
Mbwambo et al. 
BMC Medical Research Methodology           (2024) 24:75  
https://doi.org/10.1186/s12874-024-02166-w

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Research
Methodology

Socio-environmental predictors of diabetes 
incidence disparities in Tanzania mainland: 
a comparison of regression models for count 
data
Sauda Hatibu Mbwambo1,2*, Maurice C. Mbago1 and Gadde Srinivasa Rao2 

Abstract 

Background Diabetes is one of the top four non-communicable diseases that cause death and illness to many 
people around the world. This study aims to use an efficient count data model to estimate socio-environmental fac-
tors associated with diabetes incidences in Tanzania mainland, addressing lack of evidence on the efficient count data 
model for estimating factors associated with disease incidences disparities.

Methods This study analyzed diabetes counts in 184 Tanzania mainland councils collected in 2020. The study applied 
generalized Poisson, negative binomial, and Poisson count data models and evaluated their adequacy using informa-
tion criteria and Pearson chi-square values.

Results The data were over-dispersed, as evidenced by the mean and variance values and the positively skewed his-
tograms. The results revealed uneven distribution of diabetes incidence across geographical locations, with northern 
and urban councils having more cases. Factors like population, GDP, and hospital numbers were associated with dia-
betes counts. The GP model performed better than NB and Poisson models.

Conclusion The occurrence of diabetes can be attributed to geographical locations. To address this public health 
issue, environmental interventions can be implemented. Additionally, the generalized Poisson model is an effective 
tool for analyzing health information system count data across different population subgroups.

Keywords Diabetes, Socio-environmental factors, Count data models, Generalized Poisson, Tanzania

Background
To date, non-communicable, diseases including diabetes, 
are still a global health challenge affecting people of all 
ages; however, elderly people are at higher risk [1, 2]. In 

2016, statistics showed that Non-Communicable Diseases 
(NCDs) were responsible for 80% of all deaths worldwide. 
The NCD death risk is notably higher in Sub-Saharan 
Africa, Central Asia, and Eastern Europe [3]. In Tanzania, 
as in Sub-Saharan Africa, there is evidence of a high prev-
alence of NCD cases, including diabetes [4, 5].

The emergence of NCDs in humans is influenced by a 
complex combination of various factors, which include 
environmental conditions, cultural beliefs, self-manage-
ment, socio-demographic factors, genetics, and biol-
ogy [1]. These diseases are sometimes referred to as 
behavioural diseases because, apart from other factors, 
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self-management, which is linked by a person’s behav-
ioural practice in running his/her daily life can increase 
one’s likelihood of developing NCDs [1, 6]. Cultural 
norms and values can also influence human behav-
iour, resulting in regional and national variations in the 
prevalence of NCDs [7]. This study aims to investigate 
the impact of socio-environmental factors, which are 
the council’s zone and residence, along with other fac-
tors on the total diabetes incidences in the council. The 
link between environment and human behaviours is 
well explained in some behavioural theories, including 
the reciprocal deterministic concept of social cognitive 
theory [8].

Currently, many scenarios in public health and official 
statistics include count data. Count data include spe-
cific disease cases reported in a particular geographical 
unit, the total number of fatalities occurring within a 
given timeframe, etc. The Poisson model is a well-known 
method for modeling count data and has been applied 
in many situations [9–14]. However, it assumes that the 
subject occurs randomly and at a constant rate, resulting 
in equality mean and variance, which is often unrealistic 
in real-life situations. When data exhibit over-dispersion, 
the negative binomial (NB) model is often used as an 
alternative to the Poisson model [11, 15, 16]. Occasion-
ally, under dispersion also occurs among count data, 
especially for rare events. To tackle this issue, researchers 
have developed new models that can model count data 
that exhibits over, under, or equal dispersion. These mod-
els were obtained as a result of generalization or mixing 
with the Poisson model. Examples of these models are 
the Generalized Poisson (GP) [17], the Weighted Poisson, 
the Conway-Maxwell-Poisson (CMP), the Hyper-Poisson 
(HP) [18], Extended Bi-parametric Waring (EBW) [19], 
and the Complex Tri-parametric Pearson (CTP) [20].

Many of the distributions mentioned above have com-
plex functional forms, which can lead to significant com-
putational challenges and make them difficult to use. For 
this reason, the GP model was selected for this study. 
This model has a well-defined functional form and allows 
easy parametric estimation [21–24]. The GP model is the 
best option to be used in health and behavioural stud-
ies, for many reasons, including the non-uniformity of 
the population being studied, where individuals tend to 
cluster or aggregate within a particular combination with 
similar characteristics; dependence among observations 
due to environmental factors, where there are high inci-
dences of diabetes cases in the same geographic area due 
to similarity in socio-cultural factors; which causes une-
qual dispersion which happens in the data [15, 21].

Numerous studies on NCDs, including diabetes, have 
been conducted [4, 5, 25–29]. However, none have uti-
lized the GP model or quantified socio-environmental 

factors (such as zone and council residence) in NCD 
occurrences in mainland Tanzania. This study aims to 
establish a model that can be adopted in modeling NCDs 
count incidences associated with socio-environmental 
and other risk factors. Hence, it emphasizes environmen-
tal-based approaches to eradicating NCDs in Tanzania, 
and the model can also be adopted in similar scenarios. 
Many research articles elaborate on the application of GP 
regression in modeling over-dispersed data [24, 30–35]. 
However, the articles do not describe or quantify how 
overestimation of the standard error occurs when using 
standard Poisson in modeling over-dispersed data as the 
current does.

Methods
Design and settings
This study utilized cross-sectional reseach design. Sec-
ondary data collected by the District Health Information 
System (DHIS2) and the National Bureau of Statistics 
(NBS) in 2020 were used for analysis. The response vari-
ables represent the number of patients diagnosed with 
diabetes mellitus admitted to all health facilities within a 
council, except for regional referral and zonal hospitals. 
Information collected in 2020 and across 184 councils in 
Tanzania mainland is used in this study.

Models description
Generalized linear models (GLMs) extend linear mod-
els (LMs) when the response variable is not normally 
distributed, allowing for the representation of non-nor-
mal response variables. In GLMs, the distribution of 
the response variable can be counted, categorical, dis-
crete, ordinal, and many others as long as it belongs to 
the exponential family of distributions. This family has 
several well-known distributions including the Poisson 
distribution and its generalization, the binomial distribu-
tion, Gamma distribution, and many others. GLMs can 
be described using the following equation:

And is mainly characterized by its three components: 
(1) A random component, which describes the outcome 
variable Yi of the ith observation by its probability density 
function. (2) A linear component XT

i β , where XT
i  is the 

vector of predictors and β is a column vector of model 
coefficients. (3) Differentiable link function g(µ) , which 
relates the mean of the response variable and the linear 
function of the predictor variables [9, 36].

The Poisson process is often used to explain the varia-
tions in count data compared to a predicted average [9]. 
However, this model has certain assumptions, including 
that the data must be equally distributed and that the 

g(µ) = XT
i β
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mean must always equal the variance. Poisson regres-
sion is a well-known model for modeling the means of 
n  non-negative count response variables y1, y2, . . . , y2 . 
Let Yii = 0,1, . . . . , be the response variable which repre-
sents the number of diabetic patients admitted to spe-
cific council in 2020 and X ′

i = X1i, . . . ,Xki represents a 
k-dimension vector of linear predictors associated with 
the response variable Y  . A Poisson regression of the 
response variable given predictors is written as:

For Poisson distribution, we have E
(
Yi = yi/Xi = xi

)
=

µi = Var
(
Yi = yi/Xi = xi

)

The logarithm of the likelihood of the equation above 
can be written as:

By substituting µi = exi
′β , we obtain the logarithm of 

the likelihood function in terms of β ′s which can be writ-
ten as:

Maximum likelihood estimates of β’s can be obtained 
by differentiating the logarithm of the likelihood equation 
with respect to β’s and setting the results equal to zero.

Thus, the Poisson regression model of the mean param-
eter µi is written as

As data are collected from councils across various 
geographical locations, including areas with differ-
ing behavioural patterns, there is a high probability of 
unequal dispersion in the data. This suggests that the 
data may have under- or over-dispersion. If Poisson 
regression is used to model these data, it could lead 
to incorrect conclusions because the standard error 
may be overestimated [15, 37]. The negative binomial 
model, also known as the Poisson Gamma mixture, is 
considered a better alternative to Poisson regression 

(1)P
(
Yi = yi/Xi = xi

)
=

e−µiµi
yi

yi!
; yi = 0,1, . . .

n∑

i=1

[yilnµi − µi − lnyi!]

n∑

i=1

[
yixi

′β − exp
(
xi

′β
)
− lnyi!

]

lnµi = xi
′β

lnµi = β0 + β1xi1 + · · · + βkxik = β0 +

k∑

j=1

βjxij

µi = exp



β0 +

k�

j=1

βjxij





when dealing with over-dispersed count data. The 
model’s mean and variance have a quadratic relation-
ship, resulting in its being named NB2 [11].

The NB model was formulated as an extension of the 
Poisson model by considering the idea that the mod-
eled outcomes cannot happen at a constant rate, lead-
ing to heterogeneity in the outcomes. The extended 
model can be formulated as follows:

A negative binomial distribution is generated using a 
series of Bernoulli trials with a constant success prob-
ability p. Let Y be the number of attempts that failed 
before the kth success (k > 0) , then, Y follows a negative 
Binomial distribution with probability mass function 
(pmf ) written as follows:

The mean and variance of Y are pk
(1−p) and pk

(1−p)2
 respec-

tively. In the negative binomial regression model the 
interest in modeling the mean of the outcome variable Y 
with its realization y1, y2, . . . , y2 , and X ′

i = X1i, . . . ,Xki 
denotes the matrix of predictors. Parametrization of 
Eq.  (2) above in terms of µ and dispersion parameter α 
yield NB regression model as described below:

Let p =
α

α+µ , where α = k , furthermore it is known that (
α + yi − 1

yi

)
=

(α+yi−1)!
yi !(α−1)!

=
Ŵ(α+yi)
yi !Ŵ(α)

 , then the pmf of Y in Eq.  (2) 

can be written as:

where Ŵ represents the gamma function and α is a disper-
sion index that has been modified to take positive values 
only. The NB can also be obtained by using the Poisson 
mixture gamma formula. Then, Y ∼ NB(µ,α) and the mean 
and variance of Y are µi and µi +

µi
2

α
 respectively. When 

α → ∞ , the mean and variance of Y tend to be equal, 
which implies that the Poisson model is a special case of 
the negative binomial model [9, 11, 15, 36, 38].

The likelihood of Eq. (3) is proportional to:

It is known that:

It follows that:

(2)pY y =
k + y− 1

y
pk(1− p)y; y = 0,1, 2, . . .

(3)
f
(
Yi = yi/Xi = xi

)
=

Ŵ
(
α + yi

)

yi !Ŵ(α)

(
µi

α + µi

)yi
(

α

α + µi

)α

; y = 0,1, 2, . . .

n∏

i=1

f
(
Yi = yi/Xi = xi

)
=

n∏

i=1

Ŵ
(
α + yi

)

yi!Ŵ(α)

(
µi

α + µi

)yi
(

α

α + µi

)α

Ŵ
(
α + yi

)

Ŵ(α)
= α(α + 1) . . .

(
yi − 1+ α

)

ln

(
Ŵ
(
α + yi

)

Ŵ(α)

)
= ln

(
α(α + 1) . . .

(
yi − 1+ α

))
=

yi−1∑

k=0

ln(α + k)
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and the log-likelihood is given by:

It is known that

Estimates of the regression coefficients β ′s and disper-
sion index α are obtained by substituting into the above 
equation and differentiating it with respect to β ′s and α 
and setting the result equal to zero.

Then, the negative binomial regression model can be 
written as:

NB model cannot be used to model equal and under-
dispersed data. The finding reveals that the NB model 
faces convergence issues if inappropriately used to model 
count data, which does not exhibit over-dispersion [38].

Many articles use the latest count model generaliza-
tions; however, the GP model remains beneficial and 
user-friendly [39]. This model can model stochastic pro-

cesses with count data that have equal, under, or over-
dispersion. Moreover, estimating the parameters of this 
model is simple compared to other generalized models. 
Due to the reasons mentioned above, this study employs 
the model introduced by Consul and Jain [17, 40]. Let Yi 
represent diabetes incidences for inpatient recorded in a 
certain council for 2020. Then, Yi represents the response 
variable having response values y1, y2, . . . . . . , yn associ-
ated with several explanatory variables. Then, Yi follows 
a GP distribution, and its probability mass function can 
be written as:

=

n�

i=1




yi−1�

k=0

ln(α + k)− lnyi! + yilnµi − yiln(α + µi)+ αlnα − αln(α + µi)





µi =
(
expi

′β
)

l(β ,α) =

n�

i=1




yi−1�

k=0

ln(α + k)− lnyi! + yilnµi + αlnα − (yi + α)ln(α + µi)





lnµi = β0 +

k∑

j=1

βjxij

(3)

(
y;α, δ

)
=

{
α(α+δy)

y−1

y! exp
(
−α − δy

)
; y = 0, 1, 2 . . . . . . . . .

0; For y > m when δ < 0

The mean and variance of the GP distribution are 
µ = α

(1−δ)
= ϑα and Var

(
y
)
= α

(1−δ)3
= ϑ

2
µ respec-

tively where δ is called the dispersion parameter 

expressed by the dispersion factor ϑ = 1
(1−δ)

.
If δ = 0 , GP distribution reduces to the standard 

Poisson distribution when δ < 0 , it represents under-
dispersion, and if δ > 0 , it represents over-dispersion.

Suppose explanatory variables are represented by 
(K − 1) dimensional vector X ′

i = X1i, . . . ,Xki . The con-
ditional distribution of Yi for a given value of xi follows 
a GP distribution with the mean value given by:

where f (xi,β) > 0 represents a differentiable func-
tion, Ci represents a measure function and β  is the 
K-dimensional vector of regression parameters.

From the mean of GPD, µ = α
(1−δ)

 and ϑ = 1
(1−δ)

 the 
dispersion factor, then the generalized Poisson regres-
sion can be deduced as

where, µ = µ(x) > 0 , ϑ ≥ max(1/2 , 1−
µ/4 ) , 

√
var(y/x)
µ(y/x)  

stands for the square root of the dispersion index, and m 
is the largest positive integer for which µ+m(ϑ − 1) > 0 
when ϑ is non-negative.

When ϑ = 1 , GP distribution is condensed to stand-
ard Poisson regression (proper in modeling equal 
dispersed data); when ϑ > 1 GPR is appropriate in 
modeling over-dispersed data, and when ϑ < 1 , GPR is 
used to fit under-dispersed data [34, 40].

Similar to the standard Poisson regression model, 
GPR uses a log link to connect the mean of the response 
variable and explanatory variables, as shown below:

E(Yi/xi) = µ(xi) =
αi

(1− δi)
= Cif (xi,β)

(4)P
(
Y = y/x

)
=

{
µ[µ+ (ϑ − 1)y]y−1 ϑ−y

y! exp
[
− 1

ϑ
(µ+ (ϑ − 1)y)

]
; y = 0, 1, 2 . . . . . .

0; For y > m when ϑ < 1,

(5)µ = µ(x) = exp
(
xTi β

)
or log µ(x) =

(
xTi β

)
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where, µ = µ(x) = α
(1−δ)

 is the mean, xTi  represents the 
(k − 1) dimensional vector of explanatory variables and β 
is the k-dimensional vector of regression parameters.

In this study, diabetes counts in the council in 2020 
have been used as a response variable regressed to the 
following elaborated explanatory variables:

S/no Variable name Variable description

1 X1 Percentage of people living with HIV (PPLHIV) 
in the year 2020 in a specific council

2 X2 Council’s 2020 population projection

3 X3 Council’s estimated gross domestic product 
(GDP) at market price

4 X4 Council’s residence (Rural or urban)

5 X5 Number of health facilities in the council

6 X6 Percentage of males in total diabetes count

7 X7 Zone (Lake, Southern, Southern Highlands, Cen-
tral, Eastern, Northern, and Western zones)

The model can be written as:

Then,

Estimation of model coefficients β was performed 
through the maximum likelihood method. Additionally, 
the goodness of fit of the GP model over the NB and Pois-
son models is also evaluated using AIC, AICc, and BIC.

(6)µ = exp
(
xTi β

)

xTi = [1 x1i x2i x3i x4i x5i x6i x7i]

βT
= [β0 β1 β2 β3 β4 β5 β6 β7]

exp
(
xTi β

)
= exp(β0 + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + β6x6i + β7x7i)

Results
The histogram in Fig. 1 describes the dispersion property 
of diabetes incidence across councils. The plot indicates 
a significant positive skew, with more small numbers, 
including zero, and few large counts, suggesting overdis-
persion among diabetic patients incidence between two 
age groups, namely, age 5 to 59 and 60 or older. This is 
common among disease incidence datasets since some-
times disease severity is triggered by behavioural pat-
terns among subpopulations being sampled, which vary 
from one society to another, leading to unequal disper-
sion. Since the data used reveals unequal dispersion, the 
GP model may give a precise estimate with meaningful 
inference [19, 20, 24, 39, 40].

The beeswarm plots in Fig.  2 display diabetes records 
per geographical location. The plots indicate a concentra-
tion of diabetes in areas with similar traits. Categories are 
arranged in ascending order based on the number of dia-
betes cases reported. The councils in the northern zone 
have more diabetes cases than the other zones, while the 
councils in the southern zone have fewer counts than 
other zones. Furthermore, councils inside high-count 
zones record fewer zeros and low counts than coun-
cils within low-count zones. Additionally, there is a sig-
nificant difference in diabetes records between rural and 
urban councils, with rural councils record many zero and 
small incidents while urban councils record a substan-
tially large number of diabetes cases.

Tables 1 and 2 summarize the association between dia-
betes count categories and categorical predictors in Tanza-
nia mainland for patients with 5–59 and 60 years and above 
age groups respectively. The dataset consists of diabetes 

Fig. 1 Histogram showing diabetes counts per age group
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records from 184 councils, with the minimum and maxi-
mum recorded numbers being 0 and 958, respectively, 
across two age groups. The chi-square test for dependence 
was used to measure the presence of a statistically sig-
nificant association between diabetes count and two cat-
egorical predictors associated with environmental factors: 
council residence (rural or urban) and council zone (north-
ern, eastern, lake, southern, southern highland, western, 
and central zones) among datasets from two distinct age 
groups. For both scenarios, the p-value is less than 0.001, 
indicating the presence of an association among categories.

Moreover, Tables  1 and 2 demonstrate larger counts 
of diabetes incidences recorded among councils located 
in urban areas than councils in rural areas in diabetes 
patients aged 5–59 years. The presence of large num-
bers of diabetes records among people aged 5–59 
years indicates the high chance of premature mortal-
ity and morbidity due to diabetes contrary to sustain-
able development goal number 3.4. For 60 years and 
older age groups, 60.8% of councils located in rural 
areas recorded fewer than 50 diabetes patients whereas 
8.7% of councils in urban areas recorded fewer than 50 

Fig. 2 Beeswarm plots of the distribution of diabetes counts within councils by environmental location

Table 1 Distribution of diabetes counts for patients aged 5–59 years within councils and associated environmental predictors

Covariates Level Diabetes counts for patients aged 5–59 years P value

<50 51–200 >200

Council’s residence Rural 93 (50.54) 38 (20.65) 8 (4.34) < 0.001

Urban 7 (3.8) 22 (11.96) 16 (8.70)

Zones Central 11 (5.98) 2 (1.09) 2 (1.09) 0.01106

Eastern 11 (5.98) 5 (2.72) 8 (4.35)

Lake 21 (11.41) 12 (6.52) 3 (1.63)

Northern 9 (4.89) 17 (9.24) 5 (2.72)

Southern 16 (8.70) 7 (3.8) 0 (0.0)

Southern Highlands 20 (10.87) 9 (4.89) 3 (1.63)

Western 12 (6.5) 8 (4.3) 3 (1.6)
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patients. Moreover, in the southern zone, none of the 
councils recorded more than 200 diabetes cases among 
both age groups.

Table 3 describes the log of expected diabetes counts 
as a function of selected predictor variables using the 
GP model (located at the top of the table), the negative 
binomial model (located in the middle of Table 3), and 
the standard Poisson (at the bottom of Table 3).

Based on the GP model’s results, the number of dia-
betes cases in each council is influenced by its popula-
tion. Thus, more populated councils are anticipated to 
have more cases of diabetes than the less populated ones. 
The logs of expected diabetes count in a council would 
be expected to increase by 0.2264 (p− value < 0.0001) 
when the council’s population increases by one unit. 
The number of health facilities is significantly associ-
ated with the number of diabetes cases in the councils. 
This may be because the availability of health facilities 
accelerates disease tracking and recording. Increase in 
the expected number of health facilities in the councils 
leads to increase the log of expected diabetes counts by 
0.0132 (p− value < 0.0001) . Moreover, the results sug-
gest positive association between percentage of peoples 
living with HIV and diabetes incidences in the council. 
Conversely, GDP per capita shows a significantly nega-
tive association with the log of expected diabetes counts 
in the councils. This implies that diabetes cases happen 
more in councils with less GDP per capita. On the other 
hand, there is no significant association between the per-
centage of male diabetes patients and the number of dia-
betes cases in the councils.

Predictors representing environmental factors are sig-
nificantly associated with diabetes counts in the councils. 
It can be demonstrated that, when other model covariates 
are held constant, the difference in logs of diabetes counts 
is predicted to be 1.172 (p− value < 2e− 16) larger 
for councils located in urban areas than those in rural 

areas. Compared to the northern zone, councils located 
in the central, eastern, lake, southern, and southern high-
lands zones have a decreased log diabetes counts of 
−0.8480 (p− value = 7.72e− 05) , −0.6483 (p− value = 0.00024 , 
−0.7265 (p− value = 1.17e− 06) , −0.8064 (p− value = 3.51e− 05) , 
and −0.7467 (p− value = 4.78e− 05) respectively. The reason 
is because councils in the northern zone contribute more 
diabetes cases than the other zones. Additionally, there is 
no significant difference in log diabetes cases in the western 
zone compared to councils in the northern zone.

There are slight differences between the estimates 
and standard errors (SEs) obtained by the GP and NB 
models, resulting in different inferences for the western 
zone category. The GP model shows that the category’s 
contribution to the logs of diabetes did not differ from 
that in the northern zone. In contrast, the NB model 
shows a significantly decreased log diabetes count by 
0.6395 (p− value = 0.00899) , compared to the northern 
zone when other factors in the model are kept constant. 
Additionally, the results in Table 3 indicate that SEs in the 
Poisson model were underestimated because the values 
were visually smaller than those obtained in the GP and 
NB models. This occurs because the Poisson model can-
not handle the over-dispersion present in the analyzed 
datasets. Underestimating SEs leads to incorrect infer-
ences being drawn about some predictors and factors.

Although the GP model finds that one predictor variable 
(percentage of males hospitalized by diabetes) and one cat-
egory (western zone) are not important, the NB model only 
finds the percentage of males hospitalized by diabetes to be 
insignificant. However, all predictors are deemed signifi-
cant in the Poisson model. This shows how the GP model 
excels in controlling over-dispersion and producing precise 
estimates compared to the NB and Poisson models.

Based on the results in Table 3 from the GP regression 
models, we have provided prediction equations for the 
average diabetes count as follows:

Table 2 Distribution of diabetes counts for patients aged 60 years and above within councils and associated environmental predictors

Covariates Level Diabetes counts for patients aged 60 years and above P value

<50 51–200 >200

Council’s residence Rural 112 (60.87) 21 (11.41) 6 (3.26) < 0.001

Urban 16 (8.70) 24 (13.04) 5 (2.72)

Zones Central 12 (6.5) 3 (1.6) 0 (0.0) 0.00474

Eastern 14 (7.6) 6 (3.3) 4 (2.2)

Lake 28 (15.2) 6 (3.3) 2 (1.1)

Northern 13 (7.1) 14 (7.6) 4 (2.2)

Southern 22 (12.0) 1 (0.5) 0 (0.0)

Southern High 23 (12.5) 8 (4.3) 1 (0.5)

Western 16 (8.7) 7 (3.8) 0 (0.0)
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Table 3 Model fit results from generalized poisson, negative binomial, and standard poisson models

Model Coefficients: Estimate Std. Error z value Pr(>|z|)

Generalized Poisson Regression (Intercept):1 3.5400 0.3080 11.492 < 2e-16 

(Intercept):2 1.4443 0.0403 35.815 < 2e-16 

PPLHIV 0.0616 0.0241 2.556 0.0106

Pop 0.2264 0.0285 6.175 1.98e-15

GDP -0.1507 0.0306 -4.922 8.57e-07

No. of H.facilities 0.0132 0.0034 3.852 0.000117

% of men -0.0017 0.0050 -0.343 0.7314

Council residence (ref.=Rural)

Urban 1.1720 0.1067 10.979 < 2e-16

Council zone (ref.=Northern zone)

Central -0.8480 0.2145 -3.953 7.72e-05

Eastern -0.6483 0.1764 -3.675 0.000237

Lake -0.7265 0.1495 -4.860 1.17e-06

Southern -0.8064 0.1949 -4.138 3.51e-05

Southern Highland -0.7467 0.1837 -4.066 4.78e-05

Western -0.3392 0.1836 -1.848 0.064655

Negative Binomial distribution (Intercept):1 3.3498 0.3656 9.163 < 2e-16

(Intercept):2 0.4740 0.1028 4.613 3.97e-06

PPLHIV 0.0803 0.0318 2.520 0.01174

Pop 0.2589 0.0419 6.175 6.61e-10

GDP -0.1913 0.0424 -4.508 6.54e-06

No. of H.facilities 0.0187 0.0046 4.105 4.04e-05

% of men -0.0038 0.0059 -0.648 0.516866

Council residence (ref.=Rural)

Urban 1.2570 0.1466 8.572 < 2e-16

Council zone (ref.=Northern zone)

Central -1.0453 0.2715 -3.850 0.000118

Eastern -0.9020 0.2424 -3.722 0.000198

Lake -0.9519 0.2053 -4.637 3.54e-06

Southern -1.0209 0.2339 -4.364 1.27e-05

Southern Highland -0.9335 0.2375 -3.931 8.47e-05

Western -0.6395 0.2448 -2.612 0.008989

Poisson regression (Intercept):1 3.6228 0.05460 66.343 < 2e-16

PPLHIV 0.0704 0.00403 17.484 < 2e-16

Pop 0.2122 0.00448 47.350 < 2e-16

GDP -0.1800 0.00490 -36.701 < 2e-16

No. of H.facilities 0.0188 0.00058 32.682 < 2e-16

% of men -0.0086 0.00093 -9.239 < 2e-16

Council residence (ref.=Rural)

Urban 1.1996 0.0174 68.764 < 2e-16

Council zone (ref.=Northern zone)

Central -0.9618 0.03717 -25.876 < 2e-16

Eastern -0.7676 0.0279 -27.464 < 2e-16

Lake -0.7881 0.0234 -33.706 < 2e-16

Southern -1.0425 0.0390 -26.728 < 2e-16

Southern Highland -0.8120 0.0312 -26.003 < 2e-16

Western -0.4626 0.0320 -14.439 < 2e-16
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The antilogarithm of the prediction equation above 
gives the expected number of diabetes cases as given 
below:

Table 4 gives the goodness of fit results obtained using 
different information criteria. The results show that the 
GP model earns the smallest information criteria values, 
which means that it outperforms the NB and Poisson 
models in modeling the used data. Moreover, the results 
show a slight difference among values obtained by NB 
and GPD, which may indicate that these two models have 
slight differences when used to model over-dispersed 
data. However, the major difference between them is that 
the GP model is appropriate for modeling equal, over, 
and under-dispersed data, while the NB model is used for 
modeling over-dispersed data.

In Table  4, there are Pearson chi-square (Pearson-χ2 ) 
and Pearson-χ2/DF  values for the GP, NB, and Pois-
son models. A value of Pearson-χ2/DF  greater than one 
means there is over-dispersion, and if it is exactly or close 
to one, it means over-dispersion is well controlled. The 
GP model has a value closest to one compared to the 
other models, making it the best choice for modeling 
over-dispersed diabetes count data.

Discussion
This paper suggests utilizing the GP model to model 
socio-environmental and other risk factors associated 
with diabetes incidences in Tanzania mainland. The 
GP model’s performance was compared to that of NB 
and Poisson, as these three models are related. The NB 
model was obtained through a parametrization process 
called Poisson mixture gamma, which can model over-
dispersed data that the standard Poisson model cannot. 
Additionally, the model can be reduced to the Poisson 
model when the dispersion parameter tends to infinity. 
Similarly, the GP model was obtained as a limit of the NB 

log
(
µ̂
)
= 3.540+ 0.0616 ∗ pPLHIV + 0.2264 ∗ Pop− 0.1507 ∗ GDP + 0.0132 ∗ no.H .facilities

+ 1.172 ∗Urban− 0.8480 ∗ Central − 0.6483 ∗ Eastern− 0.7265 ∗ Lake − 0.8064 ∗ Southern− 0.7467 ∗ Southern Highland

µ̂ = exp(3.5400+ 0.0616*pPLHIV+ 0.2264 ∗ Pop− 0.1507 ∗ GDP + 0.0132 ∗ no.H .facilities

+ 1.172 ∗Urban− 0.8480 ∗ Central − 0.6483 ∗ Eastern− 0.7265 ∗ Lake − 0.8064 ∗ Southern− 0.7467 ∗ Southern Highland)

model and can model over, under, and equally dispersed 
count data. Similar to the NB model, the GP model can 
also be reduced to the Poisson model when its dispersion 

parameter equals zero. These models belong to the GLM 
category and are widely used in analyzing the relationship 
between a response variable that follows exponential fam-
ilies of distributions and one or more predictor variables. 
Linear models are a specific type of GLM with an identity 
link function [9, 41, 42]. The link function transforms the 
response variable to conform to the linear model assump-
tion, connecting the mean of the response variable to a 
linear combination of predictor variables.

This study’s findings reveal that the unequal dominance 
of diabetes cases is associated with the type of council 
residence. Both descriptive and inferential analyses show 
that urban areas have more diabetes cases than rural areas 
probably due to the lifestyles in the two areas. Urban areas 
showed a strong positive contribution to diabetes cases, 
supporting that environmental factors, including urbani-
zation, are a significant risk factor for diabetes and other 
NCDs [5, 43]. The findings also show a significant differ-
ence in the predicted log of diabetes cases among various 
zones. This indicates heterogeneity of the burden across 
socio-environmental attributes. The northern zone, the 
reference category, appears to have made a significant 
contribution, causing the projected log of diabetes counts 
in other zones to be adverse. The western zone was found 
to have a negligible association with the log of diabetes 
cases compared to the northern zone according to the 
GP model. This finding is related to those of Stanifer et al. 
[44], who observed that hypertension is environmentally 
clustered since people living together share social-cul-
tural norms like eating habits, crops produced, and other 
behavioural patterns that affect NCDs.

The study also investigated the contribution of other fac-
tors in diabetes cases, and the findings revealed that an 

Table 4 Information criteria

Model Information Criteria Pearson-χ2 Pearson-χ2/DF

−2logL AIC BIC AICc

GP 914.617 1857.234 1901.7 1859.826 332.3211 0.977

NB 917.775 1863.551 1908.017 1866.143 370.7664 1.20

Poisson 4583.633 9193.266 9234.556 9195.499 9574.291 58.380
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increased log of diabetes counts is also associated with the 
council’s population and the number of health facilities. On 
the contrary, GDP at market price is shown to be negatively 
associated with the log of diabetes counts. This indicates 
diabetes incidences are also more common in low-income 
societies. Several researchers have observed a high NCD 
rate in low- and middle-income countries (LMICs), which 
aligns with these findings [3]. On the other hand, the total 
number of patients who attended hospitals for HIV care is 
not associated with diabetes cases. This result differs from 
those obtained by Castilho et  al. [45]. The percentage of 
male diabetes cases does not significantly relate to total 
diabetes cases in the councils. This factor is used to meas-
ure the contribution of sex to diabetes incidence, as other 
studies concluded that there is a higher prevalence of NCD 
cases among males than females in Africa [3]. Also, there is 
empirical evidence of a high economic burden among poor 
households in Tanzania caused by NCDs [46]. This study 
findings reveals dominance of diabetes incidences among 
councils with low GDP which may increase poverty con-
trary to Sustainable Development Goal 1.

The GP model performs better than both the NB and 
traditional Poisson regression models based on the log-
likelihood value, AIC, BIC, AICc and Pearson-χ2 values. 
The model achieves the lowest value among all informa-
tion criteria, suggesting that GP is better at controlling 
over-dispersion among diabetes counts than its competi-
tors. To determine the dispersion value of the data, one 
can also divide the Pearson chi-square value by its degree 
of freedom. This value should be close to or equal to 1 for 
equally dispersed data in the Poisson model. In this study, 
the value of Pearson-χ2/DF  for the Poisson model is far 
greater than 1, indicating the presence of over-dispersion. 
The problem is well handled in the GP model.

Conclusion
Considering the variability of count data when conduct-
ing statistical modeling is crucial. Ignoring this factor can 
lead to false estimates of the standard error, affecting the 
test statistic and p-value. It is crucial to examine the dis-
persion nature of the data to avoid incorrect inferences 
during statistical modeling of count data.

Hence, this study recommends the use of the GP model 
in modeling risk factors associated with disease count 
incidences, specifically in data collected among popula-
tion subgroups with varying social and environmental 
characteristics. The model can accommodate count data 
collected in population subgroups with equal and unequal 
dispersion. The model is advantageous because it does not 
involve a difficult computation burden, it does not suffer 
from convergence issues and gives precise results com-
pared to the most applied NB and Poisson models.

Limitations of the study
The data in DHIS2 are recorded for very broad age groups 
which hinders further comparison regarding disease inci-
dences. Additionally, the system does not include impor-
tant patient information, which also limits model variables.
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