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Abstract 

Background The Interrupted Time Series (ITS) is a robust design for evaluating public health and policy interven-
tions or exposures when randomisation may be infeasible. Several statistical methods are available for the analysis 
and meta-analysis of ITS studies. We sought to empirically compare available methods when applied to real-world ITS 
data.

Methods We sourced ITS data from published meta-analyses to create an online data repository. Each dataset 
was re-analysed using two ITS estimation methods. The level- and slope-change effect estimates (and standard errors) 
were calculated and combined using fixed-effect and four random-effects meta-analysis methods. We examined dif-
ferences in meta-analytic level- and slope-change estimates, their 95% confidence intervals, p-values, and estimates 
of heterogeneity across the statistical methods.

Results Of 40 eligible meta-analyses, data from 17 meta-analyses including 282 ITS studies were obtained (pre-
dominantly investigating the effects of public health interruptions (88%)) and analysed. We found that on average, 
the meta-analytic effect estimates, their standard errors and between-study variances were not sensitive to meta-anal-
ysis method choice, irrespective of the ITS analysis method. However, across ITS analysis methods, for any given meta-
analysis, there could be small to moderate differences in meta-analytic effect estimates, and important differences 
in the meta-analytic standard errors. Furthermore, the confidence interval widths and p-values for the meta-analytic 
effect estimates varied depending on the choice of confidence interval method and ITS analysis method.

Conclusions Our empirical study showed that meta-analysis effect estimates, their standard errors, confidence 
interval widths and p-values can be affected by statistical method choice. These differences may importantly impact 
interpretations and conclusions of a meta-analysis and suggest that the statistical methods are not interchangeable 
in practice.
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Introduction
Systematic reviews may be used to collate and synthe-
sise evidence on the effects of interventions targeted at 
populations (e.g., effects of a country-wide ban on smok-
ing rates [1]) or the impacts of exposures (e.g., impacts 
of flooding events [2]). These reviews may include evi-
dence beyond randomised trials by necessity, because 
trials may not be possible (in the case of exposures) or 
feasible (in the case of interventions targeted at popula-
tions) [3]. The interrupted time series (ITS) may be con-
sidered for inclusion in such reviews because this design 
is often used to examine population-level interventions 
and exposures, when randomisation is not possible (e.g., 
for ethical reasons, when a policy targets an entire popu-
lation). Furthermore, this design is considered a robust 
alternative for evaluating the impact of population-level 
interventions / exposures [4–7]. The results across the 
included ITS studies may be statistically combined using 
meta-analysis, providing a combined estimate of the 
intervention / exposure’s impact [8, 9].

In a classical ITS study, data are collected over time 
both before and after an intervention or exposure (hence-
forth referred to as an ‘interruption’), and aggregated 
using summary statistics over regular time intervals [10]. 
For example, in Ejlerskov et  al. [11], the interruptions 
examined were policies implemented in six supermarkets 
that aimed to reduce the purchasing of less-healthy foods 
that are commonly displayed at supermarket checkouts. 
The outcome examined was the number of checkout food 
purchases, aggregated into four-weekly periods (Fig.  1, 
Additional file  1: Figure S1) [11]. While the ITS design 
may also be used to examine the effects of an interven-
tion on individuals (in which multiple measurements are 
taken before and after the intervention for each individ-
ual), we do not consider the use of the ITS design in this 
context further [12, 13].

In the analysis of data from this classical ITS design, 
a commonly fitted model structure is the segmented 
linear model [14, 15]. This model allows estimation 
of separate trends before and after the interruption 
(referred to as the pre- and post-interruption trends). 
Hence the advantage of the ITS design is that the series 
acts as its own control; the pre-interruption trend can 
be projected into the post-interruption period, which, 
when modelled correctly, provides a counterfactual for 
what would have occurred in the absence of the inter-
ruption [5, 14, 15]. The impact of the interruption can 
then be estimated by comparing the counterfactual 
with the observed post-interruption trend. A variety 
of effect metrics can be calculated, including level-
change (e.g., immediately following the interruption) 
and slope-change [7, 16].

When estimating the regression parameters of a seg-
mented linear model, characteristics of time series data 
need to be accounted for [17]. One of these character-
istics is autocorrelation, which allows for the fact that 
values of near neighbouring datapoints may be more 
similar (or different) than distant datapoints [7, 18, 19]. 
If autocorrelation is unaccounted for [e.g., when using 
ordinary least squares (OLS), in the presence of (likely) 
positive autocorrelation] the regression parameter stand-
ard errors may be underestimated [17, 20, 21]. Several 
estimation methods are available to account for autocor-
relation [e.g., restricted maximum likelihood (REML), 
Prais-Winsten (PW)] [20, 22, 23].

Two-stage meta-analysis may be used to combine 
effects across ITS studies. In the first stage, segmented 
linear models are fitted to each ITS study to obtain 
interruption effect estimates and their standard errors 
[24, 25]. These estimates may be reported in the pri-
mary publications, or the systematic reviewer may 
re-analyse the time series data to obtain the required 
estimates [26]. Then, in the second stage, the effect esti-
mates are combined using a meta-analysis model; com-
monly either a fixed (common) effect or random-effects 
meta-analysis model [24]. Fixed-effect meta-analysis 
weights studies by the inverse of the variance of their 
estimated effect, and hence analysis requires only the 
effect estimates and their standard errors. However, the 
random-effects method weights additionally involve 
the between-study variance, a parameter which must 
be estimated and for which many estimators are avail-
able [24, 27–29]. Furthermore, there exist many confi-
dence interval methods for the summary (combined) 
meta-analytic effect [30].

We previously undertook a numerical simulation study 
examining the performance of different meta-analysis 
methods to combine results from ITS studies with con-
tinuous outcomes, and how characteristics of the meta-
analysis, ITS design, and method of analysis of the 
individual ITS studies modified the performance [31]. 
We examined ITS analysis and meta-analysis methods 
that are commonly used, or have been shown through 
numerical simulation to be preferable [20, 29, 30]. We 
found that all random-effects methods yielded confi-
dence interval coverage for the summary effect close 
to the nominal level, irrespective of the ITS analysis 
method used. However, the between-study variance was 
overestimated in some scenarios [31]. In this compan-
ion study, we aimed to demonstrate empirically how the 
same methods compare when applied to real-world data, 
and answer the question: does statistical method choice 
importantly impact the meta-analysis results? Together, 
the simulation and empirical studies allow for a more 
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complete understanding of which methods should be 
used in different scenarios. Specifically, our objectives 
were to: i) compare the meta-analysis estimates of the 

immediate level-change and slope-change, their standard 
errors, confidence intervals and p-values, and the esti-
mates of between-study variance obtained from different 

Fig. 1 A Six interrupted time series (ITS) studies examining the effect of supermarket policies on purchases of common checkout foods [11]. The 
crosses represent data points, the solid lines represent the pre- and post-interruption trend lines and the dashed line represents the counterfactual 
trend line. The vertical dashed green line indicates the time of the interruption. B Forest plots depicting study-level and meta-analysis estimates 
of immediate level-change (left) and slope-change (right). ITS interrupted time series
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meta-analysis and ITS analysis methods; and ii), create a 
repository of data from ITS studies.

Methods
Overview of the methods
An overview of the steps and corresponding Sections 
is depicted in Fig. 2. In brief, we sourced ITS data from 
published meta-analyses (sections  Identification of 
reviews and meta-analyses  and Methods to obtain time 
series data) and re-analysed them using two ITS analysis 

estimation methods (section  Interrupted time series 
(ITS) analysis methods). The level-change and slope-
change effect estimates (and their associated standard 
errors) were meta-analysed using a fixed-effect and four 
random-effects meta-analysis methods (section  Meta-
analysis methods). We compared the meta-analysis effect 
estimates, their standard errors, confidence intervals and 
p-values, and estimates of the between-study variance, 
across the meta-analysis methods (sections  Analysis 
and meta-analysis of the ITS datasets and Comparison 

Fig. 2 Depiction of the analysis methods used in this empirical study. *The estimation methods for ITS analysis are listed in order of preference, 
i.e. REML is used whenever it converges and the estimated autocorrelation is between -1 and 1, while PW followed by OLS are used in the case 
of non-convergence. ITS interrupted time series, REML restricted maximum likelihood, PW Prais-Winsten, OLS ordinary least squares, DL DerSimonian 
and Laird, WT Wald-type, HKSJ Hartung-Knapp/Sidik-Jonkman
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of results from different ITS-analysis and meta-analysis 
methods).

Identification of reviews and meta‑analyses
We sourced data for the present study from our previ-
ous methodological review that examined the statistical 
approaches used in reviews that include meta-analysis 
of ITS studies [26]. In brief, we searched eight electronic 
databases and included reviews containing at least one 
meta-analysis that included at least two ITS studies 
(using the review authors’ definition of an ITS). From 
each review, meta-analysis methods were examined for 
a single comparison-outcome (see the methodological 
review protocol for selection details [32]). In addition, 
reviews were eligible for the present study if:

1) The review’s meta-analysis included at least two ITS 
studies that had at least three datapoints before and 
after an interruption and a clearly defined interrup-
tion timepoint; and

2) The raw time series data were available. Data was 
classified as unavailable, if for example, the review 
authors had directly extracted effect estimates from 
the primary studies, or if it was not clear if the review 
authors had directly extracted effect estimates from 
the primary studies or re-analysed the raw time series 
data.

Methods to obtain time series data
We sought the raw time series data using the following 
hierarchy of approaches:

1. Sourced the time series data from the review (e.g., 
where the data were available in supplementary files).

2. Contacted (via email) the corresponding author of 
the review, and requested the time points (and time 
unit, e.g., week, month), aggregate summary statis-
tic (e.g., mean, rate, proportion), and time point(s) at 
which the interruption(s) occurred for each ITS.

3. Digitally extracted time series data from published 
figures in the review using WebPlotDigitizer [33]. 
This data extraction tool has been shown to yield 
data that can be used to obtain accurate estimates of 
the effect estimates and standard errors from pub-
lished ITS graphs [34].

We only sought time series data from authors of the 
reviews, and not authors of the primary studies, for rea-
sons of feasibility.

Interrupted time series (ITS) analysis methods
Statistical model for an ITS analysis
We fitted the following segmented linear regression 
model to each of the included ITS studies [5]:

The continuous outcome at time t(t = 1, . . . ,T ) is rep-
resented by Yt . The series are divided into two segments, 
before and after the interruption. The time of the inter-
ruption (I) occurs at time TI . The segments are identi-
fied by Dt ( Dt = 1(t≥TI ) in the post-interruption period) 
(Additional file 1: Figure S1). β0 represents the intercept 
in the pre-interruption period, β1 the pre-interruption 
slope, and β2 and β3 represent the interruption effects—
respectively, immediate level-change and slope-change. 
The error term accommodates lag-1 (AR(1)) autocorrela-
tion ( ρ ) via εt = ρεt−1 + wt , ( wt ∼ N (0, 1) ); where ρεt−1 
allows for correlation between the current and the pre-
vious time point. Longer lags (i.e., higher order autocor-
relation) can be modelled; however, we did not consider 
these here since we did not investigate longer lags in our 
companion numerical simulation study [31].

Estimation methods for ITS analysis
We used three statistical estimation methods for the 
analysis of the included ITS studies. These methods were 
selected because they are commonly used in practice 
[35], or have been shown to have improved statistical 
performance (via numerical simulation) [20, 22]. Briefly, 
the methods were:

• Ordinary least squares (OLS) [17], which assumes 
that the model errors are uncorrelated between 
observations. In the presence of positive autocor-
relation, which has been shown to frequently occur 
in time series data [36], this assumption is violated, 
leading to potential underestimation of the variances 
of the regression parameters [15, 37];

• Prais-Winsten (PW), which is a generalised least-
squares extension of OLS. PW estimation involves 
fitting the model using OLS and estimating lag-1 
autocorrelation from the residuals, then, transform-
ing the data using the estimated autocorrelation and 
re-estimating the regression parameters [23]. The 
aim is to remove the autocorrelation from the errors, 
which may require multiple iterations for the esti-
mated autocorrelation to converge [23]. Account-
ing for autocorrelation in this way has been shown 
to improve estimation of the regression parameter 
standard errors compared with OLS estimation in 
the presence of autocorrelation; however, the stand-

(1)Yt = β0 + β1t + β2Dt + β3(t − TI )Dt + εt .
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ard errors are still underestimated using PW, particu-
larly when there are few datapoints [20].

• Restricted Maximum Likelihood (REML), which 
is a form of maximum likelihood (ML) estimation, 
attempts to avoid the underestimation of the vari-
ance (and covariance) parameter estimates that can 
arise with ML estimation. REML involves sepa-
rate estimation of the (co)variance parameters to 
account for the loss in degrees of freedom due to 
estimation of the regression parameters [22]. In the 
context of ITS studies, while both ML and REML 
directly estimate and adjust standard errors for 
autocorrelation, ML has been shown to yield less 
biased standard errors of the regression parameters 
compared with REML when autocorrelation was 
small, but positively biased standard errors when 
autocorrelation was large [20, 22].

Meta‑analysis methods
We used meta-analysis to combine the interruption 
effect estimates calculated using the methods in sec-
tion  Interrupted time series (ITS) analysis methods for 
each ITS study. We examined five meta-analysis meth-
ods, selected because they are frequently used in prac-
tice, or are known to have more favourable statistical 
properties.

Statistical models for meta‑analysis
We examined a fixed-effect (common effect) and four 
random-effects models. The fixed-effect model is speci-
fied by:

where it is assumed that each of the K  included ITS stud-
ies provide an estimate ( ̂βmk ) of a single true interruption 
effect common to all studies, βm (where m indicates the 
regression parameter of interest from Eq.  1, such as β2 
for immediate level-change), and any within-study error 
in the estimation is due to sampling variability alone, 
εmk ∼ N (0, σ 2

mk
).

The random-effects meta-analysis model is specified 
by:

where it is assumed that each of the K  ITS studies pro-
vide an estimate ( βmk ) of a true interruption effect spe-
cific to the kth study (i.e., β∗

m + δmk ), where β∗
m represents 

the mean of the distribution of true interruption effects 
(for the mth regression parameter) and δmk represents a 
random effect in the kth ITS study, which are assumed 
to be normally distributed about the mean with a 

(2)β̂mk = βm + εmk ,

(3)β̂mk = β∗
m + δmk + ε∗

mk
,

between-study variance τ 2m . The within-study error in 
estimating the kth ITS study’s interruption effect from a 
sample of participants is represented by ε∗

mk
∼ N (0, σ 2

mk
).

Estimation methods for meta‑analysis
The meta-analytic effect of the mth regression parame-
ter is calculated as a weighted average of the K  ITS 
study effect estimates, β̂m =

∑
Wmk .β̂mk∑
Wmk

 (with a variance 
of 1∑

Wmk
 ). The weight given to the kth ITS study is the 

reciprocal of the within-study variance, WmkFE =
1

σ 2
mk

 

when using a fixed-effect model, or WmkRE =
1

σ 2
mk

+τ̂ 2m
 

when using a random-effects model. Different between-
study variance ( ̂τ 2m) estimators are available [29], as well 
as methods to calculate the confidence interval for the 
meta-analytic effect [30]. We used two between-study 
variance estimators and two confidence interval 
methods.

We examined the following between-study variance 
estimators:

• DerSimonian and Laird (DL) [38], which is a moment-
based between-study variance estimator derived from 
Cochran’s Q-statistic, was selected for evaluation in 
this study because it is commonly used in practice 
[26, 29]. However, DL is well known to yield biased 
estimates of the between-study variance in particu-
lar scenarios (i.e., small underlying between-study 
variance and few studies; or, many studies and large 
underlying heterogeneity) [31, 39, 40];

• Restricted Maximum Likelihood (REML), which is 
an iterative between-study variance estimator that 
attempts to correct for the negative bias associated 
with the ML estimator [29]. REML has been recom-
mended as an alternative estimator because of its 
slightly improved performance compared with DL, 
and for this reason was selected for evaluation in this 
study [29, 40, 41].

We examined two confidence interval methods for the 
meta-analytic effect, which can be used with both the DL 
and REML between-study variance estimators:

• The Wald-type normal distribution (WT) confidence 
interval method [42], which uses the standard nor-
mal distribution to calculate the confidence limits. 
This method maintains the assumption of normality 
of β̂∗

m despite the within-study and between-study 
variances not being known and instead estimated 
[28, 30]. The WT method relies on large-sample 
approximations, which are not generally met in the 
context of meta-analysis due to few included studies 
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[43, 44]. This can lead to lower than nominal levels of 
95% confidence interval coverage, particularly when 
there are few included studies or the between-study 
variance is large [30].

• The Hartung-Knapp [45]/Sidik-Jonkman [46] (HKSJ) 
confidence interval method, which attempts to over-
come the assumption that the within-study variance 
is known and the between-study variance is accu-
rately estimated, in scenarios where these conditions 
are unlikely to be met (e.g., meta-analyses with few 
studies of small sample sizes). The method involves 
making a small sample adjustment to the meta-anal-
ysis standard error and uses the t-distribution (with 
K-1 degrees of freedom) in the calculation of the 
confidence limits. This adjustment yields wider con-
fidence intervals than the WT method, except when 
there are few studies and the estimated between-
study variance is zero [29].

Analysis and meta‑analysis of the ITS datasets
Prior to fitting the models, we excluded ITS from the 
meta-analyses where the study i) did not meet our min-
imum required number of datapoints, or ii) had a large 
proportion of time series datapoints that were zero (i.e., 
greater than 40%), such that it was not reasonable to 
assume that the error term would be normally distrib-
uted. In addition, we removed any control series that 
were included in the original meta-analysis, because 
our interest was in the interrupted series only. Further-
more, we excluded segments of studies that had multi-
ple interruptions. Specifically, we only included the first 
interruption (and the adjacent segments). Additional 
file 1: Table S1  includes all modifications, with justifica-
tions. Modifications were discussed and agreed upon at 
team meetings (including authors EK, SLT, ABF, AK and 
JEM).

We fitted a segmented linear regression model (sec-
tion Statistical model for an ITS analysis, Eq. 1) to each 
ITS study and estimated the regression parameters 
(immediate level-change ( β2 ) and slope-change ( β3 )) 
using both OLS and REML (section  Estimation meth-
ods for ITS analysis) (Fig. 2). If REML failed to converge 
or to yield an estimate of autocorrelation between -1 
and 1, we used PW, and where PW failed, we used OLS. 
Given the outcomes varied across the meta-analyses, we 
standardised the ITS study effect estimates (immedi-
ate level-change, slope-change) prior to meta-analysis, 
so that the resulting meta-analysis effect estimates were 
standardised and comparable across meta-analyses. The 
ITS effect estimates obtained via REML, PW and OLS 
were standardised by dividing them (and their standard 
errors) by the root mean square error estimated from 

the OLS analysis. Slope-change effect estimates were 
then standardised, if required, to reflect the standardised 
slope-change per month by multiplying or dividing by an 
appropriate factor (e.g., slope-change calculated from a 
series with yearly timepoints was divided by 12 to reflect 
the slope-change per month).

The standardised ITS study level-change and slope-
change estimates were then meta-analysed (separately) 
using five meta-analysis methods (section  Estimation 
methods for meta-analysis; Fig.  2). We standardised the 
direction of these meta-analysis effects so that for all 
a positive estimate reflected a beneficial impact of the 
interruption. This was achieved by multiplying the meta-
analysis estimates where a negative estimate was benefi-
cial (e.g., a decrease in fatality rates) by -1, to reverse the 
direction of interpretation.

We undertook sensitivity analyses to investigate 
whether the results were robust to our choice of thresh-
old for excluding ITS based on the proportion of data-
points that were zero. For the sensitivity analysis, we 
excluded ITS from the meta-analyses where the study 
had greater than 30% but less 40% of time series data-
points that were zero. We then repeated the above analy-
ses and informally compared the results.

All analyses were performed using Stata version 16.1 
[47] and results were visualised using R version 4.1.0 
(dplyr [48], foreign [49], ggplot2 [50]). Code and the 
repository of data are available in the Monash University 
online repository, Bridges [51].

Comparison of results from different ITS‑analysis 
and meta‑analysis methods
We compared meta-analysis effect estimates (i.e., imme-
diate level-change and slope-change), and their standard 
errors between each of the combinations of ITS analysis 
methods and meta-analysis methods. For each pairwise 
comparison between the combinations, we calculated 
(and tabulated) the average of the differences between 
the estimates (i.e., the mean difference = the sum of the 
differences between the estimates yielded by the two 
methods being compared, divided by the number of 
meta-analyses, 17) and the limits of agreement (calcu-
lated as the mean difference ± 1.96 × standard deviation of 
the differences) [52]. The limits of agreement provide a 
range within which most of the differences between esti-
mates will lie [52]. For the standard errors, we first log-
transformed these to remove the relationship between 
the variability of the differences and the magnitude of 
the standard errors [52]. We used Bland–Altman scatter 
plots to visualise the agreement, whereby, for each pair-
wise comparison between combinations, we plotted the 
difference between the estimates vs their average [52].
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We compared confidence interval widths between each 
of the combinations of ITS analysis and meta-analysis 
methods. For each pairwise comparison, we plotted the 
ratio of the confidence intervals, scaled such that the ref-
erence confidence interval width spanned -0.5 to 0.5 (fol-
lowing the approach of Turner et al. [36]).

We compared the estimates of between-study variance 
( ̂τ 2 ) between each combination of ITS analysis meth-
ods and between-study variance estimators. For each 

meta-analysis and pairwise comparison, we calculated 
(and tabulated) the median and interquartile range (IQR) 
of the differences between the estimates of the between-
study variance.

We compared the p-values of the meta-analytic level-
change and slope-change estimates between each of the 
combinations of ITS analysis and meta-analysis methods. 
We categorised the p-values using the conventionally 
used (though not recommended) statistical significance 

Fig. 3 Flow diagram of included reviews, their meta-analysis and interrupted time series (ITS) studies. *54 reviews were identified 
in a methodological systematic review (see Korevaar et al. [26] for the search strategy used). **Two authors that were contacted did not provide 
data, as such, we digitally extracted the raw time series data from the figures provided in the review manuscripts
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threshold of 0.05. The percentage of meta-analyses 
where there was agreement in the categories of statisti-
cal significance was calculated. Namely, the percentage 
of meta-analyses where the p-value for the effect esti-
mate from both methods was < 0.05 or ≥ 0.05. Agreement 
between the statistical methods in the conclusion about 
the statistical significance was further quantified using 
the kappa statistic, where we used the following adjec-
tives to describe agreement: moderate agreement as a 
kappa value of 0.41–0.6, substantial agreement as a value 
of 0.61–0.8, and almost perfect agreement as a value of 
0.81–1.0 [53].

Results
Of the 54 reviews included in the source methodologi-
cal review [26], 40 met the additional eligibility criteria 
for the present study (Fig. 3). We extracted data from the 
supplementary material of two reviews, and emailed the 
remaining 38 review authors. Of these, 35 emails were 
successfully delivered, from which 13 authors provided 
data. For a further two reviews, it was possible to digitally 
extract data from the ITS graphs included in the reviews. 
This resulted in the inclusion of 17 meta-analyses with 
390 ITS. We further excluded 108 ITS from these meta-
analyses for a variety of reasons (Fig. 3), leaving 282 ITS 
(from 17 meta-analyses) for our primary analyses.

Table 1 Characteristics of included meta-analyses and ITS studies

ITS interrupted time series, IQR interquartile range, PW Prais-Winsten, REML restricted maximum likelihood
a Multiple response options possible therefore percentages sum to greater than 100%
b Interruptions classified as ‘individual-level interruption’ were the intervention directed at an individual (e.g., delivery of a vaccine), however, the measurements were 
still aggregated over units of time (e.g., number of vaccinations each year)
c Combination indicates where reviewers combined multiple data types (e.g., combining studies using proportion and rate outcomes)
d The average number of datapoints and autocorrelation were calculated across the series included in each meta-analysis. These averages were then summarised 
across the meta-analyses using the median and IQR
e Autocorrelation estimated using REML (or PW where REML failed to converge)

Meta‑analyses 
(N = 17)
n (%) or median (IQR)

Discipline/Topica Public health 15 (88)

Crime 2 (12)

Interruption target Population 10 (59)

Organisation 5 (30)

Individualb 1 (6)

Combination 1 (1)

Interruption typesa Policy change 12 (71)

Practice change 5 (39)

Communication (campaign) 3 (18)

Educational method 3 (18)

Exposure 2 (12)

Outcome typesa Rate 6 (35)

Count 5 (29)

Proportion 2 (12)

Combination c 2 (12)

Continuous 1 (6)

Probability 1 (6)

Number of ITS studies Per meta-analysis 11 (5, 15)

Number of time series datapoints ITS level (N = 282) 52 (27, 61)

Meta-analysis  leveld 40 (22, 53)

Autocorrelatione ITS level (N = 282) 0.22 (0.00, 0.48)

Meta-analysis  leveld 0.17 (0.13, 0.42)

Time interval for time series datapoints Month 11 (65)

Year 4 (24)

4-weeks 1 (6)

Day 1 (6)
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Characteristics of the included meta‑analyses and ITS 
studies
The reviews were published between 2005 and 2019. 
Most reviews investigated the effects of public health 
interruptions (88%, 15/17) [e.g., examining the impact 
of insecticide space spraying strategies on the incidence 
of malaria], while two examined the effects of crime 
interventions (12%, 2/17) (Table  1). The interruptions 
were predominantly targeted at the population level 
(59%, 10/17) [e.g., state-wide legislation] or organisa-
tional level (30%, 5/17) [e.g., hospital-wide policy]. The 
17 included meta-analyses had a median of 11 included 
ITS studies (IQR: 5.0–15.0, range: 3–62). The median 
series length of the ITS studies was 52 (IQR: 27–61, 
range: 7–195, n = 282), while the average series length at 
the meta-analysis level had a median of 40 (IQR: 22–59, 
range: 9.7–165.3). The time interval used for aggregation 
of the datapoints was most commonly months (11/17, 
65%) followed by years (4/17, 24%). The outcome types 
were predominantly rates (6/17, 35%) and counts (5/17, 
29%). The autocorrelation of the ITS studies estimated by 
REML ITS analysis had a median of 0.22 (IQR: 0.00, 0.48, 
n = 282), while the average estimate of autocorrelation at 
the meta-analysis level had a median of 0.17 (IQR: 0.13, 
0.42).

Convergence of ITS analyses and meta‑analyses using 
REML
Of the 282 ITS that were analysed using REML, 255 
(90%) converged. For those that did not converge, PW 
was used, of which 4/27 (19%) failed to converge. OLS 
was used for the four that did not converge. All meta-
analyses using REML converged.

Comparison of results from the different meta‑analysis 
and ITS analysis method combinations
Estimates of level‑ and slope‑change meta‑analytic effect 
estimates
When fixed-effect meta-analysis was fitted, on aver-
age, REML ITS analysis yielded slightly larger estimated 
immediate level-changes compared with OLS (depicted 
by the horizontal solid orange line, representing the aver-
age of the differences, being greater than zero in Fig.  4, 
solid red box; Table  2), but with wide limits of agree-
ment (depicted by the horizontal dashed orange lines 
being wide), largely due to the influence of one outly-
ing estimated level-change using REML. The different 
between-study variance estimators (i.e., using DL or 
REML) had no impact on the immediate level-change 
within ITS analysis method (i.e., OLS ITS analysis with 
the DL between-study variance estimator vs OLS ITS 
with the REML estimator; REML ITS analysis with the 
DL between-study variance estimator vs REML ITS 

with the REML estimator), as depicted by the horizontal 
solid orange line sitting on zero, and the limits of agree-
ment being close to zero in Fig.  4 (solid blue boxes). 
Furthermore, the estimated meta-analytic immediate 
level-changes were, on average, similar across the com-
binations of between-study variance estimators and ITS 
analysis methods (Fig. 4 solid black boxes); however, the 
limits of agreement (which were approximately ±0.33 ) 
showed that methods could yield small to moderate dif-
ferences in estimates of level-change for a given meta-
analysis. The patterns were similar for the effect estimates 
of the meta-analytic slope-change per month (see Fig. 4, 
dashed boxes).

Standard errors of the level‑ and slope‑change meta‑analytic 
effects
The standard errors of the meta-analytic level-change 
were most influenced by the meta-analysis model, with 
the standard errors being substantially larger when a 
random-effects model was fitted (as depicted by the hori-
zontal solid orange line being greater or less than zero, 
depending on the order of the comparisons, in Fig.  5, 
yellow boxes, and Table 3). When random-effects meta-
analysis methods were fitted, on average, there were no 
important differences in the standard errors of the meta-
analytic level-change (depicted by the horizontal solid 
orange line sitting on zero in Fig. 5), across ITS analysis 
methods (black boxes), between-study variance esti-
mators (blue boxes) or where there was a small sample 
adjustment made to the meta-analysis standard error 
(as occurs with the HKSJ method)[red boxes]. However, 
the limits of agreement were wide across ITS analysis 
methods (black boxes) and where there was a small sam-
ple adjustment (red boxes); for example, the limits of 
agreement for the comparison of REML ITS vs OLS ITS 
analysis (both with the REML between-study variance 
estimator and HKSJ confidence interval method) suggest 
that the meta-analysis estimate of standard error is likely 
to be between 37% smaller to 63% larger when using 
REML ITS compared with OLS ITS analysis (Table  3). 
The patterns were similar for the standard errors of the 
meta-analytic slope-change per month (dashed boxes).

Confidence intervals of level‑ and slope‑change 
meta‑analytic effects
The confidence interval widths of the random-effects 
meta-analytic level-change were similar irrespective of 
the ITS analysis method, or between-study variance esti-
mator (as depicted by the confidence intervals being the 
width of the reference rectangle in Fig. 6 black and blue 
boxes, see Additional file 1: Figure S3 for random-effect 
meta-analysis comparisons only). However, the confi-
dence interval widths were mostly similar or wider when 
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the HKSJ method was used as compared with the WT 
confidence interval method (as depicted by confidence 
intervals being the width of the reference rectangle, or 
wider, in Fig. 6 red boxes). The confidence intervals of the 

random-effects meta-analytic slope-change per month 
were more variable than the level-change confidence 
interval widths; however, the patterns were the same 
(dashed boxes).

Fig. 4 Bland Altman plot of difference in standardised meta-analytic effect estimates (y-axis) vs average of the effect estimates (x-axis), for each 
pairwise comparisons of ITS analysis and meta-analysis method combination (top row of the label indicates the ITS analysis methods, bottom row 
indicates the meta-analysis method, e.g., OLS ITS DL MA is OLS ITS analysis with DerSimonian and Laird between-study variance meta-analysis). 
The top triangle (green points) presents the immediate level-change (difference calculated as column method – row method), and the bottom 
triangle (blue points) presents the slope-change per month (difference calculated as row method – column method). Horizontal orange lines 
depict the average, dashed orange lines depict the 95% limits of agreement (calculated as the mean ± 1.96*standard deviation of the differences). 
Vertical grey line indicates an average of zero, while the horizontal grey line indicates a mean difference of zero. The coloured boxes indicate cells 
that compare ITS analysis methods when fixed-effect meta-analysis was fitted (red boxes), meta-analysis models (i.e., fixed- vs random-effects 
models)[yellow boxes], between-study variance estimators (i.e., using DL or REML)[blue boxes], and combinations of between-study variance 
estimators and ITS analysis methods (black boxes). The solid coloured boxes indicate comparisons of level-change and dashed boxes indicate 
slope-change per month. DL DerSimonian and Laird, HKSJ Hartung-Knapp/Sidik-Jonkman, ITS interrupted time series, MA meta-analysis, OLS 
ordinary least squares, REML restricted maximum likelihood, WT Wald-type
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p‑values
Pairwise comparisons of the meta-analytic level-change 
statistical significance between REML ITS analysis and 
OLS ITS analysis (keeping meta-analysis method con-
stant) ranged from substantial to almost perfect agree-
ment, irrespective of the meta-analysis methods used 
(Table 4 and Additional file 1: Table S2). Similarly, the 
level of statistical significance agreement between com-
parisons of between-study variance estimators, and 
comparisons of confidence interval methods, ranged 
from substantial to almost perfect agreement. How-
ever, the agreement was systematically (slightly) lower 
when REML ITS analysis was used compared to OLS. 
In addition, the statistical significance agreement was 
lower when different confidence interval methods 
were used; this reduction in agreement was more pro-
nounced when REML ITS analysis was used compared 
with OLS. The patterns were similar for the statistical 
significance agreement for the meta-analytic slope-
change per month, which ranged from moderate to 
almost perfect agreement between most pairwise com-
parisons, irrespective of the statistical methods used.

Estimates of between‑study variance
We compared the between-study variance estimates 
yielded by different combinations of ITS analysis meth-
ods (OLS and REML) and the between-study variance 
estimators (DL and REML). The median and IQR of the 
pairwise differences in between-study variance estimates 
indicated no substantial differences (Fig. 7 and Table 5).

Sensitivity analysis
In our sensitivity analysis, we excluded 16 ITS from 5 
meta-analyses. The results of the sensitivity analysis 
did not differ substantively from the primary analyses. 
Details of the differences between the meta-analyses in 
the primary analysis and the sensitivity analysis are pre-
sented in Additional file 1: Table S3; summary results are 
provided in Additional file 1: Appendix 3.

Repository of ITS data
The ITS datasets analysed in this study, for which the 
authors gave consent (for 16 of 17 meta-analyses) are pro-
vided in an online repository: https:// doi. org/ 10. 26180/ 
21280 791 [51]. For each dataset, we describe the inter-
vention and outcome examined, any changes made to the 
original meta-analysis to suit our purposes, and indicate 
for each ITS, the time, interval of time, time of interrup-
tion, segment in segmented linear regression model, the 
observation and its outcome type, and whether the ITS 
study was excluded from our sensitivity analysis.

Discussion
Summary and discussion of key findings
To our knowledge, no previous studies have empirically 
examined implications of different statistical methods 
for ITS analysis and meta-analysis using real-world ITS 
data. We created a repository of 17 meta-analyses includ-
ing 282 ITS studies. We reanalysed each ITS study using 
two ITS analysis methods, and then meta-analysed the 
level-change and slope-change effects using five meta-
analysis methods. We compared the impact of using 

Table 2 The mean difference of effect estimates and 95% limits of agreement for the meta-analytic immediate level-change (top 
triangle, difference calculated as column method – row method) and slope-change per month (bottom triangle, difference calculated 
as row method – column method) (n = 17)

The top row of the label indicates the ITS analysis methods, bottom row indicates the meta-analysis method, e.g., OLS Fixed is OLS ITS analysis and fixed-effect meta-
analysis. For example, the mean meta-analytic level-change yielded by REML ITS analysis with fixed-effect meta-analysis was 0.15 higher than that yielded by OLS ITS 
analysis with fixed-effect meta-analysis (column 4, row 1). The mean meta-analytic slope-change per month yielded by REML ITS analysis with fixed-effect meta-
analysis was 0.02 higher than that yielded by OLS ITS analysis with fixed-effect meta-analysis (column 1, row 4)

DL DerSimonian and Laird, ITS interrupted time series, MA meta-analysis, OLS ordinary least squares, REML restricted maximum likelihood

Level‑change

Slope‑change per month OLS ITS
Fixed MA

-0.04 (-0.48,0.40) -0.034 (-0.50,0.43) 0.15 (-0.85,1.15) -0.01 (-0.65,0.63) 0.00 (-0.66,0.66)

0.01 (-0.05,0.06) OLS ITS
DL MA

0.00 (-0.04,0.04) 0.19 (-0.90,1.27) 0.03 (-0.30,0.36) 0.04 (-0.29,0.36)

0.01 (-0.08,0.10) 0.00 (-0.04,0.04) OLS ITS
REML MA

0.19 (-0.92,1.29) 0.03 (-0.31,0.37) 0.03 (-0.29,0.36)

0.02 (-0.06,0.10) 0.01 (-0.07,0.10) 0.01 (-0.10,0.12) REML ITS
Fixed MA

-0.16 (-1.28,0.96) -0.15 (-1.27,0.96)

0.04 (-0.11,0.18) 0.03 (-0.08,0.14) 0.03 (-0.06,0.11) 0.01 (-0.10,0.13) REML ITS
DL MA

0.01 (-0.05,0.07)

0.04 (-0.17,0.26) 0.04 (-0.14,0.21) 0.03 (-0.11,0.18) 0.02 (-0.17,0.21) 0.01 (-0.07,0.09) REML ITS
REML MA

https://doi.org/10.26180/21280791
https://doi.org/10.26180/21280791
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different statistical methods on the meta-analytic level- 
and slope-change effect estimates, standard errors, confi-
dence intervals and p-values. The results of our empirical 
study provide insight into the behaviour of ITS analysis 
and meta-analysis methods when applied to real-world 
ITS data.

When fixed-effect meta-analysis was used, our results 
indicated that there may be differences in the estimated 
meta-analytic effect for a given meta-analysis. However, 
the immediate level-change effect estimates yielded by 
REML ITS analysis were only slightly larger, on average, 
compared with OLS, which was likely driven by a single 

Fig. 5 Bland Altman plot of log ratio of standard errors of the standardised meta-analytic effect estimates (y-axis) vs average of the standard 
errors (x-axis), for each pairwise comparisons of ITS analysis and meta-analysis method combination (top row of the label indicates the ITS analysis 
methods, bottom row indicates the meta-analysis method, e.g., OLS ITS DL MA is OLS ITS analysis with DerSimonian and Laird between-study 
variance meta-analysis). The top triangle (green points) presents the immediate level-change [log ratio calculated as log(column method / row 
method)], and the bottom triangle (blue points) presents the slope-change per month [log ratio calculated as log(row method / column method)]. 
Horizontal orange lines depict the average, dashed orange lines depict the 95% limits of agreement (calculated as the mean ± 1.96*standard 
deviation of the log(ratio)). Vertical grey line indicates an average of zero, while the horizontal grey line indicates a log(ratio) of zero. The 
coloured boxes indicate cells that compare meta-analysis models (i.e., fixed- vs random-effects models)[yellow boxes], ITS analysis methods 
when random-effects meta-analysis was used (black boxes), between-study variance estimators (blue boxes) and confidence interval methods 
(red boxes). The solid coloured boxes indicate comparisons of level-change and dashed boxes indicate slope-change per month. DL DerSimonian 
and Laird, HKSJ Hartung-Knapp/Sidik-Jonkman, ITS interrupted time series, OLS ordinary least squares, REML restricted maximum likelihood, WT 
Wald-type
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meta-analysis result. In addition, while on average we 
found unimportant differences in the estimated stand-
ard errors of the meta-analytic effects between the ITS 
analysis methods, for a given meta-analysis, there could 

be important differences. Estimated standard errors of 
the fixed-effect meta-analytic effects between the ITS 
methods have been shown (via numerical simulation 
[31]) to importantly differ for short series or where the 

Fig. 6 Pairwise comparison of confidence intervals yielded by combinations of ITS analysis (OLS or REML) and meta-analysis methods (fixed, 
DL + WT, DL + HKSJ, REML + WT or REML + HKSJ). Each plot contains the 17 meta-analyses’ absolute difference in meta-analytic effect estimates 
and scaled relative confidence intervals, ranked in order of scaled relative confidence interval width. The top triangle (green points) presents 
the immediate level-change, while the bottom triangle (blue points) presents the slope-change per month. The scaled relative confidence interval 
widths for the level-change were calculated as column method confidence interval width divided by row method confidence interval width (and 
row method / column method for slope-change per month), scaled such that the row method (column method in the case of slope-change 
per month) spans -0.5 to 0.5 (indicated by the horizontal grey lines, which form the ‘reference rectangle’). Confidence intervals entirely 
within the reference rectangle (i.e., between the horizontal grey lines) have smaller confidence intervals than the comparison (left of the vertical 
red line), while the confidence intervals extending beyond the reference rectangle have larger confidence intervals than the comparison (right 
of the vertical red line). The black confidence intervals indicate where one or both of the confidence limits were beyond the limits y-axis scale. 
The coloured boxes indicate cells that compare meta-analysis models (i.e., fixed- vs random-effects models)[yellow boxes], ITS analysis methods 
when random-effects meta-analysis was used (black boxes), between-study variance estimators (blue boxes) and confidence interval methods (red 
boxes). The solid coloured boxes indicate comparisons of level-change and dashed boxes indicate slope-change per month. See Additional file 1: 
Figure S3 for random-effect meta-analysis comparisons only. DL DerSimonian and Laird, HKSJ Hartung-Knapp/Sidik-Jonkman, ITS interrupted time 
series, OLS ordinary least squares, REML restricted maximum likelihood, WT Wald-type
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underlying autocorrelation tends to be larger (i.e., at 
least 0.4). In the present dataset, some of the series were 
short and had autocorrelation greater than 0.4 potentially 
explaining the differences.

When random-effects meta-analysis was used, we 
found that on average the estimates of the random-effects 
meta-analytic effects of level- and slope-changes and 
their standard errors, were not impacted by the choice 
of random-effects meta-analysis method, irrespective 

of the ITS analysis method used. As expected, however, 
the standard errors were substantially larger compared 
with a fixed-effect model, due to the between-ITS vari-
ance (which was commonly estimated as greater than 
zero) being accounted for in the random-effects model. 
Furthermore, we found that the between-study variance 
estimates did not systematically differ by ITS analysis 
method or between-study variance estimator; which has 
been observed in other studies [29, 31]. However, the 

Fig. 7 Pairwise comparisons of the between-study variance estimates ( ̂τ 2 ) yielded by combinations of ITS analysis methods and between-study 
variance estimators. The between-study variance estimate yielded by the row method (y-axis) versus the between-study variance estimate yielded 
by the column method (x-axis), for the level-change (top triangle) and slope-change per month (bottom triangle) meta-analyses. DL DerSimonian 
and Laird, HKSJ Hartung-Knapp/Sidik-Jonkman, ITS interrupted time series, OLS ordinary least squares, REML restricted maximum likelihood
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confidence interval method was shown to impact the 
confidence interval widths and statistical significance 
of the meta-analytic level-changes. This was primarily 
driven by the use of the t-distribution in the calculation 
of the confidence interval limits when using the HKSJ 
confidence interval method, rather than the small sample 
adjustment to the meta-analytic standard error. The con-
sequence of wider confidence intervals and more con-
servative p-values when using HKSJ compared to WT, is 
that the conclusions drawn from the meta-analysis may 
differ.

Strengths and limitations
Our study has several strengths. We examined ten sta-
tistical analysis combinations, which we compared using 
the metrics typically important to researchers under-
taking meta-analysis, i.e., the meta-analytic point esti-
mates, between-study variance estimates, confidence 
intervals, and p-values. Furthermore, the included sys-
tematic reviews and meta-analyses varied by the types 
of interruptions examined, the outcomes, the number of 
included studies per meta-analysis, and the number of 
datapoints per ITS study. The repository of ITS datasets 
has been made publicly available in an online repository, 
facilitating future methodological and statistical research.

Our study has several limitations. We were able to 
obtain raw ITS data from 17 of the 40 reviews included 
in our methodological review. While a small num-
ber of datasets is common in empirical methodological 
research [46, 54–57], this hinders examination of factors 
that may modify how the methods compare (e.g., the 
number of studies per meta-analysis). Furthermore, with 
a small number of datasets, outliers have more influence 
and parameters (such as the limits of agreement) are esti-
mated with more uncertainty. In addition, we made sev-
eral assumptions when analysing the ITS studies which 

may not hold (e.g., assuming count outcomes were con-
tinuous); we did not adjust for potential confounders 
(that may have been adjusted for in the original analy-
sis); and, we fitted a segmented linear regression model 
with lag-1 autocorrelation (which may have differed to 
the original analysis and may not have provided the best 
fit). However, for reasons of feasibility and our interest 
in comparing the statistical methods and not in address-
ing the research question examined in the original meta-
analysis, meant that we did not assess the fit or modify 
the models for the 282 included ITS studies.

Implications for practice
We have demonstrated that the statistical methods 
for ITS analysis and meta-analysis do not, on average, 
impact the meta-analytic level- and slope-change effect 
estimates, their standard errors or the between-study 
variance estimates. However, across ITS analysis meth-
ods, for any given meta-analysis, there could be small to 
moderate differences in meta-analytic effect estimates, 
and important differences in the meta-analytic standard 
errors. Furthermore, the confidence intervals and p-val-
ues may be impacted. This demonstrates that in prac-
tice the statistical methods choices we have investigated 
may materially impact the results and conclusions, and 
the methods should therefore not be considered inter-
changeable. In this circumstance, numerical simulation 
studies provide the best evidence as to which methods 
are optimal under different scenarios (e.g., meta-anal-
yses including short series), and we refer readers to our 
companion numerical simulation study for recommen-
dations [31]. Furthermore, given the choice of methods 
can impact the results, it is even more important that the 
specific ITS analysis and meta-analysis methods used are 
reported. A systematic review examining the statistical 
methods used in meta-analysis of ITS studies found that 

Table 5 The median and IQR for the differences in between-study variance estimates for the meta-analytic immediate level-change 
(top triangle, difference calculated as column method – row method) and slope-change per month (bottom triangle, difference 
calculated as row method – column method) (n = 17)

The top row of the label indicates the ITS analysis methods, bottom row indicates the meta-analysis method, e.g., OLS Fixed is OLS ITS analysis and fixed effect meta-
analysis. For example, the median between-study variance for immediate level-change yielded by REML ITS analysis with REML estimator 0.08 higher than that yielded 
by OLS ITS analysis with DL estimator (column 4, row 1)

DL DerSimonian and Laird, HKSJ Hartung-Knapp/Sidik-Jonkman, ITS interrupted time series, IQR interquartile range, MA meta-analysis, OLS ordinary least squares, 
REML restricted maximum likelihood, WT Wald-type

Level‑change

Slope‑change per month OLS ITS
DL MA

0.00 (0.00,0.38) 0.00 (-0.28,0.00) 0.08 (0.00,0.83)

0.00 (0.00,0.00) OLS ITS
REML MA

0.00 (-0.29,0.00) 0.00 (-0.29,0.08)

0.00 (0.00,0.01) 0.00 (-0.01,0.00) REML ITS
DL MA

0.00 (0.00,0.08)

0.00 (0.00,0.03) 0.00 (0.00,0.02) 0.00 (0.00,0.00) REML ITS
REML MA
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while the ITS estimation method could almost always 
be determined (in 95% of reviews), if and how autocor-
relation was accounted for could only be determined in 
59% of reviews, and the between-study variance estima-
tor and confidence interval method for the combined 
effect could only be determined in 60% and 57% of meta-
analyses examined in the systematic review, respectively 
[26]. Hence much needs to be improved in reporting ITS 
studies.

Implications for future research
Our ITS data repository may be expanded, facilitat-
ing other methodological and statistical research. Our 
research could be extended to examine the impact of ITS 
methods for analysing other outcome types, particularly 
count outcomes, due to their frequent use in ITS stud-
ies. Furthermore, our examinations could be expanded 
to accommodate increasing autocorrelation lags and sea-
sonal patterns. In addition, we have not examined the 
impacts of the statistical methods on meta-analytic effect 
prediction intervals, which provide a predicted range for 
the true interruption effect in an individual study, and 
are a critical tool for decision-making [58]. Understand-
ing the implications of statistical method choice on the 
prediction intervals is an important next step given the 
known impact of the ITS analysis methods on the estima-
tion of between-study variance [31].

Conclusions
We found on average minimal impact of statistical 
method choice on the meta-analysis effect estimates, 
their standard errors or the between-study variance esti-
mates. However, across ITS analysis methods, for any 
given meta-analysis, there could be small to moderate 
differences in meta-analytic effect estimates, and impor-
tant differences in the meta-analytic standard errors. 
Furthermore, we found that confidence intervals and 
p-values could vary according to the choice of statisti-
cal method. These differences may materially impact the 
results and conclusions and suggest that the statistical 
methods are not interchangeable in practice.
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