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Abstract 

Background  In the causal mediation analysis framework, several parametric regression-based approaches have 
been introduced in past years for decomposing the total effect of an exposure on a binary outcome into a direct 
effect and an indirect effect through a target mediator. In this context, a well-known strategy involves specifying 
a logistic model for the outcome and invoking the rare outcome assumption (ROA) to simplify estimation. Recently, 
exact estimators for natural direct and indirect effects have been introduced to circumvent the challenges prompted 
by the ROA. As for the approximate approaches relying on the ROA, these exact approaches cannot be used as is 
on case-control data where the sampling mechanism depends on the outcome.

Methods  Considering a continuous or a binary mediator, we empirically compare the approximate and exact 
approaches using simulated data under various case-control scenarios. An illustration of these approaches on case-
control data is provided, where the natural mediation effects of long-term use of oral contraceptives on ovarian 
cancer, with lifetime number of ovulatory cycles as the mediator, are estimated.

Results  In the simulations, we found few differences between the performances of the approximate and exact 
approaches when the outcome was rare, both marginally and conditionally on variables. However, the performance 
of the approximate approaches degraded as the prevalence of the outcome increased in at least one stratum of vari-
ables. Differences in behavior were also observed among the approximate approaches. In the data analysis, all studied 
approaches were in agreement with respect to the natural direct and indirect effects estimates.

Conclusions  In the case where a violation of the ROA applies or is expected, approximate mediation approaches 
should be avoided or used with caution, and exact estimators favored.
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Introduction
Mediation analysis aims at decomposing the effect of an 
exposure on an outcome into a direct effect and an indi-
rect effect through a target mediator, thereby allowing 
for a better understanding of the mechanisms by which 
the exposure affects the outcome [1]. In causal mediation 
analysis, the total effect decomposition is accomplished 
via natural mediation effects [2, 3]. When the outcome 
is binary, standard regression-based approaches for the 
estimation of natural effects use a logistic model for the 
outcome and either a linear or a logistic model for the 
continuous or binary mediator, respectively [4]. Well-
known approaches for performing causal mediation 
analysis with a binary outcome were developed using 
the rare outcome assumption (ROA), yielding simplified 
inference [5, 6]. To address the approximate nature of 
these approaches, there has recently been an interest in 
developing so-called exact regression-based approaches 
for natural effects estimation, where the exact estimators 
circumvent the ROA and are applicable independently of 
the rareness or commonness of the outcome [7–11].

In Samoilenko, Blais and Lefebvre [7] and Samoilenko 
and Lefebvre [8, 9], the authors found that the exact esti-
mators yielded more accurate estimates of natural effects 
than the approximate ones in simulation scenarios where 
the outcome was common, but also when the outcome 
was rare marginally but not conditionally. It is relevant to 
mention that these studies implemented and compared 
approaches on data which allowed estimation of the 
outcome and mediator models’ parameters consistently 
using standard fitting procedures, that is, on data arising 
from cohort or population-based designs. As the case-
control design is indicated when the frequency of the out-
come is small or smaller than that of the exposure [12], it 
is pertinent to investigate whether the gain from using an 
exact mediation approach that does not rely on the ROA 
is preserved when implemented on case-control data. As 
detailed in the sequel, implementation of approximate 
and exact approaches on case-control data requires more 
attention than when implemented on cohort data since 
some parameters of the outcome and mediator models 
might not be estimated consistently using standard fitting 
procedures (e.g., [5, 6, 13, 14]). Causal mediation analysis 
with case-control data has been discussed in key articles 
such as [5, 6, 13], and a number of studies have been per-
formed to shed further light on this topic [14–17]. How-
ever, as the latter articles do not specifically address the 
comparison of approximate versus exact approaches, we 
believe it worthwhile to investigate this issue.

As alluded to previously, approximate mediation analy-
sis approaches relying on the ROA should not be used as 
is on case-control data where the sampling mechanism 
depends on the outcome. This well-known fact occurs 

as a result of the selection of individuals based on their 
outcome status, which can yield biased estimators of the 
regression coefficients of the mediator model. Such a bias 
notably happens when there are arrows pointing from 
the exposure to the outcome and from the mediator to 
the outcome in a causal mediation diagram. For these 
approaches, Valeri and VanderWeele [6] have proposed 
to account for the case-control design by fitting the medi-
ator model on the controls only. Alternatively, Vander-
Weele and Vansteelandt [5] and Valeri and VanderWeele 
[6] have suggested using inverse probability weighting 
(IPW) for fitting this model, but implementing IPW 
requires knowledge of the frequency of the outcome, the 
latter interpreted either as a prevalence or an incidence. 
Similar issues regarding the estimation of the mediator 
model prevail for the exact approaches. However, there 
is an additional difficulty for these, since, unlike for the 
approximate approaches [5], the case-control design also 
needs to be accounted for when estimating the outcome 
logistic model. This occurs because the intercept coef-
ficient of this model is involved in the definition of the 
exact natural direct and indirect effects estimands [8, 9].

The objective of this work is to empirically compare the 
performance of approximate versus exact approaches for 
the estimation of natural mediation effects odds ratios 
(ORs) in the context of case-control study designs where 
the outcome is binary and the mediator is either con-
tinuous or binary. In our comparisons, we focus on the 
regression-based approximate approaches available in 
the R package CMAverse [18], where the estimation of 
the mediator model is done according to either of the 
two aforementioned strategies. Similarly, to account for 
the case-control design in the exact approach, we use the 
IPW strategy implemented in the R package ExactMed 
[19], where the weighting is applied to both the mediator 
and outcome models. We also consider the unified likeli-
hood approach of Satten et  al. [17], which accounts for 
the case-control design using a joint prospective likeli-
hood for the outcome and mediator. This approach does 
not require knowledge of the outcome prevalence (inci-
dence) but nevertheless relies on the ROA.

The article is structured as follows. In Methods sec-
tion, we present the definitions of mediation effects and 
associated models, and provide details on the approaches 
compared. In this section, we also describe the simu-
lation study performed and report on the results in 
Results section. In Real data analysis section, we apply 
the approaches compared on case-control data from the 
PRevention of OVArian Cancer in Quebec (PROVAQ) 
study [20]. These analyses are performed to evaluate the 
direct and indirect effects of long-term use of oral con-
traceptives on ovarian cancer using the lifetime number 
of ovulatory cycles as the potential mediator.
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Methods
Definitions, models and approaches
We first define the nested counterfactual outcome 
Y (a,M(a∗)) which is the outcome that would be realized 
if the exposure were set to a and the mediator were set to 
the value it would have taken if the exposure had been set 
to a∗ . The conditional natural direct effect (NDE) and nat-
ural indirect effect (NIE) ORs corresponding to a change 
in the exposure level from A = a∗ to A = a are defined as 
follows:

The total effect (TE) OR is defined as the product of the 
NDE and NIE ORs:

Identification of natural direct and indirect effects is 
accomplished via the mediation formula [21], which is 
established using consistency, positivity and conditional 
independence assumptions [22, 23]. Mediation formulas 
corresponding to a binary outcome and a continuous or 
binary mediator, respectively, are:

where C is a set of covariates sufficient to achieve ignora-
bility for the A− Y  , A−M , and M − Y  relationships [4].

Throughout, we assume the following logistic regression 
model for Y for consideration in mediation formulas (3-4):

Moreover, we use either of the following linear or logis-
tic models, respectively:

(1)ORNDE
a,a∗ (c) =

P(Y (a,M(a∗))=1|C=c)
1−P(Y (a,M(a∗))=1|C=c)

P(Y (a∗,M(a∗))=1|C=c)
1−P(Y (a∗,M(a∗))=1|C=c)

,

(2)ORNIE
a,a∗(c) =

P(Y (a,M(a))=1|C=c)
1−P(Y (a,M(a))=1|C=c)

P(Y (a,M(a∗))=1|C=c)
1−P(Y (a,M(a∗))=1|C=c)

.

ORTE
a,a∗(c) = ORNDE

a,a∗ (c)× ORNIE
a,a∗(c).

(3)

P(Y (a,M(a∗)) = 1|C = c) = P(Y = 1|A = a,M = m,C = c)

× f (M = m|A = a
∗
,C = c) dm,

(4)

P(Y (a,M(a∗)) = 1|C = c) =
∑
m

P(Y = 1|A = a,M = m,C = c)

× P(M = m|A = a
∗
,C = c),

(5)
logit(P(Y = 1|A = a,M = m,C = c))

= θ0 + θ1a+ θ2m+ θ3am+ θ ′4c.

(6)E(M|A = a,C = c) = β0 + β1a+ β ′
2c,

(7)
logit(P(M = 1|A = a,C = c)) = β0 + β1a+ β ′

2c.

In the case of a continuous M, a Gaussian distribu-
tion is assumed for the mediator in formula (3), that is 
M = E(M|A,C)+ ǫ with ǫ ∼ N (0, σ 2) and f is the corre-
sponding density, while model (7) is used in formula (4).

Standard approximate approaches
The regression-based approaches for a binary outcome 
and a continuous or binary mediator proposed by Van-
derWeele and Vansteelandt [5] and Valeri and Vander-
Weele [6] for the estimation of natural direct and indirect 
effects on the OR scale ( ORNDE and ORNIE ) rely on models 
(5) and either (6) or (7); these approaches also invoke the 
ROA for providing approximate closed-form expressions 
for the natural effects. For a binary exposure coded 0/1, 
the expressions pertaining to a continuous mediator are:

while, for a binary mediator, these are:

The corresponding estimators for the natural effects 
ORs are obtained by substituting the parameters in (8-9) 
or (10-11) by corresponding estimators obtained accord-
ing to the type of mediator.

Implementation of these approximate approaches can 
be done using the R package CMAverse with the cmest 
function and option rb. In the context of a case-control 
study, the first strategy, which consists of fitting the medi-
ator model among the controls only, is implemented by 
setting the options casecontrol and yrare to TRUE. 
The theoretical basis for this strategy uses the argument 
that when the outcome is rare, one could assume that

While the above equivalences are deemed valid when 
assuming the ROA, exclusion of cases when fitting the 

(8)
OR

NDE

1,0; app(c) = exp(θ1 + θ3(β0 + β ′
2c + θ2σ

2)+ 0.5θ23 σ
2),

(9)ORNIE
1,0; app(c) = exp(β1(θ2 + θ3)),

(10)OR
NDE

1,0; app(c) =
exp(θ1)(1+ exp(θ2 + θ3 + β0 + β ′

2c))

1+ exp(θ2 + β0 + β ′
2c)

,

(11)

OR
NIE

1,0; app(c) =
(1+ exp(β0 + β ′

2c))

(1+ exp(β0 + β1 + β ′
2c))

×
(1+ exp(θ2 + θ3 + β0 + β1 + β ′

2c))

(1+ exp(θ2 + θ3 + β0 + β ′
2c))

.

(12)
E(M = m|Y = 0,A = a,C = c) ≈E(M = m|A = a,C = c)

=β0 + β1a+ β ′
2c,

(13)

logit(P(M = 1|Y = 0,A = a,C = c)) ≈

logit(P(M = 1|A = a,C = c)) = β0 + β1a+ β ′
2c.
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mediator model leads to a loss of efficiency for the esti-
mators of the regression parameters of the mediator 
model. This is the rationale invoked by Satten et al. [17] 
for introducing their unified approach. More subtly, we 
conjecture, in light of Samoilenko and Lefebvre [8, 9], 
that equivalences (12) and (13) may not hold if one relies 
on the marginal prevalence (incidence) of the outcome 
only to establish the ROA. This is explored via simula-
tion in the present work. The second strategy, based on 
IPW, is implemented in CMAverse by setting the option 
casecontrol to TRUE and specifying a value for the 
parameter yprevalence. Concretely, for this second 
strategy, each case is weighted by w = π/p and each con-
trol by w = (1− π)/(1− p) , where p is the proportion of 
cases in the sample and π is the outcome’s prevalence or 
incidence ( ≡ yprevalence) in the population. In gen-
eral, there is an overrepresentation of cases in the sam-
ple as compared to the population (that is, p > π ), and 
therefore each case (control) gets down weighted (up 
weighted) appropriately. These design-based weights are 
then used in a weighted regression using all the sample. A 
drawback of this second strategy, as opposed to the first 
one, is that it requires knowledge of the prevalence (inci-
dence) of the outcome in the population.

Exact approaches
The exact regression-based approaches for a binary out-
come and a continuous or binary mediator proposed by 
Samoilenko and Lefebvre [8, 9] estimate natural direct 
and indirect effects also from models (5) and either (6) or 
(7). However, these approaches do not invoke the ROA, 
at the cost of more complex estimators for the NDE and 
NIE.

Under these approaches, the model-based nested 
counterfactual outcome probabilities are not algebrai-
cally simplified, which yields

for a continuous (Gaussian) mediator, and

for a binary mediator, where expit(α) = exp(α)
1+exp(α) . It should 

be noted that integral (14) does not allow for a closed-
form formula [9], unlike the corresponding integral in 
the approximate approach.

Estimators for these probabilities are defined by first sub-
stituting the parameters in (14) or (15) by corresponding 

(14)

P(Y (a,M(a∗)) = 1|C = c) =

1
√
2πσ 2

∫ ∞

−∞

expit(θ0 + θ1a+ θ2m+ θ3am+ θ ′4c)

× exp
(
−

(m− (β0 + β1a
∗ + β ′

2c))
2

2σ 2

)
dm

(15)

P(Y (a,M(a∗)) = 1|C = c)

= expit(θ0 + θ1a+ θ2 + θ3a+ θ ′4c)expit(β0 + β1a
∗ + β ′

2c)

+ expit(θ0 + θ1a+ θ ′4c)(1− expit(β0 + β1a
∗ + β ′

2c))

estimators, and for a continuous mediator, resorting to 
numerical integration for computing the integral in (14). 
The estimators for the probabilities are then plugged-
back in (1) and (2) to provide estimators of natural effects 
on the OR scale.

Samoilenko and Lefebvre’s exact approaches are imple-
mented in the R package ExactMed, where the functions 
exactmed_c and exactmed are available for estimat-
ing ORNDE and ORNIE according to the type of mediator 
(continuous or binary). The package allows for using an 
IPW strategy accounting for case-control data, also via 
the use of option yprevalence. The same weights as 
for the approximate approaches are used for fitting the 
mediator model. These weights are also used when fit-
ting the outcome model to achieve consistent estimation 
for the intercept coefficient θ0 involved in (14-15). We 
refer readers to Additional file 1 for information on vari-
ance estimation and confidence intervals (CIs) for these 
approaches.

Unified likelihood approach
Satten et  al. [17] recently introduced a joint likelihood 
approach for estimating natural effects ORs based on 
standard case-control data, assuming a binary out-
come and either a continuous or a binary mediator. This  
so-called unified likelihood approach accounts for the 
case-control design while incorporating all case infor-
mation in the likelihood and eliminating the need for a 
user-specified outcome prevalence (incidence) value. 
More precisely, they considered the joint likelihood 
Lp =

∏
i
P(Y = yi,M = mi|A = ai,C = ci) , where i 

indexes individuals, which can be factored into

As in the Valeri and VanderWeele’s [6] “controls only" 
strategy described previously, Satten et al. [17] proposed 
to model P(M = m|Y = 0,A = a,C = c) invoking the ROA. 
For a binary mediator, their approach thus assumes that 
logit(P(M = 1|Y = 0,A = a,C = c)) ≈ β0 + β1a+ β ′

2c  . 
For a Gaussian mediator, a normal density function with 
mean E(M = m|Y = 0,A = a,C = c) ≈ β0 + β1a+ β ′

2c 
and variance σ 2 defines P(M = m|Y = 0,A = a,C = c).

This joint likelihood approach then expresses the 
mediator model among the cases as a function of the 
outcome odds and the mediator model among the 
controls:

(16)

Lp =
∏
i

P(M = mi|Y = yi ,A = ai ,C = ci)P(Y = yi|A = ai ,C = ci).

(17)

P(M = m|Y = 1,A = a,C = c)

=
θ(a,m, c)P(M = m|Y = 0, a, c)∫

θ(a,m∗, c)P(M = m∗|Y = 0, a, c) dm∗
,
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where

The denominator in (17) is written as:

that is, it corresponds to the outcome odds given expo-
sure and covariates. Hence

and the mediator model among the cases can be reex-
pressed as:

Combining these results, the following joint likeli-
hood is obtained:

Maximum likelihood estimators for the parameters 
of the mediator and outcome models are defined as 
arguments of the maxima of (21). Estimators for the 
natural effects ORs are then formed by substituting the 
parameters estimators in the approximate expressions 
(8-9) or (10-11).

This approach can be implemented using the R code 
provided by Satten et al. [17] (https://​github.​com/​epste​
in-​softw​are/​Media​tionCC).

Simulation study
The objective of the simulation study was to assess the 
performance of the four approaches described previ-
ously in different case-control design scenarios, namely 
the : 1) approximate approach with the mediator model 
fitted among the controls only (Approx_C) ; 2) approxi-
mate approach with IPW (Approx_IPW) ; 3) exact 
approach with IPW (Exact_IPW) ; 4) unified likelihood 
approach (Unified). For reference, we also obtained 
results using the approximate and exact approaches 
which do not account for the case-control design 
(Approx_Naive, Exact_Naive). All six approaches were 
evaluated with respect to both continuous and binary 
mediators.

θ(a,m, c) =
P(Y = 1|A = a,M = m,C = c)

P(Y = 0|A = a,M = m,C = c)

= exp(θ0 + θ1a+ θ2m+ θ3am+ θ ′4c).

(18)

∫
θ(a,m∗, c)P(M = m

∗|Y = 0, a, c) dm∗

=
P(Y = 1|a, c)

P(Y = 0|a, c)
= θ(a, c),

(19)

P(Y = y|A = a,C = c) =
θ(a, c)y

1+ θ(a, c)
, y ∈ {0, 1},

(20)P(M = m|Y = 1,A = a,C = c) =
θ(a,m, c)P(M = m|Y = 0, a, c)

θ(a, c)
.

(21)Lp =
∏
i

P(M = mi |Y = 0,A = ai ,C = ci) ·
θ(ai ,mi , ci)

yi

1+ θ(ai , ci)
.

Data generation
We considered five scenarios in the continuous 
mediator case. In all scenarios, covariates C1 and C2 
were generated independently as Bernoulli(0.5) and 
N (0, 0.752) random variables, respectively. The binary 
exposure A was generated as a Bernoulli(pA) , where 
pA = expit(−0.5+ 0.1c1 − 0.15c2) . The mediator M was 
generated as a N (β0 + β1a+ β21c1 + β22c2, 0.5

2) , and the 
binary outcome Y was generated as a Bernoulli(pY ) with 
pY = expit(θ0 + θ1a+ θ2m + θ3am+ θ41c1 + θ42c2) . The  
mediator and outcome simulation parameters used for 
each scenario in the continuous mediator case are pre-
sented in Table A1 of Additional file 2.

As in the continuous mediator case, we considered 
five scenarios in the binary mediator case. In all sce-
narios, covariates C1 and C2 were generated indepen-
dently as Bernoulli(0.5) and N (0, 1) , respectively. The  
binary exposure A was generated as a Bernoulli(pA) , 
where pA = expit(−0.5+ 0.1c1 − 0.15c2) . The binary  
mediator M was generated as a Bernoulli(pM) with 
pM = expit(β0 + β1a+ β21c1 + β22c2) , and the binary  
outcome as a Bernoulli(pY ) with pY = expit

(θ0 + θ1a+ θ2m+ θ3am+ θ41c1 + θ42c2) . The mediator  
and outcome simulation parameters used for each  
scenario in the binary mediator case are presented in 
Table A2 of Additional file 2.

We selected simulation scenarios to yield different mar-
ginal and conditional outcome prevalences (see Tables 
A3 and A4 of Additional file 2 for prevalences in the con-
tinuous and binary mediator cases, respectively). Values 
of the models’ parameters were also selected so to induce 
biased estimators of the regression parameters for the 
mediator model based on the selected samples. Specifi-
cally, in each scenario, a non-zero coefficient was speci-
fied for the mediator in the outcome model. Moreover, 
all variables (exposure and covariates) also had non-zero 
coefficients in the outcome model. It should be noted 
that the magnitude of selection bias induced is a function 
of the combined magnitude of these coefficients.

For both mediator types and each associated scenario, 
we constituted 1000 case-control samples from the corre-
sponding population with an equal number of cases and 
controls, i.e., n/2 cases and n/2 controls for total sample 
sizes of n = 500 and 1000.

Analysis
To provide an indication of the impact of the case-con-
trol design on the estimation of the mediator and out-
come models’ parameters, we calculated the averages of 
the parameter values obtained across each set of 1000 
case-control samples of size n = 1000 according to dif-
ferent estimation strategies. First, by ignoring the design 

https://github.com/epstein-software/MediationCC
https://github.com/epstein-software/MediationCC
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(Naive), second by using IPW in both the mediator and 
outcome models (IPW), third by estimating the media-
tor model using the controls only and the outcome model 
using all the sample (Controls), and fourth by using the 
joint likelihood (21) (Unified). For the first three strate-
gies, a (possibly weighted) linear regression with the R 
function lm was used for the continuous mediator and a 
(possibly weighted) logistic regression using the R func-
tion glm was used for the binary variables. For each 
strategy and scenario, one-sample bilateral t-tests were 
performed to detect departures from the true values of 
the parameters.

We applied all six approaches to each case-control 
sample generated in order to estimate conditional 
natural direct and indirect effects on the OR scale. 
The implementation of the approximate approaches 
was done using the CMAverse package (available at 
https://​bs1125.​github.​io/​CMAve​rse/) with the R ver-
sion 4.1.2. The implementation of the exact approaches 
was done using the ExactMed package version 0.3.0. 
All effects were computed by setting the covariates 
equal to the sample-specific means (that is, C = c̄ ). For 
the approaches based on IPW, we used the true out-
come prevalence (see Tables A3 and A4 in Additional 
file  2) as value for yprevalence. The bias, standard 
deviation (SD) and root mean squared error (RMSE) 
were calculated for each point estimator. Coverage 
probabilities of 95% CI estimators based on the delta 
method and percentile bootstrap were obtained for all 
approaches except for the unified likelihood approach 
where only the delta method is available from the R 
code provided by the authors. For each scenario, the 
true values of the NDE and NIE were computed using 
the true parameter values and population mean for the 
covariates.

For both mediator types we also investigated the 
impact of misspecifying the outcome prevalence π on 
the natural effects estimates obtained from the approxi-
mate and exact approaches with IPW. Specifically, for 
each scenario, we considered a grid of values for π which 
corresponded to a relative percentage of misspecification 
between -99% to 100%, by 5% from -95%. For each value 
of the prevalence’s grid, we computed the average natu-
ral effects based on the 1000 case-control samples of size 
n = 1000 that were generated for each scenario. Results 
are presented visually next. Results for the approxi-
mate approach with the controls only and the unified 
approach, which both do not require the user to specify 
a value for π , are reported on corresponding figures for 
reference only.

Results
The average estimated regression parameters for the con-
tinuous mediator case when n = 1000 are presented in 
Table A1 of Additional file 3. From this table, we observe 
that for all scenarios, all coefficients estimated using 
IPW were globally in agreement with the true values. 
A few IPW averages showed small deviations from the 
true values, as highlighted by some smaller p-values. The 
parameters of the mediator model estimated from the 
controls only and using the joint likelihood of the uni-
fied approach were generally close. Important departures 
from the true values were observed for these two strat-
egies, especially for Scenarios 2 and 5 where the ROA 
does not apply at least conditionally. For the outcome 
regression coefficients, only the intercept term was seen 
markedly affected by the design and only IPW correctly 
estimated it. In general, the unified approach slightly 
departed from the other approaches for the outcome 
model coefficients.

The natural effects results for the continuous media-
tor case when n = 1000 are presented in Tables  1, 2, 3, 
4, and 5. For Scenario 1, where the outcome is rare both 
marginally and conditionally, all approaches investigated, 
including the naive approaches that do not account for 
the case-control design, showed absolute relative biases 
less than 3% for all effects (NDE, NIE and TE). No sig-
nificant undercoverage was observed throughout. For 
Scenario 2, where the outcome is rare marginally but is 
not conditionally rare in all quartiles of the mediator, 
both naive approaches yielded more important biases for 
the NDE and NIE. The approximate approach with IPW 
yielded relative biases below 10% for both the NDE and 
NIE but greater than 10% for the TE. The biases for the 
approximate approach with the mediator model fitted 
using the controls only were smaller, in absolute values, 
than for the approximate approach with IPW. The exact 
approach with IPW was the least biased for the NDE 
and NIE among all approaches compared. We observed 
that all approaches except the approximate naive and 
IPW approaches showed small biases for the TE. The 
results for Scenario 3, which features an outcome that 
is relatively common both marginally and conditionally, 
were similar to those obtained for Scenario 1. Although 
the outcome was relatively prevalent in Scenario 4 
(marginal prevalence of 27.6%, conditional prevalences 
between 23% and 36%), the relative biases were small for 
all approaches and effects. In Scenario 5, the approxi-
mate approach with IPW yielded positive relative biases 
exceeding 10% for both NDE and NIE, largely impact-
ing the TE (relative bias of 22.8%). The approximate 

https://bs1125.github.io/CMAverse/
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approach with the mediator model fitted among the con-
trols only yielded smaller biases in absolute value. For 
this approach, the positive bias seen for the NDE estima-
tor coupled with the negative bias for the NIE estimator 
produced a TE estimator with only small bias. The exact 

approach with IPW yielded small relative biases for all 
effects in this scenario. Across all five scenarios, the uni-
fied approach often presented the smallest variability, 
however its performance in terms of RMSE depended on 
the amount of bias exhibited in a given scenario.

Table 1  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 1 with a continuous 
mediator (based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 1.525 1.557 0.032 2.094 0.203 0.205 95.3 94.8

Approx_C 1.525 1.558 0.032 2.129 0.204 0.207 95.2 95.0

Approx_IPW 1.525 1.558 0.033 2.166 0.206 0.208 95.4 94.9

Exact_Naive 1.525 1.541 0.016 1.031 0.206 0.206 95.1 95.3

Exact_IPW 1.525 1.556 0.030 1.985 0.206 0.208 95.7 94.9

Unified 1.525 1.558 0.033 2.135 0.204 0.207 95.2 -

NIE Approx_Naive 1.064 1.073 0.009 0.838 0.046 0.047 95.9 94.2

Approx_C 1.064 1.060 -0.004 -0.383 0.035 0.035 98.9 95.8

Approx_IPW 1.064 1.062 -0.002 -0.158 0.037 0.037 98.6 95.7

Exact_Naive 1.064 1.072 0.008 0.746 0.045 0.046 95.6 94.8

Exact_IPW 1.064 1.062 -0.002 -0.181 0.037 0.037 98.7 95.7

Unified 1.064 1.060 -0.004 -0.403 0.034 0.035 97.2 -

TE Approx_Naive 1.623 1.669 0.046 2.830 0.214 0.219 95.5 95.2

Approx_C 1.623 1.649 0.026 1.621 0.208 0.210 96.1 95.6

Approx_IPW 1.623 1.653 0.031 1.883 0.211 0.213 96.1 95.4

Exact_Naive 1.623 1.649 0.026 1.604 0.208 0.210 96.1 95.4

Exact_IPW 1.623 1.650 0.027 1.674 0.210 0.212 96.2 95.4

Unified 1.623 1.649 0.026 1.607 0.208 0.210 96.1 -

Table 2  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 2 with a continuous 
mediator (based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 1.622 1.840 0.218 13.445 0.285 0.358 88.1 86.6

Approx_C 1.622 1.727 0.105 6.450 0.258 0.278 92.8 93.3

Approx_IPW 1.622 1.752 0.130 8.028 0.266 0.296 92.4 91.6

Exact_Naive 1.622 1.505 -0.117 -7.240 0.209 0.240 89.6 90.1

Exact_IPW 1.622 1.652 0.030 1.835 0.238 0.239 94.7 94.7

Unified 1.622 1.719 0.097 5.978 0.254 0.272 93.6 -

NIE Approx_Naive 1.585 1.903 0.318 20.080 0.192 0.372 62.6 51.9

Approx_C 1.585 1.547 -0.038 -2.385 0.108 0.114 98.7 92.0

Approx_IPW 1.585 1.653 0.068 4.296 0.130 0.147 98.5 92.0

Exact_Naive 1.585 1.737 0.152 9.611 0.124 0.197 79.6 76.5

Exact_IPW 1.585 1.592 0.007 0.431 0.108 0.108 99.0 95.1

Unified 1.585 1.525 -0.060 -3.797 0.095 0.113 88.1 -

TE Approx_Naive 2.571 3.507 0.936 36.411 0.680 1.157 68.4 64.1

Approx_C 2.571 2.659 0.089 3.460 0.361 0.372 98.1 94.8

Approx_IPW 2.571 2.886 0.316 12.280 0.433 0.536 94.1 87.2

Exact_Naive 2.571 2.605 0.034 1.332 0.346 0.348 94.9 94.3

Exact_IPW 2.571 2.619 0.049 1.892 0.351 0.354 97.1 95.0

Unified 2.571 2.610 0.040 1.540 0.347 0.349 95.2 -
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The results on the misspecification of the prevalence 
parameter π when n = 1000 are found in Figures A1-A5 
in Additional file  3. The impact of the misspecification 
of π on the natural direct and indirect effects results was 
generally minor for relative errors between -20% and 

20% for the exact approach with IPW. When the param-
eter π was importantly underestimated (correspond-
ing to relative errors towards -99%), all the approaches 
accounting for the case-control design behaved simi-
larly and could exhibit large departures from the true 

Table 3  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 3 with a continuous 
mediator (based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 1.646 1.669 0.024 1.443 0.236 0.238 96.3 95.9

Approx_C 1.646 1.675 0.029 1.772 0.241 0.243 96.6 95.7

Approx_IPW 1.646 1.673 0.028 1.686 0.242 0.243 96.4 95.8

Exact_Naive 1.646 1.662 0.017 1.018 0.245 0.245 95.6 95.3

Exact_IPW 1.646 1.670 0.024 1.457 0.244 0.245 96.4 95.9

Unified 1.646 1.676 0.030 1.844 0.241 0.243 96.3 -

NIE Approx_Naive 1.150 1.157 0.007 0.606 0.094 0.095 94.4 94.0

Approx_C 1.150 1.144 -0.005 -0.473 0.079 0.079 97.1 94.3

Approx_IPW 1.150 1.151 0.001 0.100 0.087 0.087 96.8 93.9

Exact_Naive 1.150 1.154 0.004 0.383 0.091 0.091 94.0 94.0

Exact_IPW 1.150 1.149 0.000 -0.031 0.085 0.085 96.9 93.9

Unified 1.150 1.143 -0.006 -0.548 0.078 0.078 95.0 -

TE Approx_Naive 1.892 1.922 0.031 1.615 0.255 0.257 95.7 95.3

Approx_C 1.892 1.908 0.016 0.850 0.245 0.245 95.8 95.0

Approx_IPW 1.892 1.917 0.025 1.321 0.249 0.250 95.6 95.1

Exact_Naive 1.892 1.908 0.016 0.843 0.244 0.245 95.3 95.5

Exact_IPW 1.892 1.909 0.018 0.929 0.246 0.246 95.6 95.0

Unified 1.892 1.908 0.016 0.851 0.244 0.245 95.3 -

Table 4  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 4 with a continuous 
mediator (based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 1.516 1.551 0.034 2.270 0.246 0.249 95.5 95.3

Approx_C 1.516 1.554 0.037 2.468 0.250 0.252 95.6 94.8

Approx_IPW 1.516 1.552 0.036 2.393 0.249 0.251 95.5 94.6

Exact_Naive 1.516 1.543 0.027 1.761 0.253 0.254 95.4 95.0

Exact_IPW 1.516 1.548 0.031 2.077 0.252 0.254 95.6 94.8

Unified 1.516 1.554 0.038 2.497 0.249 0.252 95.4 -

NIE Approx_Naive 1.105 1.111 0.006 0.564 0.112 0.113 94.6 94.4

Approx_C 1.105 1.101 -0.004 -0.350 0.101 0.101 95.8 94.3

Approx_IPW 1.105 1.107 0.002 0.204 0.108 0.108 95.2 94.2

Exact_Naive 1.105 1.110 0.005 0.450 0.110 0.110 94.4 94.3

Exact_IPW 1.105 1.106 0.001 0.111 0.106 0.106 95.2 93.9

Unified 1.105 1.100 -0.005 -0.410 0.099 0.100 94.9 -

TE Approx_Naive 1.675 1.707 0.032 1.914 0.222 0.224 95.1 94.3

Approx_C 1.675 1.696 0.021 1.225 0.219 0.220 95.2 95.0

Approx_IPW 1.675 1.703 0.028 1.688 0.222 0.223 95.0 94.4

Exact_Naive 1.675 1.696 0.020 1.212 0.219 0.220 95.1 94.9

Exact_IPW 1.675 1.696 0.021 1.242 0.220 0.221 95.2 95.2

Unified 1.675 1.696 0.020 1.216 0.219 0.220 95.1 -
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values of the effects. In this extreme case of prevalence 
misspecification, the θ0 parameter was largely under-
estimated by the exact approach with IPW in each sce-
nario (results not shown), which yielded diminished 
differences between natural effects estimates obtained 
from the exact and approximate approaches. The exact 
approach was also seen affected when π was importantly 
overestimated, most notably in Scenarios 4 and 5, but 
such relative errors implied that the posited outcome 
prevalences were larger than the exposure prevalences in 
these cases (corresponding to relative errors larger than 
45%). For the TE, the approximate approach with IPW 
was noticeably more impacted than the exact approach 
with IPW. For this effect, the latter approach exhibited 
highly stable average estimates through the misspecifica-
tion grid. This is not unexpected given that the exposure 
coefficient of an outcome logistic model in a non media-
tion analysis would not be impacted by the case-control 
design.

The average estimated regression coefficients for the 
binary mediator case when n = 1000 are presented in 
Table  A2 of Additional file  3. We observed greater differ-
ences between the regression coefficients of the mediator 
model estimated from the studied approaches in the binary 
mediator case than in the continuous one. Nonetheless, the 
qualitative conclusions regarding the impact of design on 
the estimated regression coefficients for the binary mediator 
case were similar to those for the continuous mediator case.

The natural effects results for the binary mediator 
case when n = 1000 are presented in Tables  6, 7, 8, 9, 
and 10. For Scenario 1, where the outcome is rare both 
marginally and conditionally, all approaches except the 
approximate naive approach showed absolute relative 
biases less than 2% for all effects (NDE, NIE and TE). 
Some undercoverage was observed for the exact naive 
approach for the NIE. For Scenario 2, where the out-
come is rare marginally but is not conditionally rare 
in strata defined by the levels of the binary exposure 
and binary mediator, all approaches except the exact 
approach with IPW yielded large relative bias for the 
NDE. The latter approach was also found with minimal 
relative bias for the NIE. For this effect, a large relative 
bias was observed for the approximate approach with 
the mediator model fitted using controls only while the 
relative bias for the approximate IPW approach was 
near but below 10%. The exact approach with IPW was 
also found particularly performant in terms of RMSE 
for the NDE and NIE in this scenario. The approximate 
approach with IPW yielded a relative bias exceeding 
50% for the TE, while all other approaches accounting 
for the design produced a relative bias below 3% for 
this effect. The results for Scenario 3, which features 
an outcome that is relatively common both margin-
ally and conditionally, were similar to those obtained 
for Scenario 1. However, while the relative biases were 
small throughout, some undercoverage was observed 

Table 5  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 5 with a continuous 
mediator (based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 1.415 1.609 0.194 13.708 0.274 0.336 91.3 90.2

Approx_C 1.415 1.578 0.163 11.508 0.279 0.323 93.2 91.6

Approx_IPW 1.415 1.599 0.184 12.967 0.276 0.332 91.7 90.8

Exact_Naive 1.415 1.366 -0.049 -3.494 0.270 0.274 94.3 93.7

Exact_IPW 1.415 1.445 0.030 2.127 0.271 0.273 95.7 95.1

Unified 1.415 1.623 0.207 14.661 0.283 0.351 90.4 -

NIE Approx_Naive 2.521 2.997 0.476 18.879 0.601 0.767 89.0 86.1

Approx_C 2.521 2.363 -0.157 -6.237 0.294 0.334 98.2 92.7

Approx_IPW 2.521 2.788 0.267 10.611 0.495 0.562 94.5 90.8

Exact_Naive 2.521 2.707 0.186 7.379 0.409 0.450 92.3 92.4

Exact_IPW 2.521 2.553 0.032 1.274 0.350 0.351 96.9 95.2

Unified 2.521 2.259 -0.261 -10.369 0.246 0.359 85.3 -

TE Approx_Naive 3.568 4.731 1.164 32.616 0.809 1.417 66.3 61.5

Approx_C 3.568 3.678 0.111 3.100 0.496 0.509 97.3 94.5

Approx_IPW 3.568 4.380 0.813 22.778 0.692 1.068 81.5 74.7

Exact_Naive 3.568 3.618 0.050 1.405 0.479 0.482 95.8 95.1

Exact_IPW 3.568 3.625 0.057 1.599 0.481 0.485 96.0 95.4

Unified 3.568 3.622 0.055 1.529 0.480 0.483 95.7 -
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for the NIE in this scenario. Upon inspection of CIs for 
the NIE in this scenario (see Table  8), all approaches 
yielded larger average widths for the bootstrap CIs 

compared to the delta CIs, most notably the approaches 
accounting for the case-control design (results not 
shown). This would explain why the corresponding 

Table 6  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 1 with a binary mediator 
(based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 2.152 2.042 -0.110 -5.131 0.306 0.325 92.1 91.5

Approx_C 2.152 2.179 0.027 1.233 0.306 0.307 94.5 93.3

Approx_IPW 2.152 2.166 0.014 0.637 0.312 0.312 94.4 93.4

Exact_Naive 2.152 2.193 0.041 1.923 0.304 0.307 93.9 93.4

Exact_IPW 2.152 2.181 0.029 1.365 0.312 0.313 94.2 93.3

Unified 2.152 2.177 0.024 1.137 0.305 0.306 94.0 -

NIE Approx_Naive 1.047 1.044 -0.003 -0.274 0.032 0.032 89.6 93.7

Approx_C 1.047 1.046 -0.001 -0.141 0.025 0.025 98.9 95.6

Approx_IPW 1.047 1.047 0.000 0.008 0.027 0.027 98.8 96.2

Exact_Naive 1.047 1.037 -0.010 -0.996 0.024 0.026 86.5 89.4

Exact_IPW 1.047 1.046 -0.001 -0.136 0.025 0.025 98.9 95.4

Unified 1.047 1.046 -0.001 -0.119 0.025 0.025 97.1 -

TE Approx_Naive 2.254 2.133 -0.121 -5.378 0.328 0.349 92.0 91.5

Approx_C 2.254 2.277 0.023 1.035 0.315 0.316 94.5 93.5

Approx_IPW 2.254 2.267 0.013 0.594 0.323 0.323 94.6 93.4

Exact_Naive 2.254 2.274 0.020 0.875 0.314 0.314 93.5 93.3

Exact_IPW 2.254 2.280 0.026 1.174 0.322 0.323 94.5 93.4

Unified 2.254 2.276 0.022 0.960 0.314 0.315 93.4 -

Table 7  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 2 with a binary mediator 
(based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 3.529 5.629 2.100 59.510 1.197 2.417 41.3 35.1

Approx_C 3.529 4.890 1.361 38.566 1.011 1.696 68.7 64.0

Approx_IPW 3.529 5.039 1.510 42.795 1.061 1.846 63.5 56.5

Exact_Naive 3.529 2.733 -0.796 -22.544 0.399 0.890 55.0 57.4

Exact_IPW 3.529 3.617 0.088 2.504 0.545 0.552 95.1 94.9

Unified 3.529 4.897 1.368 38.767 1.011 1.701 71.5 -

NIE Approx_Naive 1.460 2.486 1.026 70.293 0.254 1.057 0.0 0.0

Approx_C 1.460 1.097 -0.362 -24.816 0.151 0.392 57.3 35.5

Approx_IPW 1.460 1.581 0.121 8.281 0.151 0.194 97.2 87.6

Exact_Naive 1.460 1.929 0.469 32.154 0.135 0.488 1.5 1.2

Exact_IPW 1.460 1.472 0.013 0.869 0.116 0.117 99.0 95.6

Unified 1.460 1.097 -0.362 -24.823 0.150 0.392 51.4 -

TE Approx_Naive 5.151 14.039 8.888 172.557 3.546 9.570 0.6 0.5

Approx_C 5.151 5.258 0.107 2.073 0.729 0.736 99.8 95.8

Approx_IPW 5.151 7.899 2.748 53.351 1.496 3.129 61.6 32.7

Exact_Naive 5.151 5.253 0.102 1.979 0.718 0.725 95.5 95.5

Exact_IPW 5.151 5.301 0.150 2.911 0.740 0.755 97.8 95.3

Unified 5.151 5.264 0.113 2.202 0.722 0.731 95.8 -
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bootstrap CIs were found having better coverage than 
the delta CIs. In Scenarios 4 and 5, which both feature 
a common outcome, only the exact approach with IPW 

exhibited acceptable relative biases and coverage. The 
bias and undercoverage of other approaches were larger 
in Scenario 5 than in Scenario 4. Similar to what was 

Table 8  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 3 with a binary mediator 
(based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 1.100 1.112 0.013 1.138 0.151 0.152 94.7 94.5

Approx_C 1.100 1.120 0.020 1.844 0.152 0.153 94.8 94.2

Approx_IPW 1.100 1.117 0.018 1.634 0.152 0.153 95.2 94.5

Exact_Naive 1.100 1.092 -0.007 -0.638 0.144 0.144 94.8 94.3

Exact_IPW 1.100 1.113 0.013 1.221 0.150 0.151 95.1 95.1

Unified 1.100 1.119 0.019 1.736 0.152 0.153 94.9 -

NIE Approx_Naive 0.939 0.964 0.025 2.704 0.016 0.030 61.1 64.6

Approx_C 0.939 0.932 -0.007 -0.750 0.033 0.034 88.1 95.2

Approx_IPW 0.939 0.942 0.003 0.303 0.028 0.028 87.1 94.4

Exact_Naive 0.939 0.954 0.015 1.609 0.023 0.028 81.5 87.5

Exact_IPW 0.939 0.937 -0.001 -0.156 0.031 0.031 88.9 95.3

Unified 0.939 0.932 -0.007 -0.722 0.033 0.034 94.5 -

TE Approx_Naive 1.032 1.072 0.040 3.830 0.143 0.149 93.9 94.4

Approx_C 1.032 1.042 0.010 0.949 0.136 0.136 95.1 94.5

Approx_IPW 1.032 1.051 0.019 1.842 0.139 0.140 95.1 94.4

Exact_Naive 1.032 1.042 0.009 0.911 0.136 0.136 94.6 93.9

Exact_IPW 1.032 1.042 0.010 0.956 0.136 0.137 95.4 94.1

Unified 1.032 1.041 0.009 0.870 0.136 0.136 94.6 -

Table 9  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 4 with a binary mediator 
(based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 1.042 1.214 0.172 16.484 0.191 0.257 85.0 83.6

Approx_C 1.042 1.151 0.109 10.480 0.196 0.224 93.0 91.9

Approx_IPW 1.042 1.183 0.141 13.532 0.193 0.239 89.6 88.1

Exact_Naive 1.042 0.965 -0.077 -7.398 0.213 0.227 90.0 91.0

Exact_IPW 1.042 1.052 0.010 0.983 0.197 0.197 94.1 93.9

Unified 1.042 1.153 0.111 10.699 0.196 0.226 92.9 -

NIE Approx_Naive 1.927 1.701 -0.226 -11.736 0.154 0.274 72.1 66.3

Approx_C 1.927 1.778 -0.149 -7.735 0.179 0.233 92.0 86.5

Approx_IPW 1.927 1.745 -0.182 -9.452 0.166 0.246 86.2 79.0

Exact_Naive 1.927 2.165 0.238 12.341 0.399 0.465 87.9 88.4

Exact_IPW 1.927 1.958 0.031 1.592 0.265 0.266 94.3 93.0

Unified 1.927 1.772 -0.155 -8.065 0.178 0.236 87.1 -

TE Approx_Naive 2.008 2.052 0.044 2.174 0.292 0.295 94.7 94.2

Approx_C 2.008 2.027 0.019 0.926 0.277 0.278 95.7 94.8

Approx_IPW 2.008 2.048 0.040 1.999 0.287 0.290 95.0 94.3

Exact_Naive 2.008 2.026 0.018 0.891 0.277 0.278 95.1 94.0

Exact_IPW 2.008 2.026 0.018 0.892 0.277 0.278 95.6 95.0

Unified 2.008 2.024 0.015 0.762 0.277 0.277 94.9 -
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observed in the continuous mediator case, the approxi-
mate approach with the mediator model fitted using the 
controls only and the unified approach did not exhibit 
relative bias issues for the TE in Scenario 5, unlike the 
approximate approach with IPW.

The impact of misspecification of π on the natural effects 
estimates obtained from the IPW approaches was more 
visible in the binary mediator case with n = 1000 (see  
Figures A6-A10 in Additional file 3). Nonetheless, the nat-
ural effects estimates from the exact approach with IPW 
were globally closer to the true effects over the middle of 
the misspecification grid for π (relative errors between 
-20% and 20%) in all scenarios except in Scenario 1 where 
the approximate approach with IPW was uniformly closest.

The results when n = 500 are presented in Additional 
file  4 (Tables A1-A5 for the continuous mediator case 
and Tables A6-A10 for the binary mediator case). The 
biases of the estimators were found generally larger 
when n = 500 as when n = 1000 and the bias patterns 
with respect to the studied estimators were roughly 
preserved. The coverage probabilities were found gen-
erally closer to the nominal value of 0.95 when n = 500 
as opposed to when n = 1000 . In the continuous media-
tor case, while the gain in using the exact approach with 
IPW was still visible from a bias perspective, it gener-
ally vanished when evaluated from a RMSE perspective. 
The exact approach with IPW still remained performant 
from a RMSE perspective in the binary mediator case.

Real data analysis
In this section, we apply the studied mediation analysis 
approaches to data from the PROVAQ study, a popula-
tion-based case-control study on ovarian cancer [20]. It 
is well-established that oral contraceptive use lowers the 
risk of developing epithelial ovarian cancer [24]. How-
ever, the mechanisms of this protection are not clear. A 

Table 10  Comparison of approaches for the estimation of natural effects on the odds ratio scale for Scenario 5 with a binary mediator 
(based on 1000 data sets of size n = 1000)

boot Bootstrap, CP Coverage probability, NDE Natural direct effect, NIE Natural indirect effect, RMSE Root mean squared error, SD Standard deviation, TE Total effect

Effect Approach True value Mean Bias Relative bias (%) SD RMSE CP (%) delta CP (%) boot

NDE Approx_Naive 3.023 3.949 0.926 30.648 0.596 1.101 61.8 58.2

Approx_C 3.023 3.808 0.785 25.979 0.596 0.986 71.7 69.1

Approx_IPW 3.023 3.870 0.847 28.034 0.599 1.038 67.8 63.9

Exact_Naive 3.023 2.529 -0.494 -16.346 0.560 0.747 83.3 85.6

Exact_IPW 3.023 3.063 0.040 1.336 0.533 0.535 95.0 94.6

Unified 3.023 3.811 0.788 26.058 0.598 0.989 72.8 -

NIE Approx_Naive 2.213 1.838 -0.375 -16.948 0.134 0.398 23.5 21.5

Approx_C 2.213 1.785 -0.428 -19.327 0.130 0.447 23.0 16.9

Approx_IPW 2.213 1.842 -0.371 -16.752 0.135 0.395 29.7 25.6

Exact_Naive 2.213 2.759 0.546 24.670 0.518 0.752 77.5 78.5

Exact_IPW 2.213 2.238 0.025 1.148 0.266 0.268 96.6 94.9

Unified 2.213 1.780 -0.433 -19.566 0.129 0.452 15.0 -

TE Approx_Naive 6.690 7.233 0.543 8.124 1.053 1.185 93.8 92.3

Approx_C 6.690 6.762 0.073 1.087 0.934 0.937 97.0 95.6

Approx_IPW 6.690 7.099 0.409 6.119 1.022 1.100 95.2 94.1

Exact_Naive 6.690 6.761 0.071 1.063 0.933 0.935 96.0 95.6

Exact_IPW 6.690 6.773 0.083 1.239 0.942 0.945 96.6 95.5

Unified 6.690 6.746 0.056 0.844 0.930 0.932 95.9 -
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long-standing model of ovarian carcinogenesis is the 
“incessant ovulation hypothesis”, which posits that ovula-
tion entails repeated trauma and repair of the ovarian sur-
face epithelium, and thus increases the possibility of DNA 
mutations leading to cancer initiation [25]. The contracep-
tive mechanism of most oral contraceptive types is ovu-
lation suppression [26], thus the reduced risk of ovarian 
cancer with oral contraceptive use supports this hypoth-
esis. However, it has been suggested that the magnitude of 
risk reduction with oral contraceptive use is stronger than 
that would be expected based on number of ovulations 
alone, and thus other mechanisms may be involved [27, 
28]. In this application, the aim was to estimate the asso-
ciation between oral contraceptive use and ovarian cancer 
risk considering the natural mediation effects via the total 
number of ovulatory cycles over the lifetime.

Participants in the PROVAQ study were recruited from 
2011 to 2016 and included Canadian citizens aged 18-79 
years who resided in the greater Montreal area. Incident 
cases were identified in the major hospitals treating ovar-
ian cancer in the study region while controls were selected 
from the Quebec electoral list and were frequency 
matched to cases by 5-year age group and Montreal 
region. Data were collected in an in-person interview. The 
final number of eligible participants was 498 cases of bor-
derline ( n = 134 ) and invasive ( n = 364 ) ovarian cancers 
and 908 controls. A detailed description of the PROVAQ 
study was published previously [20]. The current analy-
sis was restricted to cases of invasive ovarian cancer 
( n = 364 ), which is the ovarian cancer type that has been 
consistently associated with oral contraceptive use.

The binary exposure variable was defined as the dura-
tion of oral contraceptive use, dichotomized as ≥ 10 
years vs. < 10 years, the former level corresponding to 
the duration when a lower ovarian cancer risk is seen 
most consistently [24, 29]. The mediator, considered as 
a continuous variable, was defined as the lifetime num-
ber of ovulatory cycles, as calculated in the Cancer and 
Steroid Study (CASH) (equation 1) [30]. The binary out-
come of case-control status represented incident inva-
sive ovarian cancer cases and controls. Age and highest 

level of education attained were considered as potential 
confounding variables. Age was measured at diagnosis 
for cases and at interview for controls. Education was 
dichotomized as education level above high school or 
not. Lifetime number of ovulatory cycles could not be 
calculated for one control due to missing data, thus the 
final sample for the current analysis included 364 cases 
and 907 controls. Table 11 describes the cases and con-
trols according to the variables used in our analysis.

All studied approaches were used to obtain conditional 
natural effects (NDE and NIE) assuming an interaction 
term between the mediator and exposure in the outcome 
regression model. As in the simulations, the condition-
ing values for the covariates were their average values in 
the sample (58.48 for age and 0.672 for education). In 
the exact and approximate approaches with IPW, we set 
π = 13.5/100 000 , which corresponds to the annual inci-
dence rate of ovarian cancer in Canada [31]. For the approx-
imate approach with the controls only, we note that, since 
the controls were obtained through incidence density sam-
pling, the equivalence (12) should hold exactly rather than 
approximately [32]. Moreover, in this context, conditions 
to interpret the ORs as instantaneous rate ratios would be 
the proportional-hazards assumption over the 5-year study 
period and the constant proportion of exposed (that is, 
long-term users of oral contraceptives) over that period [33].

Tables A1 and A2 of Additional file  5 show the esti-
mated regression coefficients for the mediator and out-
come models, respectively. The values shown in these 
tables correspond to those obtained using the exact 
approach with IPW (Exact_IPW). The point estimates are 
virtually the same as those obtained using the approxi-
mate approach with IPW (Approx_IPW), with very slight 
differences in the standard errors reported (results not 
shown). From Table A1 (Additional file 5), we see a strong 
association between the long-term use of oral contracep-
tives (exposure) and the lifetime number of ovulatory 
cycles (mediator), as expected. In the outcome model (see 
Table A2, Additional file 5), which included lifetime num-
ber of ovulatory cycles, long-term use of oral contracep-
tives was not found to be associated with ovarian cancer 

Table 11  Characteristics of the PROVAQ study sample

SD Standard deviation

Cases ( n = 364) Controls ( n = 907) Controls Exposed 
( n = 242)

Controls 
Unexposed 
( n = 665)

Duration of oral contraceptive use ≥ 10 years, n (%) 61 (16.8 %) 242 (26.7 %) — —

Lifetime number of ovulatory cycles, mean (SD) 383.92 (111.07) 354.01 (122.20) 255.48 (98.93) 389.87 (109.53)

Age (years), mean (SD) 59.22 (11.35) 58.18 (12.62) 54.60 (11.20) 59.48 (12.86)

Highest education level > high school, n (%) 228 (62.64 %) 626 (69.02 %) 190 (78.51 %) 436 (65.56 %)
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(outcome), either as a main effect term or as part of an 
interaction term with lifetime number of ovulatory cycles.

The results of the mediation analysis are found in 
Table 12. The total effect and the natural direct and indi-
rect effects were found similar across the approaches. 
We note that the results obtained with the exact and 
approximate approaches based on IPW (Approx_IPW 
and Exact_IPW) are practically identical. The TE ORs 
suggest that the risk of ovarian cancer at any time point 
is reduced with the long-term use of oral contracep-
tives (exact approach TE estimate: 0.571; 95% CI: 0.414 
to 0.787). Natural effects estimates suggest a protective 
effect of long-term use of oral contraceptives that is both 
direct and indirect, but the results are not statistically 
significant. NDE ORs were found to be farther away from 
the null effect value ( OR = 1 ) than the NIE ORs, suggest-
ing that the decrease in risk with long-term use of oral 
contraceptives is more important through pathways not 
involving the total number of ovulatory cycles over life.

Because the exposure-mediator interaction term 
included in the outcome model was not significant 
(P-value = 0.59 , see Table A2 of Additional file 5), a sec-
ondary mediation analysis which excluded that term 
from the outcome model was performed. The corre-
sponding estimated regression coefficients and mediation 

effects are presented in Tables A3-A4 of Additional file 5, 
respectively. In this simpler outcome model, the exposure 
was found to be associated with the outcome (compare 
Tables A2 and A3 from Additional file 5). Some changes 
in the magnitude of the natural effects were observed 
: while the NDE ORs were again farther away from the 
null than the NIE ORs, the NDE and NIE ORs computed 
from this simpler model were respectively closer and far-
ther to the null than when computed using the outcome 
model allowing for an exposure-mediator term. Moreo-
ver, significance was achieved for the NIE. Specifically, 
considering a long-term use of oral contraceptives in all 
the population, we would obtain near 20% risk reduction 
for ovarian cancer if lifetime number of ovulatory cycles 
were allowed to vary according to the long-term use of 
oral contraceptives or not (exact approach NIE estimate: 
0.814 and 95% CI: 0.693 to 0.955).

Discussion
In this article, we investigated the performance of dif-
ferent parametric regression-based approaches for the 
estimation of natural direct and indirect effects with 
a binary outcome and either a continuous or a binary 
mediator using case-control data. We have found that 
all approaches investigated yielded essentially similar 
results when the outcome was rare or relatively rare both 
marginally and conditionally. However, some differences 
between approaches were observed when the outcome 
was more common marginally and/or conditionally. In 
particular, only the exact approach with IPW was found 
to yield acceptable results in all of the simulation scenar-
ios investigated. Regarding both approximate approaches 
by VanderWeele and collaborators, we have observed 
that the approximate approach that used the controls for 
the estimation of the mediator model yielded an estima-
tor of the total effect that was less biased than when IPW 
was used. Indeed, while the estimated regression coeffi-
cients were appropriately corrected for the case-control 
design using IPW, the closed-form formulas used for 
the approximate NDE, NIE and TE estimands produced 
the biases observed for the natural effects estimators in 
some of the scenarios investigated. The unified approach 
proposed by Satten and collaborators was observed hav-
ing similar issues with bias as the other approximate 
approaches for the estimation of the NDE and NIE. This 
unified approach was also found closest in behavior to 
the approximate approach with the controls only ; in par-
ticular, they agreed on the estimation of the regression 
parameters of the mediator model.

We have also investigated the impact of misspeci-
fying the prevalence π in the approximate and exact 
approaches that rely on a user-selected prevalence value 

Table 12  Estimated conditional total effect (TE) and natural 
direct effect (NDE) of long-term use of oral contraceptives on 
invasive ovarian cancer, with natural indirect effect (NIE) via 
lifetime number of ovulatory cycles

CI Confidence interval, SE Standard error

Effect Approach Estimate SE 95% CI

NDE Approx_Naive 0.655 0.174 0.389, 1.102

Approx_C 0.657 0.170 0.396, 1.092

Approx_IPW 0.650 0.152 0.411, 1.027

Exact_Naive 0.659 0.171 0.396, 1.097

Exact_IPW 0.650 0.152 0.411, 1.029

Unified 0.654 0.158 0.407, 1.049

NIE Approx_Naive 0.870 0.166 0.598, 1.264

Approx_C 0.876 0.159 0.614, 1.249

Approx_IPW 0.878 0.138 0.646, 1.194

Exact_Naive 0.870 0.165 0.600, 1.262

Exact_IPW 0.878 0.138 0.645, 1.196

Unified 0.863 0.144 0.623, 1.196

TE Approx_Naive 0.569 0.093 0.413, 0.785

Approx_C 0.576 0.094 0.418, 0.794

Exact_Naive 0.573 0.093 0.417, 0.788

Approx_IPW 0.571 0.094 0.414, 0.787

Exact_IPW 0.571 0.094 0.414, 0.787

Unified 0.564 0.092 0.410, 0.776
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(IPW). In our simulations, in which the relative misspeci-
fication of π was allowed to range between −99% and 
100% , we observed that the misspecification of π was less 
of a concern than the approximate or exact nature of the 
natural effects estimands when the misspecification was 
moderate. When the prevalence was importantly under-
estimated, all studied approaches were found to behave 
similarly. This is an interesting observation since one can 
thus view the “controls only” strategy as making implic-
itly an extreme choice for the user provided prevalence 
parameter π . Indeed fitting the mediator model with 
controls only is equivalent to setting the yprevalence 
parameter to zero, in which situation the cases receive 
null weights when fitting this model.

In this work, we considered the exact estimators with 
IPW to allow for direct comparisons with the approxi-
mate approach with IPW and provide an evaluation of 
the ExactMed R package for the estimation of natural 
effects with case-control data. However, other strate-
gies for the estimation of the regression parameters to be 
used in exact estimators could be envisaged in this con-
text. In the case of a binary mediator, Doretti et al. [14] 
proposed M-estimation or maximum likelihood estima-
tion for the simultaneous estimation of the regression 
coefficients of the mediator and outcome models, but 
nevertheless assume the population prevalence π known 
for implementing the correction related to the intercept 
coefficient of the outcome model. These authors found 
that such approaches yield estimators that both properly 
adjust for the case-control design and exhibit increased 
efficiency as compared to IPW.

Lastly, we believe worth raising the fact that, in the 
context of case-control study designs, the choice of the 
conditioning values of the covariates used for computing 
the conditional natural effects may produce interpreta-
tion issues. As pointed out in VanderWeele and Tchetgen 
Tchetgen [32], using the empirical means of the covari-
ates C̄ found in a selected sample may not well approxi-
mate the population averages E[C] (even with a large 
sample). Currently, and to the best of our understanding, 
this is the default procedure in packages CMAverse and 
ExactMed. Therefore, to the extent that C̄ is not a con-
vergent estimator for E[C], this has for consequence that 
the studied conditional natural effects estimators do not 
exactly target the correct estimands, which are concep-
tualized to be defined based on the population means. 
While this was found practically inconsequential in the 
simulations, it could be otherwise in other sets-up. Auto-
matically computing the conditional natural effects with 
the covariates means corrected using IPW could provide 
a sensible upgrade when a case-control option is used.

Conclusion
We have brought additional insights on existing regres-
sion-based approaches for estimating natural direct and 
indirect effects for a binary outcome and a continuous 
or binary mediator using data from case-control study 
designs. Studied estimators rely either on the ROA or 
knowledge of the outcome prevalence (incidence) in the 
population, or both. Given that the former can be diffi-
cult to assess with respect to all relevant strata formed by 
the conditioning variables (exposure and mediator) of the 
outcome model and the latter difficult to specify exactly, 
we recommend evaluating the robustness of natural 
effects estimates by use of different estimators. However, 
approximate mediation approaches should be avoided 
or regarded with caution in situations where a violation 
of the ROA applies or is expected. As was found in the 
context of cohort study designs, the exact estimators 
investigated herein circumvented the difficulties associ-
ated with this assumption, and are thus to be favored in 
the previous situations. Nonetheless, the performance of 
these estimators, as the approximate estimators based on 
IPW, depends on the correct specification of the outcome 
prevalence (incidence) parameter π and we cannot elimi-
nate the possibility that the exact estimators yield worse 
results than the approximate ones, even for moderate 
misspecification of π . Sensitivity analyses with respect 
to the specification of π should be performed whenever 
there is significant uncertainty regarding the outcome 
prevalence (incidence) in the population.

As a final remark, the exact approaches studied herein 
have not been yet evaluated for mediation analysis with 
multiple mediators based on cohort data. Considering 
extant knowledge for multiple mediation analysis (e.g., [34]), 
it is reasonable to believe that these approaches for a single 
mediator could be used separately on each mediator when 
they are conditionally independent given the covariates in 
the population, and that IPW could be used to account for 
the design if implemented on case-control data. This inter-
esting line of inquiry should be evaluated in future research.
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