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Abstract 

Background The residual life of a patient with human immunodeficiency virus (HIV) is of major interest to patients 
and their physicians. While existing analyses of HIV patient survival focus mostly on data collected at baseline, residual 
life analysis allows for dynamic analysis based on additional data collected over a period of time. As survival times typ-
ically exhibit a right-skewed distribution, the median provides a more useful summary of the underlying distribution 
than the mean. In this paper, we propose an efficient inference procedure that fits a semiparametric quantile regres-
sion model assessing the effect of longitudinal biomarkers on the residual life of HIV patients until the development 
of dyslipidemia, a disease becoming more prevalent among those with HIV.

Methods For estimation of model parameters, we propose an induced smoothing method that smooths nons-
mooth estimating functions based on check functions. For variance estimation, we propose an efficient resampling-
based estimator. The proposed estimators are theoretically justified. Simulation studies are used to evaluate their 
finite sample performances, including their prediction accuracy. We analyze the Korea HIV/AIDS cohort study data 
to examine the effects of CD4 (cluster of differentiation 4) cell count on the residual life of HIV patients to the onset 
of dyslipidemia.

Results The proposed estimator is shown to be consistent and normally distributed asymptotically. Under various 
simulation settings, our estimates are approximately unbiased. Their variances estimates are close to the empirical 
variances and their computational efficiency is superior to that of the nonsmooth counterparts. Two measures of pre-
diction performance indicate that our method adequately reflects the dynamic character of longitudinal biomarkers 
and residual life. The analysis of the Korea HIV/AIDS cohort study data shows that CD4 cell count is positively associ-
ated with residual life to the onset of dyslipidemia but the effect is not statistically significant.

Conclusions Our method enables direct prediction of residual lifetimes with a dynamic feature that accommodates 
data accumulated at different times. Our estimator significantly improves computational efficiency in variance estima-
tion compared to the existing nonsmooth estimator. Analysis of the HIV/AIDS cohort study data reveals dynamic 
effects of CD4 cell count on the residual life to the onset of dyslipidemia.

Keywords AIDS, Human immunodeficiency virus, Induced smoothing, Quantile regression, Residual life, Survival 
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Background
The life expectancy of patients with human immunode-
ficiency virus (HIV) infection has increased considerably 
since antiretroviral therapy has become widespread. The 
life expectancy of HIV patients aged 20 years who began 
antiretroviral therapy between 2008 and 2010 was pre-
dicted to be approximately 78 years [1]. HIV patients live 
longer lives than before, increasing the number of non-
acquired immunodeficiency syndrome (AIDS)-related 
morbidities [2]. Before 2007, AIDS was the leading cause 
of death in Korea. However, the rate of AIDS-related 
mortality has declined over time, while non-AIDS-
related mortality has recently increased among patients 
with HIV in Korea [3, 4]. Research shows that compared 
to healthy individuals, patients with HIV are more likely 
to develop cardiovascular diseases, diabetes, hyperten-
sion, kidney diseases, liver diseases, psychological dis-
orders, and various malignancies unrelated to AIDS [5]. 
Similar results were observed in Korea. Accordingly, 
from 2006 to 2016, syphilis, dyslipidemia, and cardiovas-
cular disease were the most prevalent non-AIDS comor-
bidities among patients with HIV [4].

Our motivating dataset was obtained from a Korea 
HIV/AIDS cohort study aimed at preventing, treating, 
and effectively managing patients with HIV in Korea. The 
Korea HIV/AIDS cohort study is a multi-center cohort 
study that began in December 2006 and has thus far 
included over 1,500 participants [6]. As patients in the 
Korea HIV/AIDS cohort study lived longer, research on 
non-AIDS-related comorbidities became more critical. 
In this paper, we consider a time-to-event analysis of dys-
lipidemia, an increasingly common comorbidity among 
patients with HIV in Korea.

HIV patients who participated in the cohort study reg-
ularly visited hospitals for treatment. At each visit, infor-
mation was obtained, including longitudinal biomarkers 
such as CD4 (cluster of differentiation 4) cell count. Since 
longitudinal biomarkers provide valuable insights into 
the clinical course of patients with HIV, assessing the 
impact of biomarkers is critical. The residual life regres-
sion model can immediately capture the effect of longi-
tudinal biomarkers collected over time in the cohort data 
because it estimates the remaining lifetimes defined at 
various points until the event of interest. Studies based 
on residual life are naturally more dynamic than those 
based on existing popular survival models by updating 
new data at different follow-up time points.

In this paper, we propose a regression model of 
residual life to assess the effects of a longitudinal bio-
marker, CD4 cell count, an important biomarker for 
HIV patients. We allowed time-varying regression 
coefficients and time-varying covariates to capture the 
dynamic effects of CD4 cell count evaluated at different 

follow-up times. The distribution of survival time was 
typically skewed, with a long right tail. A mean sur-
vival time is not the best measure for summarizing the 
distribution. Quantiles, including the median, have 
become popular for describing the distribution of sur-
vival times. Thus, we suggest modeling the quantiles 
of residual life. Koenker and Bassett Jr [7] introduced 
the concept of quantile regression models. They pre-
sented a statistical approach for analyzing a semipa-
rametric quantile regression model in the absence of 
censored data. Expanding upon their work, subsequent 
research delved into semi-parametric regression mod-
els for quantiles in the context of censored failure times 
[8–12]. Powell [13] proposed an inference method for 
the quantile regression model based on the least abso-
lute deviation (LAD) principle, tailored particularly for 
censored data. Portnoy [10] introduced an approach 
that extends the Kaplan-Meier estimator to the realm 
of quantile regression. Please review and edit the para-
graph accordingly. Peng and Huang [11] proposed a 
method based on the counting process and martingale 
framework that utilizes the Nelson-Aalen estimator 
of the cumulative hazard function. For flexibility, we 
consider a semiparametric quantile residual life regres-
sion model that does not assume a specific parametric 
distribution for survival times. Li et  al. [14] and Lin 
et  al. [15] proposed a statistical inference procedure 
for fitting this semiparametric quantile residual life 
regression model using time-varying biomarkers (e.g., 
BCR-ABL gene) as covariates with time-varying regres-
sion coefficients. They proposed estimating the regres-
sion coefficients using nonsmooth estimating functions 
with an L1-minimization algorithm. Although this 
algorithm is computationally efficient, the estimation of 
the variance of the estimated regression coefficients is 
based on a bootstrap method, which requires many cal-
culations of the estimated regression coefficients. The 
variance estimation procedure is thus computation-
ally intensive. Here, we propose an induced smoothing 
procedure [16] which has been shown to be more com-
putationally efficient in  situations considering semipa-
rametric AFT models [17–19] and quantile regression 
models [20], especially in variance estimation. To the 
best of our knowledge, statistical methodologies that 
apply the induced smoothing method to fit semipa-
rametric quantile residual life regression models exist 
only for models with time-invariant covariates and 
regression coefficients [21].

The remainder of this paper is organized as follows. 
Model and methods section introduces semiparamet-
ric quantile regression models and estimation meth-
ods based on the induced smoothing approach and 
establishes the asymptotic properties of the proposed 
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estimators. Next, Simulation section presents the simula-
tion studies that examine the finite sample properties of 
the proposed estimators. Lastly, Analysis of Korea HIV/
AIDS cohort study data section applies the proposed 
methods to censored survival data from a Korea HIV/
AIDS cohort study. In Supplementary material, we pro-
vide a sketch of the proofs of the asymptotic properties of 
our proposed estimators.

Model and methods
Semiparametric quantile regression model for longitudinal 
biomarkeres
Let T and C denote potential failure and censoring times, 
respectively. Y = min(T ,C) denotes the observed time. 
We define the event indicator as δ = I(T ≤ C) , where 
I(·) is the indicator function. X denotes a set of vec-
tor of covariates, further divided into a subset of the 
time-invariant covariates W = [1,W1, . . . ,Wp]⊤ ∈ R

p 
and a subset of the time-varying covariates 
Z(t) = [Z1(t), . . . ,Zq(t)]⊤ ∈ R

q  where ⊤ denotes a 
transpose. To accommodate a missingness in Z(t) , we 
introduce an indicator for the jth visit ηj , (j = 1, 2, . . . ,D) 
where D denotes the planned visit time at t1 < . . . < tD . 
If Z(t) is available at the jth planned visit, ηj = 1 . ηj = 0 , 
otherwise. The observed data are then made up of n 
independent copies of {Y , δ,W , η, η1Z(t1), . . . , ηDZ(tD)} , 
{Yi, δi,W i, ηi, η1Z(t1), . . . , ηiDZi(tD)}ni=1 , where n and i 
stand for the sample size and subject, respectively.

The τ th quantile of T is defined as the minimum time 
at which the cumulative distribution function (cdf ) for T 
exceeds τ ( 0 < τ < 1 ). Specifically,

where F(t|X) = Pr(T ≤ t|X) denotes the cdf of T at time 
t.

Residual life is defined as the remaining period of life 
from time t to the event of interest. The residual life is 
denoted as T − t . We consider the following regression 
model for QT−t(τ |X) : To accommodate longitudinal 
biomarkers, we assume that X is possibly time-depend-
ent, i.e., X = X(t) , and can be divided into a set of 
time-varying covariates including longitudinal bio-
markers, Z(t) , and time-invariant covariates, W  , i.e., 

QT (τ |X) = inf{t : F(t|X) ≥ τ }, 0 < τ < 1,

X(t) = {W⊤,Z(t)⊤}⊤ . Then, the τ th quantile residual life 
regression model [14] is

where α(τ , t) = {α0(τ , t),α1(τ , t), . . . ,αp(τ , t)}⊤ and 
β(τ , t) = {β1(τ , t), . . . ,βq(τ , t)}⊤ are (p+ 1)× 1 and 
q × 1 possibly time-varying regression coefficients for 
W  and Z(t) , respectively. Hereafter, whenever it is obvi-
ous, we suppress τ from α(τ , t) and β(τ , t) for notational 
simplicity.

Nonsmooth estimating functions
To estimate the time-varying regression coefficients α(t) 
and β(t) , we impose the restriction that α(t) and β(t) can 
be expressed as linear combinations of finite basis func-
tions. Specifically,

where f0(t), f1(t), . . . , fL(t) are predefined basis functions, 
and L is a finite positive integer. B-Spline basis and frac-
tional polynomial basis functions [22, 23] are some popu-
lar choices. In Li et  al. [14], fractional polynomial basis 
functions were considered.

Let ξ(t) = {f0(t), f1(t), . . . , fL(t)}⊤ and 
U(t) = {ξ(t),W ξ(t),Z(t)ξ(t)}⊤ . Now, by taking 
advantage of these expression in (2), α(t) and β(t) , i.e., 
αj(t)(j = 0, 1, . . . , p) and βk(t)(k = 1, . . . , q) , can be esti-
mated using the following estimating functions [14].

w h e r e 
γ = (a0,0, a0,1, . . . , a0,L , . . . , ap,0 , . . . , ap,L , b1,0, . . . , b1,L , . . . , bq,0, . . . , bq,L)

⊤ , Ĝ(·) 
is the estimated survival function for censoring times. U i

= (ξ(t),Xi1ξ(t), . . . ,Xipξ(t),Zi1(t)ξ(t), . . . ,Ziq(t)ξ(t))
⊤  , 

which is a matrix that combines the basis function and 
the subject i’s time-invariant and time-varying covariates.

Patients’ time-varying covariate Z(t) are typically 
examined at several follow-up visits, and patients may 
not present at some follow-up visits, which would lead to 

(1)
log[QT−t(τ |T ≥ t,W ,Z(t))] = α(τ , t)⊤W + β(τ , t)⊤Z(t)

(2)

αj(t) =
L

l=0

aj,l × fl(t), j = 0, 1, .., p,

βk(t) =
L

l=0

bk ,l × fl(t), k = 1, .., q,

(3)
S(γ ; τ ) = 1

n

n
∑

i=1

Si(γ , t; τ )

= 1

n

n
∑

i=1

I(Yi > t)U i(t)

{

I(log(Yi − t) ≤ γ⊤U i(t))
δi

Ĝ(Yi)/Ĝ(t)
− τ

}
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missing values. (3) were further extended to accommo-
date these [14]. Specifically,

where tij denotes the subject i’s jth visit time.
Solving (4) is equivalent to minimizing the objective 

function (5)

where

and M is an extremely large positive constant (e.g., 
M = 106 ). Existing software that can implement an 
L1-minimization algorithm, such as the rq() function in 
the quantreg package in R, can readily obtain γ̂ [7]. The 
estimated α(t) and β(t) can then be obtained by plugging 
in γ̂ in (2).

Induced smoothed estimating functions
Brown & Wang [16] proposed to use continuously dif-
ferentiable functions to approximate discontinuous 
but monotone estimating functions via an induced 
smoothing method. We also propose to use the induced 
smoothed version of estimating functions (4) given by 
equations (6). Specifically,

where Q be an N (0, Ip ) random vector, Ip represents 
for the p× p identity matrix. H is a p× p symmetric 
and positive definite matrix, such that �H� = O(n−1) . 
�(·) denotes the CDF of a standard normal distribution. 

(4)
Ṡ(γ ; τ ) = 1

n

n
∑

i=1

D
∑

j=1

ηijSi(γ , tij; τ )

= 1

n

n
∑

i=1

D
∑

j=1

ηijI(Yi > tij)U i(tij)

{

I(log(Yi − tij) ≤ γ⊤U i(tij)
δi

Ĝ(Yi)/Ĝ(tij)
− τ

}

(5)
L(γ , τ ) = n−1

n
∑

i=1

D
∑

j=1

wij

∣

∣

∣log(Yi − tij)− γ⊤U i(tij)
∣

∣

∣

+

∣

∣

∣

∣

∣

∣

M − γ⊤n−1
n

∑

i=1

ni
∑

j=1

−U i(tij)wij

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

M − γ⊤n−1
n

∑

i=1

ni
∑

j=1

2U i(tij)ηijI(Yi > tij)

∣

∣

∣

∣

∣

∣

wij =
ηijδiI(Yi > tij)

Ĝ(Yi)/Ĝ(tij)
,

(6)
S̃(γ ; τ ,H) ≡ E

�

Ṡ(γ +H1/2Q)

�

= 1

n

n
�

i=1

D
�

j=1

ηijI(Yi > tij)U i(tij)







�





γ⊤U i(tij)− log(Yi − tij)
�

U i(tij)⊤HU i(tij)





δi

Ĝ(Yi)/Ĝ(tij)
− τ







= 0,

γ̃ , which is the induced smoothing estimator for γ , is 
defined as the solution to (6).

Asymptotic properties
We summarize the asymptotic properties of the proposed 
induced smoothed estimator in the following theorem.

Theorem  1 Assuming the regularity conditions C1-C4 
in the supplementary material hold, γ̃ , solution to 
S̃(γ ) = 0 , is consistent for γ 0 . n1/2(γ̃ − γ 0) converges 
to a zero-mean normal random variable. In addition, 
n1/2(γ̃ − γ 0) and n1/2(γ̂ − γ 0) has the same asymptotic 
distribution where γ̂ is the nonsmooth counterpart of γ̃ 
which minimizes (5).

Regularity conditions C1 - C4 and a proof of Theorem 1 
are provided in Supplementary material. Due to the com-
plicated nature of the asymptotic covariance function 
whose form is difficult to evaluate [14], we estimate it using 
an efficient resampling-based robust sandwich-type esti-
mator. It is in the following Variance estimation section.

Variance estimation
For variance estimation, Li et al. [14] proposed a resam-
pling method that requires solving perturbed nonsmooth 
estimating equations or optimizing perturbed objec-

tive functions many times. This can be computation-
ally demanding because a large number of parameters 
are often involved. On the other hand, the proposed 
induced smoothed estimating functions are continuously 
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differentiable with respect to the regression parameters. 
This enables the use of a robust sandwich-form estima-
tor, which is a common approach in variance estimation 
based on estimating equations.

We propose to employ a robust sandwich estimator 
ˆVar(γ̃ ) = {Ã(γ̃ )−1}⊤V̂ (γ̃ ){Ã(γ̃ )−1} . The two compo-

nents Ã(γ̃ ) and V̂ (γ̃ ) can be obtained separately. Ã(γ̃ ) is 
obtained by taking the first derivative of S̃(γ ; τ ,H) with 
respect to γ evaluated at γ̃ . Specifically,

where �(·) denotes the cumulative distribution func-
tion of a standard normal random variable. V̂ (γ̃ ) can 
be obtained by using a computationally efficient resam-
pling method. A similar approach was employed for the 
induced smoothed estimators under a semiparametric 
AFT model [20] and semiparametric quantile regres-
sion models for residual lifetimes [21]. First, we gener-
ate n independently and identically distributed weights 
θi , i = 1, 2, . . . , n from an exponential distribution with a 
unit mean. Then, we construct S̃⋆(γ̃ ; τ ,H) , a perturbed 
version of S̃(γ̃ ; τ ,H) , using data with n realized values of 
θi , where

Note that Ĝ⋆(·) , a perturbed version of Ĝ(·) , should also 
be used. By repeating this procedure K times, we gener-
ate S̃⋆(1)(γ̃ ; τ ,H), · · · , S̃

⋆(K )
(γ̃ ; τ ,H) . V̂ (γ̃ ) is obtained using 

the sample variance of S̃⋆(1)(γ̃ ; τ ,H), · · · , S̃
⋆(K )

(γ̃ ; τ ,H).

Simulation
Extensive simulation experiments were conducted to 
evaluate the performance of the proposed induced 
smoothed estimators for finite samples. In addition, 
we compared the performance of our proposed estima-
tors with that of Li et al. [14], a nonsmooth counterpart. 
The simulation settings considered are similar to those 
in Section 3 from Li et al. [14]. We denote our proposed 
method as “IS" and [14]’s method as “NS”, respectively.

Ã(γ ) = ∂ S̃(γ ; τ ,H)

∂γ

= 1

n

n
�

i=1

D
�

j=1

ηijI(Yi > tij)
δi

Ĝ(Yi)/Ĝ(tij)
�





γ⊤U i(tij)− log(Yi − tij)
�

U i(tij)⊤HU i(tij)





U i(tij)
⊤U i(tij)

�

U i(tij)⊤HU i(tij)
,

S̃
⋆
(γ̃ ; τ ,H) = 1

n

n
�

i=1

θi

D
�

j=1

ηijI(Yi > tij)U i(tij)







�





γ⊤U i(tij)− log(Yi − tij)
�

U i(tij)⊤HU i(tij)





δi

Ĝ⋆(Yi)/Ĝ⋆(tij)
− τ







Simulation setup I
We first consider a simulation setting with a single time-
invariant covariate and a single time-varying covariate; 
however, the time-varying covariate is non-informative; 
that is, the corresponding regression coefficient is set to 
zero. The time-invariant covariate W is generated from a 
Bernoulli distribution with a success probability of 0.5. 
The potential failure time T is generated from exponen-
tial distributions with means of 1 and 1.5 when W = 1 

and W = 1.5 , respectively. Censoring times were gen-
erated from κUnif (0, 4)+ 4(1− κ) where κ is a Ber-
noulli random variable with success probability 0.9. 
The time-varying covariate Z(t) is generated from a 
Unif (−1, 1) distribution at time t. We considered 12 
planned visit times for each setup, and the visit times were 
t = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 , and 1.0. 
Given t, W and Z(t), the remaining lifetimes at t are then 
generated from the percentages of the following model: 
log[QT−t(τ |T ≥ t,W ,Z(t))] = ατ

0 (t)+ ατ
1 (t)W + βτ (t)Z(t)  . 

Because a patient can miss his/her visit, we gener-
ate a visit indicator for the ith patient at jth visit time, 

ηij = I(Yi ≥ tj)ζij where ζij follows the Bernoulli distribu-
tion with probability pV = pV 0I(W = 0)+ pV 1I(W = 1) . 
pV  depends on W and (pV 0, pV 1) is set to (0.75, 0.9).

The true regression coefficients of {ατ
0 (t),α

τ
1 (t)} are 

( −1.65, 0.41 ) and βτ (t) = 0 at τ = 0.25 . At τ = 0.5 , 
the true regression coefficients of {ατ

0 (t),α
τ
1 (t)} are 

( −0.77, 0.41 ), and the corresponding true regression 
coefficients of βτ (t) = 0 . The sample size was set to 400. 
The average censoring proportion is 19% . To estimate 
the regression coefficients, we consider fractional poly-
nomial basis functions ξ(t) = {1, log(t),

√
(t), 1/

√
(t)}⊤ . 

α0(t),α1(t) and β(t) are estimated at four different time 
points: t = 0.1, 0.2, 0.5 and 0.8. The resampling size for 
estimating the standard errors was set to 200. For each 
configuration, 1000 data sets are generated.

Table  1 displays the simulation results for Simulation 
setup I for the proposed induced smoothed estimators. 
For two values of τ and the corresponding true values of 
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the parameters (TRUE), the empirical bias (EB), empiri-
cal standard error (ESE), and the average of the estimated 
standard error (ASE) for each combination of the setup 
were evaluated at four different time points. Overall, the 
results are satisfactory, and the proposed estimator is 
nearly unbiased. The proposed standard error estimates 
are in close agreement with their empirical counterparts 
in all settings considered.

Simulation setup II
For this setup, we considered an informative time-
varying covariate, and the corresponding regres-
sion coefficient was nonzero. The time-invariant 
covariate W and censoring time C were generated 
in the same manner as in Simulation setup I. T is 
generated from a Weibull(�, 2) distribution. Note 
that, under the Weibull(�, 2) distribution, it can 
be shown that the quantile residual life function 
at given t and τ equals 

√

− log(1− τ)/�+ t2 − t 
[24]. In this setup, � is allowed to vary and is gener-
ated from the Unif(0.5,  1.5) distribution. The time-
varying covariate Z(t) for a given t, τ and � are 
Z(t) = log[

√
{ − log(1− τ)/(�t2)+ 1} − 1]/

√
t  and the cor-

responding remaining lifetimes are generated from 
log[QT−t(τ |T ≥ t,W ,Z(t))] = log(t)+

√
tZ(t) . For the 

probability of visiting pV = pV 0I(W = 0)+ pV 1I(W = 1) 
in the Bernoulli distribution, which models the visit-
ing probability of a patient at a specific time point, we 
set (pV 0, pV 1) to (0.5, 0.7). The average censoring pro-
portion is 21% . For comparison, we also calculated the 
nonsmooth estimator by Li et al. [14]. For each combi-
nation, the process is repeated 1000 times.

The results are summarized in Fig.  1. The violin plots 
in Fig. 1 compare the estimates of the proposed induced 

smoothed method (IS) and those of the nonsmooth 
counterpart (NS). The red dotted line in each plot rep-
resents the true regression coefficient values for given 
t and τ . In general, both estimators produced similar 
results. For τ = 0.5 , both estimators exhibit negligible 
biases. Although variabilities vary for different t values, 
the magnitudes of variabilities of the two estimators are 
similar. The same conclusion was drawn for τ = 0.25 . 
The proposed standard error estimates are close to their 
empirical counterparts (see Table  S1 in Supplementary 
material).

We also compared the performances of IS and NS in 
terms of the computational speed for calculating vari-
ance estimates. We considered the median ( τ = 0.5 ) 
at t = 0.5 for varying sample sizes of n = 200, 400 
and 800 in Simulation setup II. This comparison was 
performed on a 2.30 GHz Intel(R) Quad Core(TM) 
i7-11800H central processing unit (CPU) using R 4.3.2. 
[25]. The results are summarized in Table  2. Our pro-
posed variance estimator is 10 ∼ 20 times faster than 
its nonsmooth counterpart, which reveals its superior-
ity in computational efficiency, especially in variance 
estimation.

Simulation setup III
We also consider the case where the structural form of 
the regression coefficients in  (2) is misspecified. In Li 
et al. [14], we use a similar setting to test the robustness 
of our method against misspecification. We modify 
Simulation Setup II by setting the time-varying  
covariate Z(t) as follows: Z(t) = log[

√
− log(1−τ)/(�t2)+1−1]
0.1(t+1)2+0.1/t

 .  
The corresponding remaining lifetime at t  is 
log[QT−t (τ |T ≥ t,W ,Z(t)] = log(t)+

{

0.1(t + 1)2 + 0.1/t
}

Z(t).
Table 3 summarizes the estimates based on the proposed 

induced smoothing method. The results demonstrate that 

Table 1 Summary of simulation results under Simulation setup I

Induced smoothing method

t TRUE EB ESE ASE

α0(t) α1(t) β(t) α0(t) α1(t) β(t) α0(t) α1(t) β(t) α0(t) α1(t) β(t)

τ = 0.25

     0.1 -1.65 0.41 0.00 0.001 0.001 -0.006 0.177 0.236 0.198 0.171 0.237 0.198

     0.2 -1.65 0.41 0.00 -0.007 0.010 -0.001 0.160 0.219 0.130 0.165 0.232 0.132

     0.5 -1.65 0.41 0.00 0.001 -0.003 0.005 0.168 0.226 0.143 0.163 0.229 0.146

     0.8 -1.65 0.41 0.00 0.002 -0.003 0.008 0.187 0.250 0.148 0.177 0.248 0.164

τ = 0.5

     0.1 -0.77 0.41 0.00 0.007 -0.005 -0.006 0.130 0.173 0.151 0.127 0.176 0.148

     0.2 -0.77 0.41 0.00 -0.006 -0.003 0.001 0.135 0.180 0.095 0.131 0.184 0.099

     0.5 -0.77 0.41 0.00 -0.001 -0.002 0.002 0.154 0.210 0.109 0.151 0.210 0.112

     0.8 -0.77 0.41 0.00 -0.006 0.003 0.003 0.182 0.244 0.113 0.166 0.231 0.122
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Fig. 1 Violin plots of estimated regression coefficients by two methods under simulation setup II. IS and NS denote the proposed induced 
smoothed estimator and nonsmooth estimator, respectively: a τ = 0.25 ; b τ = 0.5
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the proposed estimator works reasonably well and pro-
duces negligible bias. The ESEs and ASEs were generally 
in good agreement with each other. We also conducted a 
sensitivity analysis to check whether the estimation results 
were affected by a different choice of basis function. Two 
different sets of basis functions for fractional polyno-
mial basis, ξ(t) = {1, log(t),

√
(t), 1/

√
(t), 1/t}⊤ and 

ξ(t) = {1, 1/
√
(t), t, t2}⊤ , and a B-spline basis. We con-

sider a B-spline basis with zero, one, and two knots. The 
results are presented in Additional results of simulation 
studies of Supplementary material (Tables S2 - S6). They 
are comparable to those obtained using the basis func-
tions considered throughout the simulation experiments, 

ξ(t) = {1, log(t),
√
(t), 1/

√
(t)}⊤ . This result implies that 

the estimated coefficients are robust to the choice of basis 
functions. Furthermore, we also considered increased cen-
soring rates of 24% in Simulation setup I and 28% in Simu-
lation setups II and III. The performance of the proposed 
method remained largely similar, with slightly increased 
standard errors. The results are provided in the Additional 
results of simulation studies of Supplementary material 
(Tables S7 - S9).

Prediction
By modeling the residual lifetimes at different time points 
with repeatedly measured longitudinal biomarkers and 
time-varying coefficients, the residual lifetimes can be 
predicted dynamically [15]. To assess the prediction per-
formance of the proposed method, we considered two 
measures representing two essential aspects of predic-
tion accuracy: calibration and discrimination. The first is 
the absolute loss between the predicted residual lifetime 
and corresponding true value [15]. This absolute loss is a 
measure of calibration and is referred to as MAEp and is 
defined as follows:

where Ti − t is the true residual life for subject i at time t, 
which is always available in the simulation experiments; 
Q
p
i  is the predicted τ th residual lifetime for subject i and 

L is a constant that truncates the residual lifetimes. The 
second is the concordance index (C-index) [26]. The 
C-index measures discrimination and quantifies the pro-
portion of correctly ordered pairs of predicted survival 
times. Following Lin et al. [15], who adapted the C-index 
from Uno et al. [27], we use the C-index defined as

where Ŷi − t is the predicted residual life for subject 
i at prediction time t. For both measures, we restrict 
our attention to the observed times in (0, L) where L is 
slightly shorter than the maximum censoring time. As 
pointed out in Lin et al. [15], MAEp is a measure of cali-
bration, whereas the C-index is a measure of discrimina-
tion. We calculated MAEp values and C-indices based on 
our proposed induced smoothed and nonsmooth estima-
tor [14].

The data were generated based on the setup described 
in Simulation Setup II. Training and test datasets were 
generated independently. The sample sizes for the 

E|min{Ti − t, (L− t)} − Q
p
i |Ti > t|,

ĈL(t) =
∑n

i=1

∑n
j=1 δi{Ĝ(Yi)/Ĝ(t)}−2I(0 < Yi − t < Yj − t,Yi < L)I(Ŷi − t < Ŷj − t)
∑n

i=1

∑n
j=1 δi{Ĝ(Yi)/Ĝ(t)}−2I(0 < Yi − t < Yj − t,Yi < L)

,

Table 2 Summary of runtimes (in seconds) of estimation under 
Simulation setup II

Method

n NS IS

200 22.4 1.9

400 84.9 4.6

800 341.8 13.9

Table 3 Summary of simulation results under simulation setup III

Induced smoothing method

t TRUE EB ESE ASE

α0(t) α1(t) β(t) α0(t) α1(t) β(t) α0(t) α1(t) β(t) α0(t) α1(t) β(t)

τ = 0.5

0.1 -2.30 0.00 1.12 -0.053 -0.005 0.036 0.676 0.113 0.371 0.623 0.112 0.342

0.2 -1.61 0.00 0.64 -0.004 0.003 -0.001 0.383 0.111 0.199 0.363 0.109 0.187

0.5 -0.69 0.00 0.43 0.003 0.002 -0.010 0.107 0.143 0.117 0.102 0.142 0.112

0.8 -0.22 0.00 0.45 -0.033 0.006 -0.014 0.276 0.173 0.150 0.265 0.169 0.148
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training and test data sets are 400 and 10,  000, respec-
tively. To calculate the predicted residual lifetime, we 
used the estimated regression coefficients obtained from 
the training dataset for the covariates in the test data-
set. We consider two quantiles: τ = 0.25 and τ = 0.5 . 
To calculate MAEp s and C-indices, we set L as the 5th 
percentile of the test dataset’s censoring time, close to 
the maximum censoring time. We repeatedly computed 
MAEp values and C-indices 1, 000 times. Figures 2 and 3 
show violin plots for MAEp s and C-indices, respectively, 
based on 1, 000 simulations of simulation setup II for two 
different quantiles and four different prediction times 
( t = 0.1, 0.2, 0.5 and 0.8). Figure 2 shows that as the pre-
diction time points increase, MAEp decreases. This pat-
tern reflects the dynamic prediction aspect by utilizing 
the accumulated information over time. Meanwhile, the 
C-indices were fairly consistent across the different pre-
diction time points, in the range of 0.57− 0.58 (Fig. 3).

Analysis of Korea HIV/AIDS cohort study data
We applied our proposed method to the Korea HIV/
AIDS cohort study data. HIV patients live longer than 
ever before, resulting in an increase in the incidence of 

deaths from non-AIDS complications, particularly dys-
lipidemia, a major risk factor for coronary artery disease 
and stroke [2, 28–30]. Indeed, as patients with HIV began 
to receive long-term, highly active antiretroviral therapy, 
reports of long- and short-term adverse effects of these 
treatments began to emerge. Several studies have shown 
that HIV patients receiving long-term antiretroviral ther-
apy develop metabolic disorders such as dyslipidemia, 
insulin resistance, glucose intolerance, metabolic bone 
disease, and lactic acidosis [31–35]. Thus, our application 
aims to model the remaining lifetime until the incidence 
of dyslipidemia in patients with HIV in the Korea HIV/
AIDS cohort study data.

We analyze data from male patients with 1486 total 
HIV patients who participated in the survey before 2012 
in the Korea HIV/AIDS cohort study. Follow-ups began 
on the date of HIV diagnosis. As mentioned above, the 
event of interest was the onset of dyslipidemia after 
an HIV diagnosis. Since diabetes and high blood pres-
sure are risk factors for dyslipidemia, participants who 
developed diabetes, high blood pressure, or dyslipidemia 
before being diagnosed with HIV were excluded from the 
study. Patients with missing age data at diagnosis were 

Fig. 2 MAEp s between predicted residual life and the true values based on the proposed induced smooth method (IS) and nonsmooth method 
(NS) under Simulation setup II for τ = 0.25, 0.5 and t = 0.1, 0.2, 0.5 and 0.8
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excluded. The resulting dataset comprised 502 patients. 
A patient’s survival time was considered censored if they 
died before experiencing dyslipidemia or had no recorded 
dyslipidemia during the last clinic visit. The results 
revealed that 163 patients (32.5 %) had dyslipidemia.

In the Korea HIV/AIDS cohort study, CD4 cell count, 
an important immunological biomarker, was collected 
regularly. Patients with HIV who participated in the 
cohort study were surveyed every six months. CD4 
cell counts provide information on the onset of dyslipi-
demia in patients with HIV. Several studies have found 
significant associations between dyslipidemia and CD4 
cell counts in HIV-infected individuals [36, 37]. We 
used the (log-transformed) CD4 cell count as a time-
varying covariate and assessed its effect on the time to 
onset of dyslipidemia. We evaluated these effects every 
six months for two years (at 6, 12, 18, and 24 months) 
by defining the remaining lifetimes at each time point. 
Because not every patient visits a hospital, every six 
months exactly, we used CD4 cell count measured 
within a two months interval for each time point if it 
was not measured every six months. Patient data with 

missing CD4 cell counts at all visits were excluded from 
the analysis. Figure 4 summarizes CD4 cell counts at 6, 
12, 18, and 24-month follow-up visits. CD4 cell counts 
seemed to increase gradually over time, showing that 
the patient’s immunological state was improving. Nota-
bly, this phenomenon occurred when most cohort study 
participants received HIV treatment. Dyslipidemia is 
also strongly linked to age [38]. Women aged 45 and 
older and men aged 35 and older should be checked for 
dyslipidemia regularly [28]. Therefore, we dichotomized 
the age at HIV diagnosis as above or below 35 years and 
added it to our model as a time-fixed covariate. Further-
more, we used the (log-transformed) total cholesterol, 
high-density lipoprotein (HDL), and a family history of 
dyslipidemia as a time-fixed covariate that are related 
to the onset of dyslipidemia . Higher total cholesterol 
levels, lower HDL levels, and a family history of dyslipi-
demia are associated with an increased risk of the onset 
of dyslipidemia [39–42]. HDL, total cholesterol values 
and a family history of dyslipidemia at the time of diag-
nosis were not available in the Korean HIV/AIDS cohort 
data; instead, values from the initial survey were used. 

Fig. 3 C-indices between predicted residual life and the true values based on the proposed induced smooth method (IS) and nonsmooth method 
(NS) under Simulation setup II for τ = 0.25, 0.5 and t = 0.1, 0.2, 0.5 and 0.8
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This is to adjust for the effect of CD4 cell count on dys-
lipidemia onset. Further, we assume that the relationship 
between the residual life of dyslipidemia onset and CD4 
cell count, while adjusting for age at baseline, follows 
the quantile residual life regression model in (1). We fit-
ted this model using the proposed weighted estimation 
equation approach. The standard error of the regression 
coefficient estimate was calculated using the resampling 
procedure described in Asymptotic properties section.

Before constructing the weighted estimation equations, 
we tested the assumption of independence between cen-
soring times and covariates in the model by fitting a Cox 
regression model for censoring times, with CD4 cell 
count and age at diagnosis as covariates. The effects of 
the CD4 cell count, total cholesterol, HDL, family history 
of dyslipidemia and age at diagnosis were not statistically 
significant, with the corresponding p-values of 0.8094, 
0.4984, 0.1672, 0.0675 and 0.4987, respectively. Thus, the 
Kaplan-Meier estimator, based on marginal censoring 
times, is utilized when constructing the weight function.

The results of the data analysis are summarized in 
Tables  4 and  5 and illustrated in Fig.  5. Tables  4 and  5 
display the estimated regression coefficients evaluated 
at months 6, 12, 18, and 24 after dyslipidemia onset for 
quantiles in the range of 5% to 20% ( τ = 0.05− 0.20 ), 
with the associated standard error estimates and 95% 
confidence intervals. Figure  5 shows the estimated 
regression coefficients for different quantiles considering 
the τ s at different visit times, along with their point-wise 

95% confidence intervals. Here, we focus on the lower 
quantiles owing to the identifiability issues induced by 
the high censoring rate. The estimated regression coef-
ficients for CD4 cell counts were mostly positive for the 
quantiles and base times considered, implying that higher 
CD4 cell counts are associated with longer residual life-
times to the onset of dyslipidemia in most cases. These 
effects, however, were not statistically significant at the 
significance level of 0.05. The total cholesterol level is 
negatively associated with the quantiles of residual life-
times. When τ = 0.15 and t = 6 , for example, the esti-
mated regression coefficient of the total cholesterol level 
is −1.20 with the corresponding standard error estimate 
of 0.61, statistically significant at the significance level 
of 0.05. This implies that for the 15th percentile of the 
residual lifetime evaluated six months after the baseline, 
a one-unit increase in total cholesterol level in the log-
scale is estimated to decrease the corresponding quantile 
of the residual lifetime on the log scale by 1.20 months. 
The HDL level seem to be positively associated with 
the quantiles of residual lifetimes. Some of the effects 
were statistically significant at early evaluation times (6 
months for τ = 0.05 ∼ 0.15 ). The results showed that 
the patients with the family history of dyslipidemia and 
aged 35 years or older at the time of diagnosis developed 
dyslipidemia more quickly than those without the fam-
ily history and under 35, respectively. These effects were, 
however, not statistically significant. Similar results are 
shown in Fig. 5.

Fig. 4 Summary of the Korea HIV/AIDS cohort study data - violin plot of log of CD4 cell count ( cells/mm3 ) during follow-up visits until 24 months
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Based on the fitted model, we constructed a heat map 
in Fig.  6 that displays the predicted residual life until 
the dyslipidemia onset at different quantiles for those 
who are younger than 35 years old, have no family his-
tory of dyslipidemia, and have the average values of the 
log-transformed total cholesterol levels (5.10) and log-
transformed HDL values (3.66). For different follow-up 
times (horizontal axis) and CD4 cell counts (vertical 
axis), the predicted residual lifetimes are plotted in 
different colors. The scale on the right indicates that 
red and blue represent shorter and longer anticipated 
residual lifetimes, respectively. For example, Fig.  6d 
shows that if the log-transformed CD4 cell count at 
six months of follow-up for a patient under 35 years 
of age at the time of diagnosis with the average values 
of 5.10 for the total cholesterol level and 3.66 for the 
HDL value, and without a family history was 6.11, the 
probability that the patient will develop dyslipidemia in 
the next 8.1 months is 5%. In addition, a patient with 
an decreased log-transformed CD4 cell count of 5.59 at 
12 months of follow-up with the same values of age at 
diagnosis, total cholesterol level, HDL value and family 
history, had a 5% probability of developing dyslipidemia 

in 6.6 months, which is approximately 2 months 
shorter. In the Korea HIV/AIDS cohort study, patients 
whose CD4 cell count on the log-scale was 6.11 with 
the values of 5.24 for the total cholesterol level, 3.78 for 
HDL and without a family history at 6 months of fol-
low-up had a residual lifetime until dyslipidemia onset 
of 8 months (2.08 on the log-scale), and patients whose 
CD4 cell count was 5.59, 5.16 for total cholesterol, 3.74 
for HDL and without a family history at 12 months had 
a residual lifetime of 3 months (1.10 on the log-scale). 
Both are close to the predicted residual lifetimes of 8.1 
and 6.6 months, respectively.

Discussion
This study proposes applying an induced smooth-
ing method to the existing nonsmooth estimator [14] 
to fit the semiparametric quantile residual life regres-
sion model for data with time-varying biomarkers that 
are repeatedly measured, such as CD4 cell counts in the 
Korea HIV/AIDS cohort study. The proposed induced 
smoothed estimator shares asymptotic normality and 
consistency with its nonsmooth counterpart while dem-
onstrating its superiority in terms of computational 

Table 4 Summary of analysis results of Korea HIV/AIDS cohort study. PE is the point estimate of the regression parameter. SE is the 
estimated standard error of the regression parameter. 95% CI is the Wald-type 95% point-wise confidence interval

Induced smoothing method

Follow-up time 
(month)

Intercept Age of diagnosis CD4 cell count

PE SE 95% CI PE SE 95% CI PE SE 95% CI

τ=0.05

6 6.64 3.81 (-0.828, 14.105) -0.40 0.38 (-1.144, 0.354) 0.03 0.33 (-0.621, 0.678)

12 -3.90 5.21 (-14.103, 6.307) -0.40 0.51 (-1.404, 0.608) 0.13 0.69 (-1.232, 1.485)

18 6.53 4.46 (-2.215, 15.266) -0.18 0.50 (-1.157, 0.793) 0.61 0.48 (-0.324, 1.553)

24 7.08 5.40 (-3.507, 17.664) 0.38 0.62 (-0.835, 1.592) 0.00 0.68 (-1.327, 1.325)

τ=0.1

6 4.07 4.17 (-4.108, 12.246) -0.35 0.47 (-1.282, 0.576) 0.20 0.40 (-0.589, 0.988)

12 3.29 6.39 (-9.230, 15.813) -0.21 0.50 (-1.189, 0.775) 0.56 0.52 (-0.466, 1.577)

18 8.31 4.85 (-1.187, 17.813) -0.36 0.57 (-1.467, 0.749) -0.01 0.54 (-1.072, 1.057)

24 12.70 4.59 (3.706, 21.685) 0.12 0.57 (-0.990, 1.236) -0.31 0.26 (-0.811, 0.200)

τ=0.15

6 0.04 3.16 (-6.165, 6.236) -0.19 0.53 (-1.224, 0.841) -0.02 0.37 (-0.748, 0.716)

12 8.03 5.77 (-3.289, 19.345) -0.49 0.57 (-1.605, 0.631) 0.20 0.49 (-0.765, 1.160)

18 8.95 5.14 (-1.134, 19.025) -0.11 0.57 (-1.234, 1.012) 0.11 0.52 (-0.912, 1.129)

24 9.08 5.58 (-1.846, 20.009) 0.13 0.68 (-1.203, 1.471) -0.29 0.28 (-0.841, 0.269)

τ=0.2

6 6.34 7.24 (-7.844, 20.529) -0.22 0.55 (-1.308, 0.864) -0.01 0.32 (-0.643, 0.630)

12 11.70 7.68 (-3.346, 26.742) -0.50 0.78 (-2.037, 1.029) 0.06 0.46 (-0.846, 0.969)

18 11.57 8.89 (-5.866, 28.999) 0.41 0.99 (-1.521, 2.343) -0.55 1.14 (-2.782, 1.674)

24 12.87 7.83 (-2.482, 28.215) 0.03 0.80 (-1.543, 1.603) -0.32 0.31 (-0.935, 0.299)
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efficiency via simulation experiments, especially in vari-
ance estimation. We implemented our proposed method 
to analyze Korea HIV/AIDS cohort study data. By mod-
eling quantiles for residual lifetimes to the onset of dys-
lipidemia and applying our proposed induced smoothing 
method, we dynamically assessed the effect of CD4 cell 
count, a longitudinal biomarker, for different evaluation 
times and quantiles. In addition, a direct prediction of the 
residual lifetimes can be made, which also has a dynamic 
feature that accommodates the data accumulated at dif-
ferent evaluation times.

Caution should be exercised when applying the pro-
posed method. Before using the weight - the inverse of 
the estimated censoring survival function - in (6), it is 
essential to check that the censoring survival function is 
marginal; that is, censoring times are independent of the 
covariates used in the model. The weight can be modified 
to allow dependence on covariates. In this case, the cur-
rent method of estimating the censoring survival func-
tion using the Kaplan-Meier method can be replaced by a 
sensible regression model, such as a Cox model. The rel-
evant part of deriving the asymptotic properties should 

also accommodate this change. Another limitation of 
our method is that the longitudinal biomarker measure-
ments must be performed at specific intervals. One way 
to alleviate this restriction is to adopt the method pro-
posed by Lin et  al. [15], in which irregularly measured 
longitudinal biomarker measurements can be accommo-
dated by extracting the dominant features over a certain 
period using a functional principal component analysis 
approach. Subsequent studies should consider this as a 
direction for future research.

In the simulation experiments and data analysis, we 
estimated conditional quantiles at several different quan-
tile levels. Estimating quantiles separately, however, could 
lead to crossing quantiles, which does not guarantee the 
monotonicity of quantiles. To handle this issue, when 
dealing with a completely observed response variable, 
joint modeling of multiple quantiles [43–47] or imple-
menting a second stage adjustment [48–50] have been 
proposed. The literature on censored quantile regression 
models has relative been limited. Tang and Wang [51] 
developed a joint modeling approach with a penaliza-
tion procedure based on adaptive lasso. Yuan et  al. [52] 

Table 5 Summary of analysis results of Korea HIV/AIDS cohort study. PE is the point estimate of the regression parameter. SE is the 
estimated standard error of the regression parameter. 95% CI is the Wald-type 95% point-wise confidence interval

Induced smoothing method

Follow-up time 
(month)

Total cholesterol HDL Family history of dyslipidemia

PE SE 95% CI PE SE 95% CI PE SE 95% CI

τ=0.05

6 -2.50 0.79 (-4.052, -0.943) 2.21 0.66 (0.908, 3.510) 0.28 0.73 (-1.139, 1.708)

12 0.83 1.00 (-1.132, 2.791) 0.21 0.75 (-1.247, 1.675) 1.47 0.76 (-0.008, 2.952)

18 -2.46 0.91 (-4.251, -0.668) 1.20 1.04 (-0.832, 3.240) -0.52 1.01 (-2.504, 1.454)

24 -2.27 0.92 (-4.079, -0.466) 1.62 1.11 (-0.548, 3.794) -1.14 0.94 (-2.979, 0.694)

τ=0.1

6 -2.31 0.86 (-4.005, -0.624) 2.57 0.79 (1.016, 4.128) -0.33 0.76 (-1.808, 1.157)

12 -1.35 1.00 (-3.312, 0.605) 0.92 0.95 (-0.947, 2.792) -0.39 1.05 (-2.451, 1.665)

18 -1.93 0.90 (-3.691, -0.161) 1.22 1.08 (-0.896, 3.344) -0.80 1.18 (-3.107, 1.509)

24 -3.49 1.07 (-5.591, -1.387) 2.58 1.13 (0.372, 4.784) -2.06 1.31 (-4.633, 0.516)

τ=0.15

6 -1.20 0.61 (-2.389, -0.004) 2.57 1.02 (0.574, 4.572) -0.80 0.88 (-2.535, 0.927)

12 -2.77 1.65 (-6.007, 0.475) 2.39 1.84 (-1.217, 5.996) -1.61 1.61 (-4.764, 1.547)

18 -3.03 1.51 (-5.997, -0.063) 2.55 1.65 (-0.688, 5.784) -2.03 1.65 (-5.264, 1.202)

24 -3.58 1.71 (-6.925, -0.236) 3.88 1.86 (0.228, 7.528) -2.92 1.84 (-6.520, 0.682)

τ=0.2

6 -2.22 1.38 (-4.928, 0.497) 2.40 1.51 (-0.559, 5.368) -1.43 1.33 (-4.031, 1.175)

12 -4.84 3.09 (-10.891, 1.211) 4.72 3.21 (-1.576, 11.013) -3.46 2.76 (-8.869, 1.954)

18 -4.82 3.37 (-11.419, 1.782) 5.54 4.11 (-2.503, 13.589) -4.21 3.23 (-10.543, 2.119)

24 -4.64 2.74 (-10.013, 0.735) 4.55 2.69 (-0.718, 9.827) -3.78 2.47 (-8.616, 1.060)
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extended it to the fused adaptive lasso penalization. These 
methods are, however, based on modeling regular failure 
time T. No statistical methods have yet been developed 
to account for the correct ordering of estimated quantiles 
for residual lifetimes, even with time-invariant covari-
ates and regression coefficients. Therefore, it would be 
an interesting future work extending the proposed work 
based on residual lifetimes to ensure the monotonicity of 
estimated conditional quantiles.

In the analysis of the Korean HIV/AIDS cohort study, we 
considered a model predicting residual life until the onset 
of dyslipidemia based on information regarding total cho-
lesterol levels, high-density lipoprotein level, family history 
of dyslipidemia, age of diagnosis, and CD4 levels. However, 

there are other factors, such as smoking, frequent alcohol 
consumption, an unhealthy diet, and the use of protease 
inhibitors (PI), known to be associated with the onset of 
dyslipidemia [28, 53]. Unfortunately, these variables were 
either not incorporated into the data collection of the 
Korean HIV/AIDS cohort study, or if they were, the assess-
ment intervals did not correspond with our study, and the 
response rates were too low to consider for analysis. Thus, it 
should be acknowledged that predicting residual life solely 
based on the variables used in real-data analysis may be less 
realistic. We wished to include them, but there were limi-
tations in the available data. Nonetheless, the methodol-
ogy provided in this study presents a general approach that 
can be applied to any dataset, allowing for the prediction 

a b

c d

Fig. 5 Plots of estimated regression coefficients ( ), and corresponding 95% point-wise confidence intervals ( ) for the Korea HIV/AIDS 
cohort study data evaluated for different quantiles ( τ = 0.05 ∼ 0.2 ) at a 6 months; b 12 months; c 18 months; d 24 months
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of residual life until any event while accounting for any 
time-varying covariate. The identification of this potential 
demonstrates the proposed method’s adaptability. Given 
the availability of data, it is possible to use this method to 
predict residual life in a variety of scenarios.
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