dir(1+ x1, . . . , 1+ xJ )

Z2k =
p̂Sk − p̂Ck − δ

SE
�̂k

SE
�̂k

=
{
p̂Sk

(
1− p̂Sk

)
/n1 + p̂Ck

(
1− p̂Ck

)
/n1

}1/2

To control the familywise type I error rate introduced 
by these processes, the Holm’s method [34] is employed 
initially to adjust the p-values derived from multiple com-
parisons during the phase II stage. This yields an adjusted 
p-value representing the phase II stage, thereby control-
ling the type I error from multiple dose comparisons. 
Subsequently, the inverse normal weighted combination 
test [35] is employed to combine this adjusted p-value 
with the one from the phase III stage, thereby ensuring 
control over the error introduced during interim analysis. 
Further details on these methodologies are presented in 
the appendix (see “Additional file 1”).

For endpoint k, the combined p-value at the final analy-
sis is given by:

where �(⋅) represents the cumulative distribution func-
tion of the standard normal distribution, and �−1(⋅) 
denotes its quantile function. Here, p′

2k is the adjusted 
p-value for the endpoint k of the dose group selected 
from phase II stage, while p3k represents the p-value 
from phase III stage for the same endpoint. Given that 
only the dose group showcasing the best efficacy perfor-
mance is chosen for phase III, p′

2k is derived from the 
dose with the smallest p-value among all treatment doses. 
According to the Holm’s method, p2k ′=Mp2k, where p2k is 
the original p-value from phase 2, defined as 
p2k = 1−�(Z2k) , M represents the number of treatment 
doses. Thus, under the null hypothesis, the type I error 
can be expressed as, P

(⋂K
k=1{pcomk ≤ α}

)
 , where α is the 

one-sided significance level.

Conditional power (CP)
In this section, only the core formulas are presented. For 
a comprehensive derivation and detailed explanation of 
the conditional power formula, see Wang, Keller, and Lan 
[18]. Their work extended Lan and Trost [36]’s approach 
to accommodate binary data in non-inferiority trials. 
This method computes the probability of trial success, 
conditional upon the observed data at an interim analy-
sis and the assumption that future data will be consistent 
with current observations. Mathematically, for endpoint 
k , given the interim analysis statistic Z2k   and a statistic 
for the final analysis Zk, the CP can be expressed as:

where c denotes a critical value associated with signifi-
cance, while Z2k is the Z statistic derived from the phase 
II stage. In the context of this study, c = Z1−α.

Let ntotal denote the total sample size of phase 2 and 
phase 3 stage for each group, such that ntotal = n1 + n2. 
The fraction of accumulative information to the total 

pcomk = 1−�

(
w1 ×�−1

(
1− p′2k

)
+ w2 ×�−1(1− p3k )

)

CP = P(Zk > c | Z2k)
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information at the end of the phase 2 stage, symbolized 
by τ , is:

Define the B value calculated at the information frac-
tion τ as Bτ . Assuming a linear relationship between sta-
tistics across stages, we have,

At final analysis, the information fraction 
τ ′ = ntotal

ntotal
= 1 , the statistic Bτ ′ = B1 . Consequently, the 

conditional power is formulated as:

Here, B1k   and Bτk   are the same statistics computed at 
different times, linearly related through their weighted 
sample size averages. Leveraging the properties of linear 
regression, we have, B1 ∼ N (Bτ /τ , 1− τ ) . Thus, with the 
data accumulated in the phase 2 stage, the CP of declar-
ing non-inferiority at the end of the trial is,

where �(·) denotes the standard normal distribution 
function.

Additionally, let ZCP denote the test statistic for a 
desired CP, from (3), we have

With τ defined in Eq.  (1) and Bτ defined in Eq.  (2), 
Eq. (4) can be further expressed as

Let nmin represents the minimum sample size and nmax 
is the maximum sample size. The value of ntotal could be 
obtained by solving Eq.  (5). If the value obtained from 
Eq. (5) out of the range of [nmin, nmax], the corresponding 
minimum or maximum is selected as ntotal.

To evaluate the performance of CP approach, the fol-
lowing steps are executed in each iteration:

Step 1. Binary correlation matrix construction and 
phase II data generation: This step corresponds 
to the initial procedures of the CP evaluation as 
detailed earlier.

(1)τ = n1/ntotal

(2)Bτ = Z2k

√
τ

CP = P(B1k ≥ Z1−α | Bτk)

(3)

CP = P[B1 ≥ Z1−α|Bτ ]

= P

[
N (0, 1) ≥ Z1−α− Bτ

τ√
1−τ

]

= 1−�(
Z1−α− Bτ

τ√
1−τ

)

(4)ZCP =
Z1−α − Bτ /τ√

1− τ

(5)ZCP

√
1−

n1

ntotal
+ Zτ

√
ntotal

n1
− Z1−α = 0

Step 2. Data generation for phase II stage: Draw 
n1 random samples from a K-variate binomial dis-
tribution using the aforementioned correlation 
matrix ρm.
Step 3. Interim analysis: For each dose group m 
(m = 1, …, M) in the experimental arms, perform 
the following calculations: (a) For each endpoint, 
determine its Z-statistic and the corresponding 
p-value; (b) Compute the CP corresponding to each 
endpoint as per Eq. (3). Subsequently, adjust the 
p-values obtained for different doses m of the same 
endpoint k (k = 1, …, K) using the Holm’s approach 
to account for multiple comparisons.
Step 4. Decision-Making: For any given dose group 
m, identify the smallest CP value among the calcu-
lated CPs for the K endpoints as the CP value for 
that dose group, denoted as piCP (i = 1, …, M). 
Then, select the dose with the largest piCP. If the 
chosen piCP falls below a certain threshold, η, the 
trial will be deemed futile and be stopped. The 
decision will be recorded and the total sample size, 
ntotal, will be set to n1 from phase 2. Otherwise, 
the trial will proceed with steps 5–7.
Step 5. Sample size re-estimation: If the trial con-
tinues, the sample size will be adjusted with an ini-
tial size nmin . Iterative sample size adjustments and 
CP recalculations will be performed as per Eq. (5) 
until psCP meets a predefined target or the sample 
size reaches its upper limit nmax .
Step 6. Data generation for Phase III stage: Using 
the newly estimated sample size, new multivariate 
binary data is generated for the treatment and con-
trol groups.
Step 7. Final analysis: Calculate the p-value for 
phase III stage. The trial’s success is ascertained 
based on the combined p-value. If the maximum 
combined p-value of all endpoints falls below α, 
H0 is rejected and the trial is deemed as a success; 
otherwise, it is deemed as a failure. Record the dose 
group chosen for the next phase, the exact sample 
size used, and the outcome of the final analysis con-
cerning the rejection of H0 .

After nsims iterations, tabulate the outcomes, includ-
ing the frequency of each dose group identified as the 
optimal choice, the proportion of trials that progress to 
the next phase, the average ntotal, and the proportion in 
which H0  is successfully rejected.

Bayesian Predictive power (BPP)
BPP [19] is a measure used in Bayesian statistics to 
anticipate the probability of trial success, which com-
bines the prior knowledge(captured by the prior 
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distribution) with current observed data (represented 
by the likelihood function) to estimate the success 
probability of a trial. This estimation is achieved by 
computing the joint posterior predictive distribution 
over both future data and model parameters. In the 
context of our study, let x0 represent the data observed 
in the phase 2 stage and Xf represent the data that will 
be observed in the subsequent phase 3 trial. Let vector 
θ denote the unknown parameters which describe both 
the treatment effect of interest and any other nuisance 
parameters, e.g., θ = (pS, pC). BPP can then be concep-
tualized as the expectation of the success probability, 
computed over the joint posterior predictive distribu-
tions for future data Xf and parameters θ. Mathemati-
cally, this is represented as:

Here, p(θ | x0) denotes the posterior distribution of the 
parameter vector θ conditioned on the current data x0 . 
This distribution arises from the previously mentioned 
Dirichlet distribution. p

(
Xf | θ

)
 represents the likeli-

hood of observing Xf  given a specific parameter vector 
θ . While this likelihood can be perceived as the CP for a 
specific parameter vector θ , it is essential to note that it’s 
not directly derived from the observed data. Rather, it is 
determined based on the posterior distribution of θ , con-
ditioned on the interim data x0.

To evaluate the performance of the BPP approach, the 
following steps are executed in each iteration:

Step 1. Binary correlation matrix construction and 
phase II data generation: This step corresponds to 
the initial procedures of the CP evaluation as detailed 
earlier.
Step 2. Outcome computation: Based on the gener-
ated datasets, outcomes of all feasible binary com-
binations for both treatment and control groups 
are determined, yielding  2K results per group. For 
instance, trials with four CPEs produce 16 mutu-
ally exclusive outcomes (see “Additional file  1” and 
“Supplement table”). These outcomes constitute the 
observed data x =

(
x1, . . . , x2K

)
 in the multinomial 

likelihood.
Step 3. Posterior sampling for interim analysis: Given 
the observed data x =

(
x1, . . . , x2K

)
 and an assigned 

prior α =
(
α1, . . . ,α2K

)
 , 10,000 samples from the 

posterior for both treatment and control groups are 
drawn.
Step 4. BPP computation: For each sample from the 
posterior distribution, the response rate will be esti-
mated and its Z-statistic and the corresponding 
adjusted p-value will be determined. Then, the CP 

BPP =
∫

p
(
Xf | θ

)
p(θ | x0)dθ

values corresponding to each endpoint will be com-
puted using Eq.  (3). These CP values are then aver-
aged across all samples to determine the BPP for each 
endpoint within each dose group.
Step 5. Decision-making: For any given dose group 
m, identify the smallest BPP value among the calcu-
lated BPPs for the K endpoints as the BPP value for 
that dose group, denoted as piBPP (i = 1, …, M). Then, 
select the dose with the largest piBPP. If the chosen 
piBPP is below the threshold, η, the trial is consid-
ered a failure and terminated. This decision is docu-
mented analogously to step 4 in the CP approach. If 
not, the trial continues with steps 6–7.
Step 6. Sample size re-estimation: The ensuing steps 
mirror the CP approach, with the exception that 
sample size re-estimation is conducted based on BPP, 
not CP.
Step 7. Data generation for Phase III stage and 
final analysis: Utilizing the new sample size, data-
sets for the phase III stage are generated, followed 
by p-value calculation. The trial’s success is ascer-
tained via the combined p-value, and pertinent 
results are documented.

Upon completing nsims iterations, relevant outcomes 
are documented.

In step 5, during the go/no-go decision, the stop bound-
ary η is calibrated to be the maximum value within the 
range of 0 to 1, satisfying the following requirements: (1) 
The type 1 error rate is less than α; (2) The overall power 
is no less than 1—β when pS = pC. The first rule aims to 
control the type 1 error rate when the null hypothesis is 
true, while the second rule is to control the type 2 error 
rate when the alternative hypothesis is true. The rationale 
behind selecting the highest cut-off value meeting these 
requirements is to terminate as many ineffective trials as 
possible in the interim analysis.

Performance metrics
We calculated the following metrics for each scenario: 
(a) type 1 error rate; (b) overall power; (c) sample size; (d) 
stop percentage and (e) correct dose selection percent-
age. The type 1 error rate is defined as the percentage of 
“win” outcomes at the end of the entire study when the 
null hypothesis is true, where a “win” means rejecting the 
null hypothesis. A trial that doesn’t proceed to the phase 
3 stage would be classified as a “fail”. Similarly, overall 
power is the percentage of “win” outcomes when the null 
hypothesis is false. The third metric, sample size, can be 
categorized into two types: the sample size used for each 
group throughout the entire trial (e.g., selected dose vac-
cine) and the sample size used for three experimental 
doses and one control group. Both types of sample size 
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obtained from simulation are discussed in our article. 
Stopping probabilities, on the other hand, represent the 
futility stopping probability, refering to the percentage of 
simulated trials stopped due to futility at the end of the 
phase 2 stage. Last, the proportion of correct selection is 
defined as the percentage of simulated trials in which the 
best-performing dose is selected at the end of the phase 2 
stage. To identify the best-performing dose, we compute 
the BPP (or CP) for each endpoint in each dose, taking 
the minimum value as the result of BPP (or CP) for the 
corresponding dose. The dose with the highest BPP (or 
CP) is selected as the best-performing dose.

Results
To obtain the performance metrics, BPP was applied to 
a real vaccine trial in comparison with the CP approach. 
This study [37] investigates the non-inferiority of a quad-
rivalent meningococcal tetanus toxoid-conjugate vaccine 
with -10% as the inferiority margin (δ = -0.1). Serore-
sponse for meningococcal serogroups A, C, W, and Y 
were tested individually as CPEs, with K = 4. The defini-
tion of the Dirichlet-Multinomial model when there are 4 
CPEs can be found in supplementary Table 1 (see “Addi-
tional file  1” and “Supplement table”). Suppose three 
doses of the experimental vaccine were used for dose 
selection, which represents low (m = 1), medium (m = 2) 
and high (m = 3), respectively. The seroresponse rates 
for the experimental group m and control group were 
defined as pm and pC, respectively. In our study, the pro-
portions of subjects achieving specific seroresponse for 
serogroups A, C, W, and Y at a pre-defined timepoint for 
control group is used as pC, pC = (0.4246, 0.4965, 0.4478, 
0.4339). Let p1 = p3 – 0.2, p2 = p3 – 0.1. To obtain type 1 
error rates, we let p3—pC = -0.1. To obtain overall power, 
we let p3—pC > -0.1. The corresponding scenarios can be 
further divided into three types, (1) p3 > pC, (2) p3 = pC 
and (3) pC—0.1 < p3 < pC. For more details, see Table 1.

Let the total sample size ntotal = n1 + n2 = 450 for each 
group in the seamless 2/3 trial. The sample size for the 
phase 2 stage is set as n1 = (50, 100, 150, 200). At interim 
analysis, n2 is re-estimated based on BPP (CP) to achieve 
an overall power of 0.8. The minimum sample size for 
ntotal is defined as nmin = 300 to obtain sufficient safety 
data. The maximum sample size is set to nmax = 1500. 
Equal correlation coefficient is assumed among end-
points as ρkk′ = (0, 0.3, 0.6) where k = 1,2,3,4, k’ = 1,2,3,4, 
k  = k’. Let the significance level be 0.025. The futility 
stop boundaries are calibrated under the scenario where 
p3 = pC, n1 = 100 and ρkk′ = 0, resulting in ηBPP = 0.01 and 
ηCP = 0.0018. The reason we chose different stopping 
boundaries for BPP and CP was that at η = 0.01, the over-
all power of the CP approach failed to meet the pre-spec-
ified requirement (2). Therefore, a smaller cut-off value 
was chosen for the CP approach to increase the possibil-
ity of moving to the next stage of a potentially effective 
trial. The performance of BPP and CP with different stop 
boundaries can be found in Supplementary Table 4.

Type 1 error rate
Table  2 presents the simulated performance results for 
BPP in comparison with CP, taking into account common 
correlation coefficients among the four endpoints ρ = 
(0, 0.3, 0.6) and the sample size allocated for each group 
at the phase 2 stage n1 = (50, 100, 150, 200), under the 
assumption that the null hypothesis is true. This result 
highlights that in each scenario, the type 1 error rates for 
both BPP and CP were less than 2.5%. Notably, when the 
correlation among endpoints is 0.6, the type 1 error rate 
is marginally higher compared to scenarios with correla-
tions of 0 and 0.3. Taking the scenario where n1 = 50 as 
an example, the type 1 error rate for the CP approach is 
less than 0.01% (ρ = 0), 0.01% (ρ = 0.3) and 0.03% (ρ = 0.6), 
respectively.

Table 1 Differences of seroresponse rates between high dose group and control group for the four co-primary endpoints

Scenarios Endpoint 1 Endpoint 2 Endpoint 3 Endpoint 4

Effective p3 > pC 1 0.02 0.02 0.02 0.02

2 0.02 0.02 0.02 0

3 0.02 0.02 0 0

4 0.02 0 0 0

p3 = pC 5 0 0 0 0

pC—0.1 < p3 < pC 6 -0.02 0 0 0

7 -0.02 -0.02 0 0

8 -0.02 -0.02 -0.02 0

9 -0.02 -0.02 -0.02 -0.02

Ineffective p3—pC = -0.1 - -0.10 -0.10 -0.10 -0.10
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Overall Power
Figures  2 and 3 show the overall power performance 
of BPP in comparison with CP, considering common 
correlation coefficients among the four endpoints ρ = 
(0, 0.3, 0.6) and sample size allocated for each group 
at the phase 2 stage n1 = (50, 100, 150, 200) across 9 

different seroresponse scenarios when the null hypothesis 
is false. Figure 2 demonstrates the overall power difference 
between BPP and CP, while Fig. 3 depicts the behavior of 
overall power and total sample size for BPP. An intrigu-
ing observation from the data is that, in scenarios with 
n1 = 50, the overall power of BPP is 8.54% ( ρ = 0), 7.32% 

Table 2 The performance of BPP in comparison with CP approach when the null hypothesis is true

The percentage signs were omitted for type 1 error and stop percentage in the table; Sample size represents the sample size used for each group (eg. selected dose 
group) during the whole phase 2/3 trial

n1 ρ Type 1 Error (%) Stop Percentage(%) Sample size

BPP CP BPP CP BPP CP

50 0  < 0.01  < 0.01 78.40 85.54 374.00 266.90

0.3  < 0.01  < 0.01 68.22 75.65 526.46 413.34

0.6 0.04 0.03 56.46 64.10 701.74 575.49

100 0  < 0.01  < 0.01 87.38 87.45 289.30 288.20

0.3  < 0.01  < 0.01 78.17 78.32 427.35 423.77

0.6 0.01 0.03 67.71 68.01 581.81 571.25

150 0  < 0.01  < 0.01 89.33 86.60 310.05 351.00

0.3  < 0.01  < 0.01 80.30 77.08 445.50 493.46

0.6 0.01 0.03 69.91 66.28 600.34 651.15

200 0  < 0.01  < 0.01 93.89 90.26 291.65 346.10

0.3  < 0.01  < 0.01 85.93 81.64 410.93 475.06

0.6 0.01 0.02 77.37 71.69 537.13 619.83

Fig. 2 The Overall power difference between BPP and CP when the null hypothesis is false



Page 9 of 13Yang et al. BMC Medical Research Methodology           (2024) 24:12  

( ρ = 0.3) and 6.76% ( ρ = 0.6) higher than the CP approach 
by an average across the nine seroresponse scenarios. This 
trend becomes more pronounced when p3 is greater than 
or equal to pC. For scenarios with n1 = 100, the power 
advantage of BPP over CP is 1.41% ( ρ = 0), 2.10% ( ρ = 
0.3) and 2.43% ( ρ = 0.6). Meanwhile, when n1 = 150 or 
n1 = 200, the overall power of BPP consistently surpasses 
that of CP when p3 is greater than or equal to pC. Con-
versely, when p3 is less than pC, the power of BPP closely 
parallels CP, with differences lying within a narrow margin 
of ± 1%. Detailed performance of BPP and CP at interim 
analysis can be found in supplementary Table  5–8 (see 
“Supplementary table”).

Sample size
Table  2 presents the sample size performance of both 
BPP and CP approaches when the null hypothesis is 
true. Table  3 displays the average sample size differences 
between the BPP and CP approaches across various serore-
sponse scenarios with ρ = (0, 0.3, 0.6) and n1 = (50, 100, 

150, 200) when the null hypothesis is false. From Table 2, 
we can see that as the stopping percentage increases, the 
sample size required for the study decreases. Under the 
null hypothesis, for scenarios with n1 = 50, BPP generally 
required more subjects compared to CP. Notably, in the 
case where ρ = 0.6, the difference in sample size is 126.25. 
For scenarios with n1 = 100, the sample size necessitated by 
BPP are comparable to those by CP, with a marginal dif-
ference not exceeding 11 subjects. However, in scenarios 
where n1 = 150 or n1 = 200, BPP enrolls fewer subjects. Spe-
cifically, in scenario where n1 = 200 and ρ = 0.6, BPP saves 
up to 82.70 subjects compared to CP.

Referring to Table  3, it is generally observed that 
the sample sizes required by BPP surpass those of CP. 
Moreover, as the correlation coefficient among end-
points increases, the sample size needed for BPP ampli-
fies, widening the gap from CP. Supplementary Table 5–8 
(see “Supplementary table”) provide detailed informa-
tion on the sample size used for each group across vari-
ous scenarios when the selected experimental dose is 

Fig. 3 The behavior of overall power and total sample size of BPP when the null hypothesis is false
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non-inferior to the control vaccine. Additionally, Fig.  3 
displays the overall power behavior of the BPP approach, 
along with the associated total sample sizes for different 
scenarios when the null hypothesis is false. Particularly, 
when n1 = 50, as the differences between the experimental 
and control groups decrease, the BPP method’s required 
sample size incrementally grows. The trend intensifies 
with scenarios higher correlations. With n1 = 100, as the 
differences narrow, the rate of increase in sample size for 
BPP slows down, and a pronounced decrement is evident 
with higher correlations. For n1 = 150 or n1 = 200, the BPP 
method’s sample size initially shows a mild rise followed 
by a decline as the difference between the experimental 
and control group narrows. Significantly, at n1 = 150 or 
n1 = 200, when p3 is less than pC, for a given scenario, the 
larger the correlation among endpoints, the lesser the 
sample size required.

Stop Percentage
Table 2 presents the futility stop percentages of BPP and 
CP across correlation coefficients, ρ = (0, 0.3, 0.6), and 
sample size at phase 2 stage, n1 = (50, 100, 150, 200), when 
the null hypothesis is true. From the table, we can see 
that the probability of BPP correctly stopping ineffective 
trials at interim analysis increases as the sample size used 
at the phase 2 stage increases. In contrasting different 
correlation scenarios for both BPP and CP approaches, 
the probability of correctly stopping an invalid trial at the 
end of phase 2 is highest when the endpoints are inde-
pendent of each other. Supplementary Table  5–8 (see 
“Supplementary table”) detail the futility stop percent-
ages of BPP and CP under each scenario when the null 

hypothesis is false, revealing similar results. For n1 = 50, 
under any scenarios, BPP’s likelihood of erroneously 
terminating trials early surpasses CP’s by a minimum of 
3.69%. As n1 increases to 100 or more, the early stop-
page probability for BPP slightly ecceeds that of CP. Spe-
cifically, under the scenario where ρ = 0 and the trial and 
control groups are most aligned, the difference in early 
stop percentage between BPP and CP peaks, reaching 
1.74% (n1 = 100), 4.14% (n1 = 150), and 5.76% (n1 = 200). 
Table  3 provides the average stop percentage difference 
between the BPP and CP approaches for ρ = (0, 0.3, 0.6) 
and n1 = (50, 100, 150, 200) in 9 scenarios when the null 
hypothesis is false. In general, the stop percentage dif-
ference between the BPP and CP approaches is -6.43%% 
(n1 = 50), 1.27% (n1 = 100), 2.19% (n1 = 150) and 2.78% 
(n1 = 200).

Correct dose selection
Table  3 reveals that the probability of correct dose 
selection increases with a larger sample size used at 
the phase 2 stage and a smaller correlation among 
endpoints. In general, the average percentage of cor-
rect dose selection across different correlation and 
seroresponse scenarios are 89.20% (n1 = 50), 95.50% 
(n1 = 100), 97.98% (n1 = 150) and 99.22% (n1 = 200).

Discussion
In this paper, we proposed a BPP approach to redesign a 
previously published quadrivalent meningococcal teta-
nus toxoid-conjugate vaccine trial, assuming it to be a 
non-inferior seamless phase 2/3 vaccine trial with four 
CPEs. The final analysis was conducted using a Bayesian 

Table 3 The performance of BPP in comparison with CP when the null hypothesis is false

* represents the difference of BPP and CP, Value = BPP – CP; + : Sample size difference represents the difference of sample size used for each group (eg. selected dose 
group) during the whole phase 2/3 trial. #: represents the average value of the nine different seroresponse scenarios

Items ρ Mean#

n1 = 50 n1 = 100 n1 = 150 n1 = 200

Stop percentage  difference* (%) 0 -8.07 1.58 2.53 3.20

0.3 -6.29 1.27 2.22 2.89

0.6 -4.92 0.96 1.83 2.24

total -6.43 1.27 2.19 2.78

Sample size  difference*+ 0 143.97 23.85 31.86 39.74

0.3 155.63 63.61 64.55 61.12

0.6 184.22 102.65 93.04 83.75

total 161.28 63.37 63.15 61.54

Correct dose selection (%) 0 90.94 96.70 98.71 99.54

0.3 89.19 95.37 98.03 99.26

0.6 87.48 94.42 97.20 98.86

total 89.20 95.50 97.98 99.22
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approach. The performance of the BPP was evaluated 
for correlations among endpoints of 0, 0.3, and 0.6, and 
for phase 2 sample sizes of 50, 100, 150, and 200, in 
scenarios where the null hypothesis was true and false, 
using the CP approach for comparison purpose. The 
results presented in this paper indicate that when the 
sample size used for the phase 2 stage is relatively small 
(e.g., n1 = 50 or 100), the BPP approach either outper-
forms or matches the CP approach in terms of overall 
power when the experimental vaccine is non-inferior 
to the control vaccine. However, it requires larger sam-
ple sizes than the CP approach due to a lower early 
stop percentage if the experimental vaccine is inferior 
to the control vaccine. On the other hand, when more 
subjects are enrolled in the phase 2 stage (e.g., n1 = 150 
or 200), the BPP method exhibits a higher probability 
of correctly stopping a futile trial compared to the CP 
method, all the while maintaining superior or equiva-
lent overall power performance.

The most notable difference between the two 
approaches lies in their respective methodologies for 
estimating trial success. The BPP approach determines 
the probability of trial success based on the overall dis-
tribution of the seroresponse rates of the experimental 
and control group across each endpoint, considering 
the variability of treatment differences for a more com-
prehensive assessment. In contrast, the CP approach 
evaluates each endpoint separately based on its interim 
(Z2k) and final analysis statistics (Zk), without integrat-
ing the correlations among endpoints. This singular 
approach, anchored in the foundational principles of 
Wang, Keller, and Lan [18], might overlook the intri-
cate interplay among endpoints. Although a binary 
correlation matrix is created during data generation, it 
remains external to CP’s computational purview. Sub-
sequent findings underscore that the Dirichlet-Multi-
nomial model’s application within the BPP framework 
not only improves overall power performance but also 
reduces the likelihood of prematurely stopping trials, 
particularly in positively correlated endpoint scenar-
ios. Dirichlet conjugate distributions also reduce the 
computational burden of the BPP approach, enhancing 
its applicability for clinical trials. Additionally, seam-
less phase 2/3 trials with multiple CPEs could shorten 
the overall trial duration, as is the case for trials with a 
single endpoint.

As demonstrated in this paper, the stop percentage of 
the BPP exhibits high sensitivity to the correlation among 
endpoints. Figure S1 depicts the density curve of the BPP 
and CP (see “Supplementary figure”). From this figure, it 
is evident that when endpoints are independent of each 
other, the BPP values tend to cluster at a lower level, 
leading to higher probabilities of early stop. In contrast, 

scenarios with a correlation of 0.6 among endpoints show 
a more dispersed BPP distribution, thereby reducing the 
likelihood of mistakenly stopping early for futility. This 
phenomenon can be attributed to the fact that when end-
points exhibit a high correlation (e.g., 0.6), the serore-
sponse rates for the four correlated endpoints generated 
by a random process become relatively aligned, making 
extreme outcomes less probable. After 10,000 iterations, 
we derived 10,000 sets of consistent seroresponse rates. 
Consequently, the distribution of the trial success prob-
ability computed at each iteration appears more uniform 
when there’s a high correlation among endpoints. As the 
probability of early stopping decreases, the overall power 
increases, and the total sample size decreases. Further-
more, the distribution of the BPP values when correla-
tion is high, alongside the CP values derived from 10,000 
simulations, both exhibit a bimodal pattern with peaks 
at both extremities. Such a U-shaped distribution aligns 
with plausible scenarios observed in clinical develop-
ment [38]. Nonetheless, this distribution profile tends 
to induce a higher early stop for futility probability com-
pared to a unimodal distribution, underscoring the need 
for further exploration and thoughtful integration in trial 
designs.

When selecting a sample size for the phase 2 stage, it’s 
essential to conduct a meticulous assessment. If the sam-
ple size used in the phase 2 stage is inadequate, there’s a 
risk that the optimal dose might not be identified for the 
subsequent phase 3 stage. In our simulation scenarios, 
although utilizing a smaller initial sample size can result 
in some sample savings — specifically, the BPP method 
can save an average of 155.45 subjects per group when 
n1 = 50 compared to n1 = 200 — we caution against rely-
ing on too small a sample size in the early phase. This is 
due to the elevated risk of halting effective trials by mis-
take when small samples are used in the phase 2 stage. 
Specifically, for the BPP approach, the probability of erro-
neously stopping early is 9.15% on average across sce-
narios when n1 = 200. This rate escalates to 19.79% when 
n1 = 50. Futhermore, given the precise and yet unknown 
dose–response is pivotal for dose selection [39], a rela-
tively larger sample size is mandated at early stage when 
response rates across dosage groups are closely aligned. 
If the response rates are more distinguishable, fewer sub-
jects might suffice.

This study presents certain limitations. Firstly, trials 
with CPEs strictly control type 1 errors, making it chal-
lenging to achieve a 2.5% type 1 error during futility stop 
boundary calibration. Consequently, we set the type 2 
error rate below 0.2 for a specific scenario of n1 = 100, 
ρ = 0 and pS = pC to derive a reliable boundary. Besides, 
this article focuses on the fundamental situation where 
four binary endpoints serve as CPEs. Yet, other contexts 
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could involve continuous endpoints, time-to-event 
endpoints or vaccine efficacy (1-RR) as parameters of 
interest. Previous studies, such as those by Choi [17], 
Schmidli [25] and Kimani et al. [26] have explored BPP 
in single endpoint settings. Adapting their methods to 
trials with CPEs will be a task for future work. Addi-
tionally, while we did not include an early stop for effi-
cacy rule in our study, supplementary Table  5–8 (see 
“Supplementary table”) offer probabilities for such early 
termination for both the BPP and CP approach, using 
efficacy boundaries of > 0.8 and > 0.9, respectively, offer-
ing a reference for potential early stops in future studies 
when an efficacy stop rule is incorporated.

In conclusion, our study deepens the comprehension 
of BPP in seamless phase 2/3 trials with multiple CPEs, 
shedding light on more streamlined clinical trial designs. 
Upcoming studies should delve into these methos across 
diverse endpoints and assess their real-world application, 
aiming to enhance the drug and vaccine development 
process in tandem with CPEs.

Conclusions
In conclusion, this study highlights the advantages of the 
BPP approach in seamless phase 2/3 trials with multiple 
CPEs. We found out that for smaller phase 2 sample sizes, 
the BPP approach either matches or surpasses the CP 
approach in overall power when the experimental group 
is non-inferior to the control. Notably, in scenarios where 
n1 = 50, the overall power advantage of BPP over CP was 
as high as 8.54% when ρ = 0, providing a robust alterna-
tive in specific experimental setups. Yet, if the experimen-
tal group underperforms, the BPP demands larger sample 
sizes due to a reduced early stop probability, a difference 
that can be as substantial as 126.25 subjects when ρ = 0.6 
and n1 = 50. Conversely, with larger phase 2 samples, 
the BPP method consistently shows a higher probabil-
ity of accurately halting futile trials over the CP method, 
while still maintaining a competitive overall power. The 
early stoppage probability for BPP slightly exceeds that of 
CP, reaching a peak difference of 5.76% when ρ = 0 and 
n1 = 200, signifying a more resource-efficient approach in 
such scenarios. Moreover, our simulations demonstrated 
that both BPP and CP maintain type 1 error rates under 
2.5%. This research augments the comprehension of BPP 
in seamless phase 2/3 trials with multiple CPEs. Going 
forward, future work should focus on extending these 
methods to trials with various types of endpoints, such as 
continuous, time-to-event, and vaccine efficacy (1-RR).

Abbreviations
CPEs  Co-primary endpoints
BPP  Bayesian predictive power
CP  Conditional power
JT  Jennison and turnbull

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874- 024- 02144-2.

Additional file 1. 

Additional file 2: Supplementary Table 1. The 16 outcomes concerning 
4 co-primary endpoints. Supplementary Table 2. The effect of informa-
tive prior on BPP when the null hypothesis is true. Supplementary 
Table 3. The effect of informative prior on BPP when the null hypothesis is 
false. Supplementary Table 4. The performance of BPP and CP with dif-
ferent stop boundaries when  = 0 and n1=100. Supplementary Table 5. 
The performance of BPP in comparison with CP approach for common 
correlation coefficient among the 4 endpoints is  = (0, 0.3, 0.6) and sample 
size used for each group at phase 2 stage is n1 = 50 in the nine scenarios 
when the null hypothesis is false. Supplementary Table 6. The perfor-
mance of BPP in comparison with CP approach for common correlation 
coefficient among the 4 endpoints is  = (0, 0.3, 0.6) and sample size used 
for each group at phase 2 stage is n1= 100 in the nine scenarios when 
the null hypothesis is false. Supplementary Table 7. The performance of 
BPP in comparison with CP approach for common correlation coefficient 
among the 4 endpoints is  = (0, 0.3, 0.6) and sample size used for each 
group at phase 2 stage is n1= 150 in the nine scenarios when the null 
hypothesis is false. Supplementary Table 8. The performance of BPP in 
comparison with CP approach for common correlation coefficient among 
the 4 endpoints is  = (0, 0.3, 0.6) and sample size used for each group at 
phase 2 stage is n1= 200 in the nine scenarios when the null hypothesis 
is false. Supplementary Table 9. Correct dose selection rates for phase 
2 stage when null hypothesis is false. Supplementary Table 10. Correct 
dose selection rates for phase 2 stage when the null hypothesis is true.

Additional file 3: Figure S1. Histogram of trial success probabilities 
obtained by BPP or CP approach.

Acknowledgements
We thank professor Yuan Ying for his guidance in adaptive design. We also 
thank Jiang Liyun for her assistance in code design.

Authors’ contributions
YJ primarily contributed to conceiving the study, code design and wrote the 
first draft of the manuscript. YD and Wang Junqin contributed in study design 
and code writing. GX and Wu Juan contributed in literature search and review-
ing of the manuscript. LG and LP contributed in study design, coordinated 
the operations and reviewing of the manuscript. All authors contributed to 
the final version of the manuscript. The author(s) read and approved the final 
manuscript.

Funding
Funded by Jiangsu Province "The 14th Five-year Plan" Key Discipline-Public 
Health and Preventive Medicine. The funding bodies played no role in the 
design of the study and collection, analysis, and interpretation of data and in 
writing the manuscript.

Availability of data and materials
The example data sets generated and analyzed during this research are avail-
able from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study is hypothetically based, no human data has been used.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1186/s12874-024-02144-2
https://doi.org/10.1186/s12874-024-02144-2


Page 13 of 13Yang et al. BMC Medical Research Methodology           (2024) 24:12  

Received: 15 January 2023   Accepted: 5 January 2024

References
 1. Cerqueira FP, Jesus AMC, Cotrim MD. Adaptive Design: A Review of the 

Technical, Statistical, and Regulatory Aspects of Implementation in a 
Clinical Trial. Therapeutic Innov Regulatory Sci. 2020;54(1):246–58.

 2. Bothwell LE, Avorn J, Khan NF, Kesselheim AS. Adaptive design clini-
cal trials: a review of the literature and ClinicalTrials.gov. BMJ Open 
2018;8(2):e018320.

 3. Schmidli H, Bretz F, Racine A, Maurer W. Confirmatory seamless phase 
II/III clinical trials with hypotheses selection at interim: Applications 
and practical considerations. Biometrical J Biometrische Zeitschrift. 
2006;48(4):635–43.

 4. Maca J, Bhattacharya S, Dragalin V, Gallo P, Krams M. Adaptive seamless 
phase II/III designs - Background, operational aspects, and examples. 
Drug Inf J. 2006;40(4):463–73.

 5. Jenniso C, Turnbull BW. Confirmatory seamless phase II/III clinical trials 
with hypotheses selection at interim: opportunities and limitations. 
Biometrical journal Biometrische Zeitschrift 2006; 48(4): 650–5; discussion 
60–2.

 6. Gallo P, Chuang-Stein C, Dragalin V, et al. Adaptive designs in clinical drug 
development--an Executive Summary of the PhRMA Working Group. 
Journal of biopharmaceutical statistics 2006;16(3):275–83; discussion 
85–91, 93–8, 311–2.

 7. Bretz F, Schmidli H, Konig F, Racine A, Maurer W. Confirmatory seamless 
phase II/III clinical trials with hypotheses selection at interim: general con-
cepts. Biometrical J Biometrische Zeitschrift. 2006;48(4):623–34.

 8. Sozu T, Sugimoto T, Hamasaki T, Evans SR. Sample size determination in 
clinical trials with multiple endpoints. New York: Springer; 2015.

 9. U.S. Food & Drug Administration. Guidance for industry for the evaluation 
of combination vaccines for preventable diseases: production, testing 
and clinical studies. 1997. https:// www. fda. gov/ regul atory- infor mation/ 
search- fda- guida nce- docum ents/ guida nce- indus try- evalu ation- combi 
nation- vacci nes- preve ntable- disea ses- produ ction- testi ng- and. Accessed 
15 Jan 2023.

 10. U.S. Food & Drug Administration. Multiple endpoints in clinical trials guid-
ance for industry. 2022. https:// www. fda. gov/ regul atory- infor mation/ 
search- fda- guida nce- docum ents/ multi ple- endpo ints- clini cal- trials- guida 
nce- indus try. Accessed 13 Jan 2023.

 11. European Medicines Agency. Guideline on multiplicity issues in clinical 
trials. 2017. https:// www. ema. europa. eu/ en/ docum ents/ scien tific- guide 
line/ draft- guide line- multi plici ty- issues- clini cal- trials_ en. pdf. Accessed 15 
Jan 2023.

 12. Xiong C, Yu K, Gao F, Yan Y, Zhang ZJCT. Power and sample size for clinical 
trials when efficacy is required in multiple endpoints: application to an 
Alzheimer’s treatment trial. Clin Trials. 2005;2(5):387–93.

 13. Proschan MA, Hunsberger SA. Designed extension of studies based on 
conditional power. Biometrics. 1995;51(4):1315–24.

 14. Jennison C, Turnbull BW. Confirmatory seamless phase II/III clinical trials 
with hypotheses selection at interim: Opportunities and limitations. Biom 
J. 2006;48(4):650–5.

 15. Lan KG, Hu P, Proschan MA. conditional power approach to the evalua-
tion of predictive power. Stat Biopharmaceut Res. 2009;1(2):131–6.

 16. Lachin JM. A review of methods for futility stopping based on conditional 
power. Stat Med. 2005;24(18):2747–64.

 17. Choi SC, Pepple PA. Monitoring clinical trials based on predictive prob-
ability of significance. Biometrics. 1989;45(1):317–23.

 18. Wang C, Keller D, Lan K. Sample size re-estimation for binary data via 
conditional power. Am Stat Assoc Proc Joint Stat Meet. 2002:3621–6.

 19. Spiegelhalter DJ, Freedman LS, Blackburn PR. Monitoring clinical trials: 
conditional or predictive power? Control Clin Trials. 1986;7(1):8–17.

 20. Heath A, Offringa M, Pechlivanoglou P, et al. Determining a Bayesian pre-
dictive power stopping rule for futility in a non-inferiority trial with binary 
outcomes. Contemp Clin Trials Commun. 2020;18: 100561.

 21. Dmitrienko A, Wang MD. Bayesian predictive approach to interim moni-
toring in clinical trials. Stat Med. 2006;25(13):2178–95.

 22. Choi SC, Smith PJ, Becker DP. Early decision in clinical-trials when the 
treatment differences are small - experience of a controlled trial in head 
trauma. Control Clin Trials. 1985;6(4):280–8.

 23. Berry DA. Monitoring accumulating data in a clinical trial. Biometrics. 
1989;45(4):1197–211.

 24. Johns D, Andersen JS. Use of predictive probabilities in phase II and 
phase III clinical trials. J Biopharm Stat. 1999;9(1):67–79.

 25. Schmidli H, Bretz F, Racine-Poon A. Bayesian predictive power for interim 
adaptation in seamless phase II/III trials where the endpoint is survival up 
to some specified timepoint. Stat Med. 2007;26(27):4925–38.

 26. Kimani PK, Stallard N, Hutton JL. Dose selection in seamless phase II/III 
clinical trials based on efficacy and safety. Stat Med. 2009;28(6):917–36.

 27. Vesikari T, Borrow R, Forsten A, Findlow H, Dhingra MS, Jordanov E. 
Immunogenicity and safety of a quadrivalent meningococcal tetanus 
toxoid-conjugate vaccine (MenACYW-TT) in healthy toddlers: a Phase II 
randomized study. Hum Vaccin Immunother. 2020;16(6):1306–12.

 28. Yang J, Li J, Wang S, Luo L, Liu PJHv, immunotherapeutics. Comparison of 
three sample size calculation methods for non-inferiority vaccine trials 
with multiple continuous co-primary endpoints. Human Vacc Immuno-
therapeut. 2019;15(1):256–63.

 29. Thall PF, Simon RM, Estey EH. Bayesian sequential monitoring designs 
for single-arm clinical trials with multiple outcomes. Stat Med. 
1995;14(4):357–79.

 30. Zhou H, Lee JJ, Yuan Y. BOP2: Bayesian optimal design for phase II clinical 
trials with simple and complex endpoints. Stat Med. 2017;36(21):3302–14.

 31. Alvares D, Armero C, Forte A. What does objective mean in a dirichlet-
multinomial process? Int Stat Rev. 2018;86(1):106–18.

 32. Bayes T. An essay towards solving a problem in the doctrine of chances. 
Philosophical Trans Royal Soc London 1763;(53):370–418.

 33. Laplace PS. Théorie analytique des probabilités. Paris: Courcier; 1820..
 34. Westfall P H, Young S S. Resampling-based multiple testing: Examples 

and methods for p-value adjustment. Wiley. 1993;62–75.
 35. Lehmacher W, Wassmer G. Adaptive sample size calculations in group 

sequential trials. Biometrics. 1999;55(4):1286–90.
 36. Lan K, Trost DC. The use of conditional power in interim analysis. Pfizer 

Technical Report 1999: 99–006.
 37. Esteves-Jaramillo A, Koehler T, Jeanfreau R, Neveu D, Jordanov E, Singh 

DM. Immunogenicity and safety of a quadrivalent meningococcal teta-
nus toxoid-conjugate vaccine (MenACYW-TT) in ≥56-year-olds: A Phase 
III randomized study. Vaccine. 2020;38(28):4405–11.

 38. Rufibach K, Burger HU, Abt M. Bayesian predictive power: choice of prior 
and some recommendations for its use as probability of success in drug 
development. Pharm Stat. 2016;15(5):438–46.

 39. Pong A, Chow SC. Handbook of adaptive designs in pharmaceutical and 
clinical development. Boca Raton: Chapman & Hall/CRC; 2016. 

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-evaluation-combination-vaccines-preventable-diseases-production-testing-and
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-evaluation-combination-vaccines-preventable-diseases-production-testing-and
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-evaluation-combination-vaccines-preventable-diseases-production-testing-and
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/multiple-endpoints-clinical-trials-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/multiple-endpoints-clinical-trials-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/multiple-endpoints-clinical-trials-guidance-industry
https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-multiplicity-issues-clinical-trials_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-multiplicity-issues-clinical-trials_en.pdf

	Seamless phase 23 design for trials with multiple co-primary endpoints using Bayesian predictive power
	Abstract 
	Introduction
	Methods
	Notation
	Dirichlet-Multinomial model
	Test statistic for trials with multiple CPEs
	Type I error control and final analysis
	Conditional power (CP)
	Bayesian Predictive power (BPP)
	Performance metrics

	Results
	Type 1 error rate
	Overall Power
	Sample size
	Stop Percentage
	Correct dose selection

	Discussion
	Conclusions
	Acknowledgements
	References


