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Abstract 

Background The rapidly growing burden of non‑communicable diseases (NCDs) among people living with HIV 
in sub‑Saharan Africa (SSA) has expanded the number of multidisease models predicting future care needs and health 
system priorities. Usefulness of these models depends on their ability to replicate real‑life data and be readily 
understood and applied by public health decision‑makers; yet existing simulation models of HIV comorbidities are 
computationally expensive and require large numbers of parameters and long run times, which hinders their utility 
in resource‑constrained settings.

Methods We present a novel, user‑friendly emulator that can efficiently approximate complex simulators of long‑
term HIV and NCD outcomes in Africa. We describe how to implement the emulator via a tutorial based on pub‑
licly available data from Kenya. Emulator parameters relating to incidence and prevalence of HIV, hypertension 
and depression were derived from our own agent‑based simulation model and other published literature. Gaussian 
processes were used to fit the emulator to simulator estimates, assuming presence of noise for design points. Bayes‑
ian posterior predictive checks and leave‑one‑out cross validation confirmed the emulator’s descriptive accuracy.

Results In this example, our emulator resulted in a 13‑fold (95% Confidence Interval (CI): 8–22) improvement 
in computing time compared to that of more complex chronic disease simulation models. One emulator run took 
3.00 seconds (95% CI: 1.65–5.28) on a 64‑bit operating system laptop with 8.00 gigabytes (GB) of Random Access 
Memory (RAM), compared to > 11 hours for 1000 simulator runs on a high‑performance computing cluster with 1500 
GBs of RAM. Pareto k estimates were < 0.70 for all emulations, which demonstrates sufficient predictive accuracy 
of the emulator.

Conclusions The emulator presented in this tutorial offers a practical and flexible modelling tool that can help 
inform health policy‑making in countries with a generalized HIV epidemic and growing NCD burden. Future emulator 
applications could be used to forecast the changing burden of HIV, hypertension and depression over an extended 
(> 10 year) period, estimate longer‑term prevalence of other co‑occurring conditions (e.g., postpartum depression 
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among women living with HIV), and project the impact of nationally‑prioritized interventions such as national health 
insurance schemes and differentiated care models.

Keywords Tutorial, Emulation, Gaussian process, Bayesian analysis, HIV, Hypertension, Depression

Background
The need for emulation
In situations where empirical data on disease impact(s) 
are not universally available or a randomized controlled 
trial may not be feasible, complex mathematical com-
puter models (referred to as “simulators”) [1–3] can char-
acterize disease prevalence, forecast incidence, and help 
identify cost-effective approaches for meeting short- and 
long-term health system needs [4–6]. Though simula-
tion models play a critical role in helping public health 
decision-makers synthesize data from multiple sources 
and compare anticipated outcomes over time, the limita-
tions of these models are not trivial. Simulation models 
based on central processing units (CPUs), such as grid 
computing and computing clusters, [7] require signifi-
cant infrastructure that can incur high costs for hard-
ware and oversight. Even with access to high-computing 
infrastructure, long run times of several hours for a sin-
gle simulation and large numbers of input and output 
parameters can greatly inhibit fitting such models, [8] 
and in turn restrict analysts to considering only a subset 
of all possible simulated scenarios [9, 10]. Furthermore, 
because of their complexity, components of microsimu-
lation models can still be perceived as a black box [11, 
12] because their functions and behaviors are often not 
exhaustively described or immediately accessible at the 
time of publication, all of which makes it difficult for 
external users to interpret and adapt model processes for 
their local context.

Emulators are one tool that can help mitigate these lim-
itations [9]. An emulator, also known as a metal-model, 
[13] is an approximation of one or more complex math-
ematical model(s) that is constructed using a training 
sample of simulator runs [14] and computationally more 
efficient. Emulators reduce costs by negating the need 
for super-computing infrastructure and, once developed, 
can substantially shorten the amount of time needed to 
implement model runs and interpret results.

In the last decade there has been an accelerated 
demand for integrated responses [15–20] to the growing 
burden of non-communicable diseases (NCDs) – includ-
ing cardiovascular disease, cancers, diabetes, and men-
tal illness – among people living with HIV (PLWH) in 
low and middle income countries (LMICs) [21–24]. In 
response to this call, the authors of this paper recently 
extended an established agent-based model of HIV trans-
mission and treatment impact to include hypertension 

in two rural settings in Sub-Saharan Africa [24]. The 
authors’ simulation model was able to generate robust 
estimates of changing risks across age groups and predict 
growing population burdens of HIV and hypertension as 
comorbidities; however, the simulations were resource 
and time intensive and it is unlikely that novice modelers 
would be able to adapt the model’s components without 
input from an expert biostatistician. Other simulators 
of HIV and non-communicable diseases have met the 
same challenges [25]. To facilitate a greater understand-
ing and usability of these complex models, we therefore 
share our experience developing an open-source emula-
tor that approximates estimates from two simulators over 
an input subdomain of parameters related to HIV, hyper-
tension and depression in a Sub-Saharan African (SSA) 
country with a generalized HIV epidemic. The tutorial 
presented in this paper (i) describes the steps involved 
in emulator development and validation, (ii) illustrates 
how to interpret the emulator’s predictive accuracy and 
outputs in relation to those from each simulator using 
case study data from Kenya, and (iii) provides annotated, 
open-source and adaptable R code to facilitate the use of 
the discussed methods in practice. We expect research-
ers with a basic understanding of Bayesian statistics and 
some familiarity with R software to be able to implement 
this protocol independently.

The emulation method described in this paper relies 
on well-established and validated Gaussian processes 
[14, 25, 26]. To the best of our knowledge, Gaussian-
process emulation has not yet been used to mimic 
simulation models that predict the burden of HIV-
comorbidities over time, nor has it been described in 
sufficient detail to enable use by non-biostatisticians. 
Thus, this tutorial is scientifically significant in that is 
uses a didactic approach to demystify Gaussian pro-
cess emulation methods, and offers a new tool that can 
potentially improve public health decision-making with 
less resources.

Methods: emulator development and validation
Simulator description and source data
Evidence overwhelming indicates that the dispropor-
tionate burden of non-communicable diseases among 
people living with HIV – compared to individuals not 
living with HIV – will increase rapidly in the com-
ing decades, [27, 28] and that most health systems in 
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Sub-Saharan Africa are not currently equipped to treat 
the more than 15 million patients who require integrated 
HIV and NCD care [19]. In this tutorial we focus on two 
published simulation models that have estimated the 
future burden of HIV and non-communicable diseases 
in Kenya, as well as the costs and epidemiological impact 
of strengthening integrated care systems in the country. 
The two simulators were selected as examples for this 
tutorial because of their longer-term (i.e., > = 10 year) 
forecast periods and available details surrounding their 
design points. The two simulators were also selected 
because the rise of non-communicable diseases among 
persons living with HIV in Kenya is indicative and repre-
sentative of the rise of NCDs on the continent, which are 
estimated to overtake infectious diseases worldwide by 
2030 [19, 27, 28].

The first model is the authors’ Integrated Modeling of 
Epidemiologic and Economic Long-term Outcomes in 
Africa (inMODELA) microsimulation model, [29] which 
simulates HIV and hypertension in Kenya and South 
Africa from 2018 to 2028. The model is an extension of 
the Sexually Transmitted Diseases Simulator (STDSIM), 
[30, 31] a stochastic agent-based model that simulates 
transmission of HIV and other sexually transmitted dis-
eases (STDs) through dynamic sexual networks. inMOD-
ELA was partly calibrated using population surveillance 
data of hypertension and HIV from western Kenya. 
National-level data on the hypertension prevalence were 
extracted from the 2015 Kenya STEPwise Approach to 
NCD Risk Factor Surveillance (STEPS) survey [32] while 
HIV modelling was calibrated using reports from 2007 
and 2012 Kenya AIDS Indicator Surveys (KAIS) and 
the 2016 Kenya County HIV profiles, [33, 34] the most 
recent national data available at the time of simulator 
development. HIV was modelled as having four stages: 
early infection, asymptomatic, symptomatic and AIDS, 
and treatment with antiretroviral therapy was opera-
tionalized as individual ART demand and health system 
capacity to meet ART demand. Hypertension was mod-
elled as being normotensive or hypertensive (i.e., blood 
pressure  >  140/90 mmHg), accounting for the potential 
effects of age, gender, and economic development on 
hypertension risk. Key outputs of the inMODELA model 
include total annual mortality, incidence, and prevalence, 
as well as the health system burden of hypertension, HIV, 
and comorbid HIV and hypertension. Additional details 
of the inMODELA simulator are available in a separate 
publication [29].

The second model in this tutorial is an individual-based 
simulator initially developed by Smit et al. for Zimbabwe 
[35] and adapted for Kenya [36]. The model estimates 
current and future births, deaths, HIV disease and treat-
ment, as well as prevalence/incidence of cardiovascular 

disease, chronic kidney disease, depression, diabetes, 
hypertension, and other NCDs and cancers among 
adults for the period of 2018 through 2035. Simulator 
calibration relied on data from the Joint United Nations 
Programme on HIV/AIDS, [37] 2016 Global Burden of 
Disease estimates [38] and other sources [36].

Relevant input parameters used to calibrate the two 
simulation models are summarized in Supplementary 
Table 1.

Overview of the emulation process
Figure 1 summarizes the steps that were used to develop 
and validate an emulator to approximate epidemiological 
outputs projected over 10 years by the multidisease simu-
lators. To develop the emulator, we first abstract relevant 
parameters from the more complex simulation models 
to serve as the emulator’s design points. In this example, 
parameters related to the prevalence of HIV, hyperten-
sion, comorbid HIV and hypertension, and depression 
among PLWH were selected. Prevalence parameters were 
ascertained for 2018 and for 2028. Second, we use Gauss-
ian processes (GP) to approximate the mean and variance 
of each simulator’s outputs, assuming presence of noise 
for our design points. Third, we use Bayesian posterior 
predictive analysis to analyse the credibility of future 
emulator predictions based on the posterior distribution. 
Lastly, we use leave-one-out cross validation to confirm 
the emulator’s predictive accuracy and compare emulator 
estimates to simulation results.

Step 1. Install the program
This tutorial uses the GauPro package [39], the rstan-
arm package [40] and the loo package [41, 42] in R ver-
sion 4.1.2 for emulator construction and application. To 
replicate results from this tutorial, or to adapt this emula-
tor to new simulation data, the latest version of the free 
R software environment needs to be installed, and can be 
downloaded from https:// www.r- proje ct. org/.

Step 2. Select key design points from simulation model(s)
Not all parameters of a complex simulation model will be 
needed for emulation. Only those most informative for 
your research question should be ascertained. In this exam-
ple using simulator data from Kenya, parameters relat-
ing to the prevalence of HIV, hypertension, and comorbid 
HIV and hypertension were ascertained from the inMOD-
ELA simulation model [29] for the period of 2018 through 
2028. Parameters relating to the prevalence of depression 
among people living with HIV were ascertained from the 
Smit et al. model [36] for the period of 2018 through 2030. 
(Table 1) To reconcile the different forecasting periods used 
by the two simulation models, we assumed the prevalence 

https://www.r-project.org/
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of depression in 2028 to be the average prevalence for years 
2025 and 2030. Supplementary Table 2 specifies the design 
points used to emulate annual HIV and NCD prevalence 
for the period of 2018 through 2028.

Update the emulator’s R code to reflect relevant design 
points and corresponding emulation time period(s) 
abstracted from simulator data.

Step 3. Fit Gaussian processes to simulation data
A Gaussian process refers to a collection of any finite 
number of random variables which have a Gaussian 

(normal) distribution [25]. A GP emulator uses a statis-
tical model to fit a Gaussian process to a dataset, and is 
defined by (1) a mean function describing the mean at 
any point of the input space and (2) a covariance function 
describing the covariance between points [25, 39]. When 
emulating a stochastic simulator, the unknown function is 
assumed to be the expectation of the ith simulator output 
denoted as fi(x).

We construct our GP emulator such that, for each sim-
ulator output fi(x), we select active variables (xA) and then 
emulate using the following process:

Fig. 1 Overview of emulator development and validation process

Figure 1 depicts the steps used to develop and validate the emulator approximating epidemiological HIV and NCD data from two established 
simulators. First, the R statistical package is installed. Second, relevant parameters related to the 10‑year prevalence of HIV, hypertension, comorbid 
HIV and hypertension, and depression are abstracted from published simulators to serve as the emulator’s design points, and entered into R. Third, 
Gaussian processes (GP) approximate the mean and variance of each simulator’s outputs, assuming presence of noise for the emulator’s design 
points. Fourth, Bayesian posterior predictive analysis is used to infer the credibility of future HIV and NCD prevalence(s) based on the posterior 
distribution. Fifth, leave‑one‑out cross validation confirmed the emulator’s predictive accuracy. Lastly, the emulator’s predictions are compared 
and interpreted in relation to those of the simulator(s)
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The first part of the emulator, 
∑q

i=1 βigi
(

xA
)

, is a poly-
nomial of active inputs xA running from i = 1, …q chosen 
from the simulator outputs, βi are the regression coef-
ficients, and gi(˙) are the deterministic functions of xA 
which are known [43]. The second part of the emulator, 
μi(xA), represents a collection of any finite number of ran-
dom variables which have a Gaussian distribution [43]. 
Supposing that μi(xA) is a Gaussian process with zero 
mean and known variance, we can define it as:

where c(xA, xA′) is a covariance function that determines 
the relationship between μ(xA) and μ(xA)′ based on the 
distance between xA and xA′. The Gaussian process used 
to develop the current emulator has a covariance struc-
ture given by:

The parameter σ in eq.  3 can be varied to obtain the 
desired amount of waves in the emulator, whereby a 
smaller value of σ results in less extreme waves [44]. θ > 0 
are unknown correlation length parameters where large 
values of θ indicate a smooth output function of the ith 
input and small values suggest high non-linearity [45]. 
The last part of the emulator, δi(x), models the effects of 
inactive variables as random noise.

(1)fi(x) =
q

i=1
βigi xA + µi xA + δi(x).

(2)µ

(

xA
)

∼ GP
(

0, c
(

xA, xA
′
))

(3)

Cov
(

µi

(

xA1

)

,µi

(

xA2

))

= σ 2
i exp

[

−
∣

∣xA1 − xA2
∣

∣

2

θ2i

]

.

For each output of interest, the emulator provides the 
expectation E [fi(x)] and variance var(fi(x)) at x for 
every output given by i = 1, 2, …n where x denotes a 
vector of the emulator inputs. We evaluate fi(x) as the 
prevalence value(s) projected from 2018 to 2028 for 
HIV, hypertension, comorbid HIV and hypertension, 
and depression. The results are gathered into a vector 
D: Di =

(

f
(

xA1 , . . . , f
(

xAq

))T
 where q represents the 

number of design points. The emulator is then plotted 
as an adjusted expectation and variance function of 
fj(x): ED(fj(x)) and VarD(fj(x)).

Step 4. Run graphical posterior predictive checks 
of emulator fit
In this step, we use graphical displays to check that the 
disease burden trends produced by our emulator look 
similar to the simulator data we observed. Our emula-
tor uses Bayesian posterior predictive analysis to assess 
the credibility of future observable data based on the 
posterior distribution [46]. We analyze the Bayesian 
posterior distributions graphically to check predictive 
accuracy of the posterior distributions, plotting simu-
lated y values from the posterior distribution against 
the actual values of y. The posterior predictive distribu-
tion is defined as:

where yrep represents future data that could be drawn 
from the posterior distribution, y is the current simulator 

(4)p
(

yrep|y
)

=

∫

p
(

yrep|θ
)

p
(

y|θ
)

p(θ)dθ

Table 1 Summary of final design points used for emulation, based on example national data from Kenya

a  Prevalence of depression in 2028 represents the average prevalence between years 2025 and 2030. Numbers in parenthesis represent 95% uncertainty ranges

Simulator Output Description Simulation year

2018 2028 Source

Annual incidence of hypertension 3.90%
(3.8–4.1)

4.20%
(4.0–4.3)

[29]

Annual incidence of HIV 0.85%
(0.83–0.87)

0.37%
(0.36–0.38)

[29]

Annual incidence of HIV or hypertension among individuals who already 
have the other disease (comorbid HIV and hypertension)

0.37%
(0.33–0.39)

0.37%
(0.33–0.39)

[29]

Prevalence of hypertension 29.47%
(0.28–0.31)

34.30%
(0.33–0.35)

[29]

Prevalence of HIV 4.81%
(0.04–0.05)

2.55%
(0.02–0.03)

[29]

Prevalence of comorbid HIV and hypertension 2.06%
(0.02–0.03)

1.31%
(0.01–0.02)

[29]

All‑cause mortality ~ 1500 per 100,000 ~ 1500 per 100,000 [29]

Depression prevalence among people living with HIV 3.90% 3.70%a [36]
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data, θ is the model parameter, and p(y| θ) is the sampling 
density for future data conditional on the parameter [46]. 
The size of the posterior sample was based on 50 draws 
which showed to be sufficient enough to generate the yrep 
matrix from the posterior predictive distribution [40].

Step 5. Validate the emulator’s accuracy
We use the Bayesian leave-one-out cross validation 
(LOOCV) technique to confirm the emulator’s predic-
tive accuracy. The LOOCV method applies the log-like-
lihood evaluation of posterior parameter values, [42] 
and is appropriate for smaller data sets and when simi-
lar distributions exist in the training and testing data 
[47]. LOOCV assesses the predictive ability of posterior 
simulations in which the data is iteratively partitioned 
into either calibration (training) sets or validation (test) 
sets. LOOCV is one of the most accurate ways to esti-
mate how well a model will perform on unseen, “out-
of-sample” data [42]. The calibration set is used to train 
the model and produce output values that are com-
pared with the test set [48]. We validated the emulator’s 
accuracy using the loo package in R whereby the com-
putation uses Pareto-smoothed importance sampling 
(PSIS) to regularize importance weights [42]. Follow-
ing prior work [42, 49], a Pareto k estimate less than or 
equal to a 0.70 threshold was used to confirm reliability 
of the emulator’s performance. The LOOCV approach 
is specified in eqs. 5–7.

Given that data y1, …yn are independently modelled 
given the parameters θ then, p

(

y|θ
)

=
∏n

i p
(

yi|θ
)

 . 
Suppose a prior distribution p(θ) gives a posterior 
distribution p(θ| y) and a posterior predictive distri-
bution  p(y˜| y) = ∫ p(y˜i|θ)p(θ| y)dθ. A predictive accu-
racy measure for n data points termed as expected log 
pointwise predictive density (elpd) for a new dataset is 
given as:

where pt(y˜i) is the distribution of the real data generation 
for y˜i. The values of pt(y˜i) are unknown and therefore 
cross-validation is used to approximate (5). The Bayesian 
leave-one-out (LOO) estimate of the predictive fit is:

where

(5)
∑n

1

∫

pt
(

y∼i

)

log p
(

y∼i|y
)

dy∼i

(6)elpdloo =
∑n

i=1
log p

(

yi|y−1

)

(7)p
(

yi|y−1

)

=

∫

p
(

yi|θ
)

p
(

θ |y−1

)

dθ

is the leave-one-out predictive density given the data 
without the ith data point.

To train the emulator, we followed the Emulation and 
History Matching Handbook for R [50] whereby we 
chose a number of training points equal to ten times 
the number of parameters. Given that we were estimat-
ing only one parameter (prevalence) for each of the four 
outcomes of interest, this resulted in 10 training points.

Results: emulator interpretation
Using outputs from the two simulation models of HIV, 
hypertension and depression burden, our emulator shows 
to be as accurate and computationally more efficient at 
predicting prevalence of these comorbidities in Kenyan 
populations over 10-years. On average, the inMODELA 
simulator took 11 hours and 53 minutes to perform 1000 
runs on a high-performance computing cluster (HPC) 
and used 208 central processing units (CPU) cores, 2 
graphics processing units (GPUs), and 1500 gigabytes 
(GBs) of random-access memory (RAM). The model by 
Smit et  al. was coded in C++, ran using Xcode (Mac), 
and took a little over 3 minutes per iteration on an 8-core 
machine. Although run times were not overwhelmingly 
long, the Smit et  al. simulation model faced computa-
tional constraints due to the large size of model outputs; 
this necessitated an additional post-processing step of 
aggregating and summarizing each batch of 10 model 
iterations in MatLab. By comparison, the present emu-
lator was developed and validated on a Hewlett-Pack-
ard Intel Core i5 laptop with a 64-bit operating system, 
2.50 CPU of 2.50 GHz and 8.00 GBs of RAM, and took 
only a few seconds for a single run using the same sta-
tistical program for development, validation and output 
interpretation.

Figure  2 shows the emulator’s projected mean preva-
lence over time for the example data in terms of: (A) HIV, 
(B) hypertension, (C) comorbid HIV & hypertension, and 
(D) depression among adults living with HIV. In each 
sub-figure of Fig.  2, black points should be interpreted 
as the design points (i.e., simulator outputs) used to fit 
the emulator, dashed red lines show the mean preva-
lence plotted as a function of the emulator’s predictions, 
solid blue lines represent the 95% Confidence Intervals 
(CI) for the emulator’s mean estimates, and the yellow 
lines are the 95% Confidence Intervals for the simula-
tors’ mean estimates (Confidence Intervals for the annual 
mean prevalence of depression among PLWH were not 
publically available). We can then visually understand 
the emulated trends in disease burden to closely repro-
duce the trends projected by each simulator. For example, 
the emulator predicts that the mean prevalence of HIV 
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will be 0.02776 [95% CI: 0.02774–0.02778] in the year 
2027 compared to 0.02750 [95% CI: 0.02379–0.03121] 
predicted by the inMODELA simulator. The pointwise 
confidence intervals used for statistical uncertainty 
quantification are wider between each emulation year 
than at each annual point estimate (e.g., at the midpoint 
between 2027 and 2028, the mean prevalence of HIV is 
predicted to be 0.02573 (95% CI: 0.02219, 0.02928). The 
width of the credibility interval is largest between points 
and approaches zero near each point estimate due to the 
Gaussian process regression towards the mean. When 
considering the prevalence(s) of HIV, hypertension, 
and comorbid HIV & hypertension in this example, the 

emulator’s 95% Confidence Intervals for each mean esti-
mate are very similar to those projected by the inMOD-
ELA simulator. Given the linearity and lack of noise in 
the original data, the emulator’s uncertainty ranges are 
within those of the inMODELA estimates. This indicates 
that our emulator accurately approximates outputs from 
the more complex model.

Figure 3 shows the Gaussian posterior predictive dis-
tributions for the example Kenyan data for HIV, hyper-
tension, comorbid HIV & hypertension, and depression. 
The solid black lines can be understood as the distri-
bution of y; the dashed red lines represent the y poste-
rior predictive distribution, and the dotted grey lines 

Fig. 2 Gaussian process emulator for (a) HIV, (b) Hypertension, (c) Comorbid HIV & Hypertension and (d) Depression in Kenya

 At each year, black dots represent the selected design points used to fit the emulator, the blue curved lines represent the predicted 95% 
uncertainty intervals for each design point, the dashed red lines are the mean prevalence for a given year plotted as a function presenting 
the emulator’s predictions and the yellow thick lines outside are the 95% confidence intervals for the original simulators. Sub‑plot D does 
not include the 95% confidence intervals for the simulator because these data were unpublished
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represent the distribution of the simulations performed. 
We observe from panel A, B, C and D in Fig. 3 that the 
posterior predictive distributions denoted by post-pred y 
are not far off from the current fitted data denoted by y. 
Density values differ for each panel due to different prev-
alence values for the respective disease(s) on the x-axis, 
with greater imprecision for depression estimates (panel 
D) because of fewer available simulation data at each 
projection year.

For each output of interest, the LOOCV yielded Pareto 
k diagnostic values of < 0.70, indicating practical con-
vergence rates and reliable Monte Carlo error estimates. 
Validating diagnostics for each of the emulator’s output 
are provided in Supplementary Figures 1–4.

Supplementary Figure  5a shows the emulator’s pro-
jected mean prevalence of HIV when the simulation 
model assumes that Kenya’s ART coverage targets are 
achieved (i.e., 90% of people with HIV are aware of their 
status, and, of those, 90% are enrolled in HIV care1) due 
to the implementation of effective interventions along 
the care continuum. Supplementary Figure 5b shows the 
emulator’s projected mean prevalence of hypertension 
when Kenya’s hypertension treatment targets are reached 
(i.e., when 50% of persons with confirmed hypertension 

Fig. 3 Gaussian posterior predictive distributions for (a) HIV, (b) Hypertension, (c) Comorbid HIV & Hypertension and (d) Depression prevalence

 The solid black lines represent the distribution of y ; the dashed red lines represent the y posterior predictive distribution and the dotted grey 
lines represent the distribution of simulations. The density values of the plots are different as generated by the system due to the differences 
in disease‑specific prevalence values on the x‑axis

1 The simulation model was developed and published in 2019, at which time 
the UNAIDS 90–90-90 targets were in effect in Kenya.
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are enrolled in care and receiving drug therapy and coun-
selling). Supplementary Figures 5c and 5d show the pro-
jected disease prevalences when one or both of these 
treatment targets are achieved. Supplementary Figure  6 
shows the Gaussian posterior predictive distributions for 
these emulations. When considering the prevalence(s) 
of HIV and hypertension in the presence of hypotheti-
cal interventions that help achieve treatment targets, 
the emulator’s 95% confidence intervals for each mean 
estimate closely approximate those projected by the 
inMODELA model. Similar to emulator outputs based 
on disease prevalence simulations in the absence treat-
ment, the emulator’s uncertainty ranges for prevalence 
estimates in the presence of wider treatment uptake are 
within those of the inMODELA simulation estimates. 
This indicates that our emulator accurately approximates 
outputs from more complex modelling of the disease-
impact of chronic disease intervention(s). We also see a 
substantial lack of density values for each panel for the 
respective disease(s) on the x-axis in Supplementary Fig-
ure  6, further indicating high precision of the emulator 
for estimating treatment impacts on chronic disease bur-
den over time. For all emulations of disease burden in the 
presence of higher intervention uptake, the Pareto k diag-
nostic values were < 0.70 (Supplementary Figures 7–10).

Discussion
Observed accuracy and efficiency
Applying widely-used Gaussian processes, this tutorial 
details the steps used to develop a new, user-friendly 
emulator that can approximate multi-year estimates of 
chronic disease burden from two computationally inten-
sive simulation models. We demonstrate that the emula-
tor closely reproduced trends in disease burden projected 
by the published simulators from which our parameters 
were sourced [29, 36]. In this example, from 2018 through 
2028, prevalence of HIV and depression among PLWH in 
Kenya is projected to decrease by approximately 2 and < 1 
percentage points, respectively, with prevalence of hyper-
tension increasing by 5 percentage points over the same 
10-year forecast. Successful validation checks (Pareto k 
estimates < 0.70 for all emulations) confirmed the emu-
lator’s predictive accuracy. Disease prevalence estimates 
were modelled in only a few seconds on a 64-bit oper-
ating system laptop with 2 CPU cores of 8 GBs of RAM 
using the emulator presented in this paper, while simula-
tions [29] took more than 11 hours to perform 1000 runs 
on a high-performance computing cluster with 208 CPU 
cores, 2 GPUs and 1500 GBs of RAM. Thus, our emula-
tor was able to more efficiently model disease burden 
over time without compromising the statistical accuracy 
of more computationally intensive simulators. Outputs 
from sensitivity analyses suggest that the emulator is 

equally efficient and reliable for approximating simula-
tions of disease burden in the presence of effective treat-
ment interventions.

Future applications
The emulator presented in this paper was developed and 
validated using 10-year demographic and epidemiologi-
cal case study data from Kenya. However, the broader 
Gaussian processes described in this tutorial (and made 
available via the open source R code) are widely validated 
in the fields of public and environmental health as reliable 
methods for emulating results of complex and resource-
intensive models, [9, 43, 49] including for those above 
and beyond Kenyan populations and adults living with 
chronic conditions. For example, a tutorial using HIV 
data from Uganda [8] found that history matching and 
emulation of an 18 output simulator had a 65% probabil-
ity of fitting all simulator outputs and was several orders 
of magnitude faster to evaluate. A Bayesian optimiza-
tion emulator with Gaussian processes [51] has similarly 
shown to adequately capture the input–output relation-
ship of the OpenMalaria individual-based model (IBM) 
[52] of malaria transmission while improving upon the 
simulator’s overall goodness of fit. And a Gaussian pro-
cess emulator of an IBM of microbial communities [53] 
has demonstrated an approximately 220-fold increase in 
computational efficiency, with the percentage of variance 
explained by the univariate emulator ranging from 83 to 
99%. Thus, through the selection of alternative design 
points, the emulator in this tutorial has the potential to 
approximate other simulators outside of those for HIV, 
hypertension and diabetes. As is the goal with any emula-
tion exercise, our emulator offers a statistical model that 
can be used as a surrogate for chronic disease simula-
tors. Because our simple emulator showed to be valid and 
more efficient in mimicking 10-year prevalence of HIV 
comorbidities in the absence of intervention, the next 
step is to evaluate how the emulator will also be able to 
mimic future simulators that model disease burden in the 
presence of targeted interventions. For example, Hamil-
ton et al. developed an agent-based simulation of HIV-1 
transmission in Kenya to estimate the potential popula-
tion-level impact of providing PrEP layered into standard 
care services over 10 years [54, 55]. These and other lon-
gitudinal simulator data offer ideal design points to fur-
ther test the emulator’s predictive accuracy for modelling 
intervention effects on HIV treatment and prevention. 
Several microsimulation models have been developed 
to characterize and plan for the rapidly growing burden 
of non-communicable diseases in SSA [56–58] and else-
where [59–61]. Also, though still in early stages, recent 
advances in computing power are now allowing large and 
complex ABMs to be simulated in reasonable amounts 
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of time using desktop GPUs [62]. Yet, to the best of our 
knowledge, none of these NCD models have been made 
available to local public health decision makers through 
accessible and understandable platforms, which the pre-
sent emulator may begin to correct.

Limitations and strengths of this tutorial
There are some limitations to the emulation methods 
presented in this paper. First, Gaussian process emula-
tion was appropriate given the small number of design 
points being considered in this tutorial. However, 
GP emulators do not scale well when including many 
(e.g., > 50) inputs [9, 63, 64], such that several lower-
dimensional emulators might be more appropriate 
when a greater number of simulator outputs are being 
considered [9]. Relatedly, because our original simu-
lation model data were essential linear, the emulator 
increased the efficiency of our predictions (i.e., nar-
rower uncertainty ranges). It is possible that our emula-
tor may lose computational efficiency or yield estimates 
with greater uncertainty when applied to higher dimen-
sional data or to data with asymmetric noise. Incor-
porating interval calibration [65], Monte Carlo [66], 
and other methods in future iterations of the emulator 
could help address this limitation. Second, we fit sepa-
rate univariate GPs emulators to model each simulator 
output individually, which neglects any potential cor-
relation [67] between the outputs [53] (e.g., between 
changes in the prevalence of hypertension and depres-
sion among PLWH over time). Future expansions of the 
emulator can address this issue by using a multivariate 
Gaussian process [68]. Lastly, as is common to mathe-
matical modelling work, the simulation models selected 
for this tutorial suffered from incomplete surveillance 
data which restricted our ability to perform additional 
emulation procedures such as history matching [69] to 
reduce simulator input space or additional diagnostic 
checks [70] that rely on more robust training data.

Despite these limitations, the emulator presented in 
this paper offers an accessible tool for health policy mak-
ers who may not have a background in disease modelling. 
This will help to build the modelling capacity of local 
decision makers who are working to build integrated HIV 
and chronic disease programmes with limited resources 
[71]. While transparency surrounding microsimulation 
model development has increased in recent years as these 
models become more widespread, it is often impracti-
cal to document every detail of their functionality [11, 
12]. Emulators do not address all transparency concerns 
related to black box modelling, but they can help address 
concerns related to communicating results from com-
plex models for wider audiences. Thus, a key strength of 
this emulator is its simplicity; the step-by-step annotated 

code that was programmed using free R software and is 
available via an open-source repository can encourage 
future use and adaption at no cost to the user.

Secondly, our emulator uses Bayesian inferences rather 
than a frequentist approach in the posterior predictive 
analysis, which maximizes both the prior and currently 
available data. Third, we used the leave-one-out cross val-
idation technique which offers an unbiased and reliable 
diagnostic check when similar distributions exist in the 
training and test data [47, 49, 70]. Fourth, our emulator 
fills a gap in the health decision-making toolbox in that 
it is one of the first to model the dual burden of HIV and 
hypertension and of HIV and depression for a country 
with a generalized HIV epidemic and growing non-com-
municable disease burden.

Conclusion
This emulation tutorial responds to calls from inter-
national donors and global health researchers [72] to 
“make modelling tools and analytic packages publicly 
available to wider audiences” and facilitate “training of 
decision makers to understand model outputs, particu-
larly uncertainty and confidence intervals”. We envision 
future expansions of this emulator to be able to estimate 
changes in HIV and NCD burden with greater coverage 
of National Health Insurance schemes and in the pres-
ence of integrated care interventions [73, 74], and to esti-
mate the cost-effectiveness of integrated interventions 
based on current [6, 75] and emerging data.
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