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Abstract 

Background  Surrogate endpoints, such as those of interest in chronic kidney disease (CKD), are often evaluated 
using Bayesian meta-regression. Trials used for the analysis can evaluate a variety of interventions for different sub-
classifications of disease, which can introduce two additional goals in the analysis. The first is to infer the quality 
of the surrogate within specific trial subgroups defined by disease or intervention classes. The second is to generate 
more targeted subgroup-specific predictions of treatment effects on the clinical endpoint.

Methods  Using real data from a collection of CKD trials and a simulation study, we contrasted surrogate endpoint 
evaluations under different hierarchical Bayesian approaches. Each approach we considered induces different 
assumptions regarding the relatedness (exchangeability) of trials within and between subgroups. These include 
partial-pooling approaches, which allow subgroup-specific meta-regressions and, yet, facilitate data adaptive 
information sharing across subgroups to potentially improve inferential precision. Because partial-pooling models 
come with additional parameters relative to a standard approach assuming one meta-regression for the entire set 
of studies, we performed analyses to understand the impact of the parameterization and priors with the overall goals 
of comparing precision in estimates of subgroup-specific meta-regression parameters and predictive performance.

Results  In the analyses considered, partial-pooling approaches to surrogate endpoint evaluation improved accu-
racy of estimation of subgroup-specific meta-regression parameters relative to fitting separate models within sub-
groups. A random rather than fixed effects approach led to reduced bias in estimation of meta-regression parameters 
and in prediction in subgroups where the surrogate was strong. Finally, we found that subgroup-specific meta-
regression posteriors were robust to use of constrained priors under the partial-pooling approach, and that use 
of constrained priors could facilitate more precise prediction for clinical effects in trials of a subgroup not available 
for the initial surrogacy evaluation.

Conclusion  Partial-pooling modeling strategies should be considered for surrogate endpoint evaluation on collec-
tions of heterogeneous studies. Fitting these models comes with additional complexity related to choosing priors. 
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Constrained priors should be considered when using partial-pooling models when the goal is to predict the treat-
ment effect on the clinical endpoint.

Keywords  Surrogate endpoint, Meta-regression, Bayesian hierarchical modeling, Chronic kidney disease

Background
There is broad interest in the use of validated surrogate 
endpoints to expedite clinical trials in areas of slowly pro-
gressing disease, such as chronic kidney disease (CKD) 
[1–5]. A surrogate endpoint is typically a measure of 
disease progression captured earlier than an established 
clinical endpoint and should have the property that the 
treatment effect on the surrogate accurately predicts 
the treatment effect on the clinical endpoint [6–8]. This 
predictive potential is commonly established in a meta-
regression analysis of previously conducted trials, where 
the meta-regression quantifies the strength of the asso-
ciation between treatment effects on the clinical and 
surrogate endpoints [3–8]. Accurate estimation of the 
meta-regression parameters requires variability in the 
treatment effects on the surrogate and clinical endpoints 
across trials used for analysis. To achieve this, the col-
lection of trials can contain heterogeneity in terms of 
interventions and sub-classifications of disease [3, 4]. 
There is often interest among entities such as regulatory 
agencies regarding the performance of the surrogate in 
pre-specified, clinically or biologically motivated, and 
mutually exclusive subgroups defined by intervention or 
disease classes [1]. These interests introduce two specific 
goals the analytical approach must facilitate: The first is 
accurate estimation of subgroup-specific meta-regression 
parameters. The second is accurate prediction of treat-
ment effects on the clinical endpoint, either for sub-
groups used in model fitting or for those not available for 
model fitting (e.g., for a novel intervention).

One meta-regression methodology involves a Bayes-
ian hierarchical model, which can be used to account for 
estimation error of the treatment effects on both end-
points as well as the correlation of the sampling errors (a 
frequently used weighted generalized linear regression 
approach accounts only for sampling error of the effect 
estimate on one of the two endpoints) [6, 8, 9]. Under the 
hierarchical Bayesian approach, it is common to assume 
all trials used in the analysis to be fully exchangeable 
despite underlying differences in interventions or dis-
eases across trials [4–6, 8]. In effect, this is accomplished 
by fitting a model with a single meta-regression relating 
treatment effects on the clinical endpoint to those of the 
surrogate endpoint to all trials available for the analysis, 
which we refer to as the “full-pooling” approach. Alter-
natively, distinct meta-regressions can be fit within 
subgroups in what we will refer to as the “no-pooling” 

approach [4, 7]. There are often too few trials and insuf-
ficient variability in treatment effects within subgroups 
to estimate the meta-regression parameters with satis-
factory precision under a strict no-pooling strategy. An 
additional limitation to the full and no-pooling strategies 
is that each induces limitations to model-based predic-
tion of the treatment effect on the clinical endpoint in a 
future trial. This is especially the case when there is inter-
est in prediction for a trial which is of a “new subgroup”, 
one that was not available for the initial surrogacy evalu-
ation. Afterall, in the ideal scenario a surrogate can be 
used for a trial evaluating a novel intervention or when 
applying an approved indication in a new patient popu-
lation. Use of a full-pooling model requires the assump-
tion that any future trial is fully exchangeable with the 
previous trials. Use of a no-pooling approach requires 
the future trial to be of a subgroup used for the surrogacy 
evaluation (“existing subgroup”).

Bayesian hierarchical meta-regression lends natu-
rally to a “partial-pooling” compromise to these earlier 
approaches, where a between subgroup distribution 
is assumed for some or all subgroup-specific model 
parameters [7]. The partial-pooling approach relaxes the 
assumption of full-exchangeability of all trials used for 
the analysis, can improve precision of inference on sub-
group-specific parameters due to data adaptive informa-
tion sharing across subgroups, and provides a framework 
for model-based prediction of an effect on a clinical end-
point for a trial of either an existing or a new subgroup. 
However, critical decisions needed to fit models of this 
class are without empirical guidance in the literature. For 
example, use of fixed and random effects approaches are 
used interchangeably when employing full-pooling mod-
els, and the implications of these two approaches are not 
well understood under a partial-pooling model [8]. To 
our knowledge, there is also not yet work evaluating the 
impact of the choice of priors under partial-pooling strat-
egies, even though the role of certain prior distributions 
is likely to be amplified in likely scenarios in which the 
number of subgroups is small.

In this paper, we provide results from a series of analy-
ses intended to help guide practical decision making for 
surrogate endpoint evaluations on collections of hetero-
geneous studies. We explore the extent to which partial-
pooling approaches improve precision in key posteriors 
of interest in surrogate evaluation, the extent to which 
bias occurs, contrast fixed and random effects variants 
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of models described, and explore the impact of pri-
ors. In  the Methods section, we describe the modeling 
approaches evaluated, priors, and how these methods 
can be used for prediction. In  the Results section, we 
provide results of a limited simulation study and of an 
applied analysis of CKD trials. We then conclude with 
the Discussion section.

Methods
Modeling approaches to the trial‑level analysis 
of a surrogate
For the trial-level evaluation of a surrogate endpoint, a 
two stage approach to the analysis is often used [6–8]. 
In the first stage, treatment effects on both the clini-
cal and surrogate endpoint as well as standard errors 
and a within-study correlation between the error of the 
estimated effects are calculated for each trial. These 
trial-level measures are used as the data input in the 
meta-regression evaluation (the second stage). A two-
level hierarchical model for the meta-regression can be 
used to account for within-study estimation error for 
both treatment effects [4–8].

Under the two-stage approach, one key distinction 
between commonly used second-stage models involves 
whether true treatment effects on the surrogate endpoint 
are viewed as fixed or random [6, 8]. Under the fixed 
effects approach, the true treatment effects on the surro-
gate endpoint are fixed and the true effects on the clinical 
endpoint are regressed on the true effects on the surro-
gate assuming Gaussian residuals. Under the random 
effects approach, the true treatment effects on both the 
surrogate and the clinical endpoints are assumed to fol-
low a bivariate normal distribution [4, 5, 8]. The within-
study joint distribution can be reasonably approximated 
with a bivariate normal distribution due to asymptotic 
normality, but the bivariate normality assumption for the 
between-study model is made for modeling convenience. 
Bujkiewicz et  al. contrast the predictive performance of 
a surrogate under fixed and random effects approaches 
when using the full-pooling approach, but do not sum-
marize differences in estimates of key parameters such 
as the meta-regression slope [8]. Papanikos et  al. evalu-
ate and contrast different fixed effects approaches in sub-
group analyses of a surrogate, but do not compare fixed 
and random effects approaches [7]. We hypothesized 
that the fixed and random effects approaches could pro-
duce differing results because there may be more or less 
shrinkage in the true effects on the surrogate across trials 
(the “x-axis” variable in the regression) depending on the 
method used.

We next introduce the full pooling random and fixed 
effects models, which are applicable when the clinical tri-
als being analyzed can be regarded as exchangeable. Let 

there be N total clinical trials, each of which compares 
an active treatment to a control. For trials j = 1, . . . ,N  , 
(θ1j , θ2j)

′ jointly represents the suitably scaled within 
study estimates of treatment effects on the clinical and 
surrogate endpoints for trial j. The pair (θ1j , θ2j)′ repre-
sents the latent joint true treatment effects on the clini-
cal and surrogate endpoints in study j. We let �j denote 
a within study variance-covariance matrix for study j 
( �j1,1 = SE(θ̂1j)

2 is the squared standard error of the 
estimated clinical effect, �j2,2 = SE(θ̂2j)

2 the squared 
standard error of the estimated surrogate effect, r̂j is 
the estimated within trial correlation for study j, imply-
ing �j1,2 = �j2,1 = r̂jSE(θ̂1j)SE(θ̂2j) ). When the stand-
ard errors and within study correlation are available, it is 
customary to consider all entries of �j fixed and known 
[6–8, 10, 11]. For the random effects model, µs represents 
a population average true treatment effect on the sur-
rogate, and σ 2

s  the between trial variance in true effects 
on the surrogate. We parameterize the model such that α 
denotes the meta-regression intercept, β the slope, and σe 
the residual standard deviation. The following represents 
the full-pooling random effects model (FP-RE).

To fit a full-pooling fixed effects model (FP-FE), rather 
than assuming a Gaussian distribution for which param-
eters will be estimated for θ2j as above, an independent 
prior is assigned directly to each θ2j.

Next, suppose that the N trials are to be divided into 
I total subgroups because exchangeability is plausible 
for the trials within each subgroup but not necessarily 
between trials in different subgroups. In our experience, 
regulatory agencies have expressed concern of heteroge-
neity in surrogate quality across pre-specified subgroups 
present in the data being used to evaluate CKD-relevant 
surrogate endpoints. The models discussed throughout 
the remainder of this paper are thus intended for similar 
scenarios where: the I subgroups which motivate concern 
over the full exchangeability of trials (i.e., there might be 
a different association between treatment effects on the 
clinical and surrogate endpoint depending on the sub-
group a trial pertains to) are presented to the statistical 
analyst independent of any statistical criteria, subgroup 
assignment for the trials available for model fitting is not 
ambiguous (e.g., the inclusion and exclusion criteria of 
a trial would easily determine the subgroup assignment 
if disease-based subgroups are of interest), and there 
can not be misclassification of trials into the wrong sub-
groups. When such an analytical scenario is presented, 
we might first consider fitting separate models within 
each subgroup. For i = 1, . . . , I , the following represents 

(θ̂1j , θ̂2j)
′ ∼ N ((θ1j , θ2j)

′,�j),

θ2j ∼ N (µs, σ
2
s ), and θ1j|θ2j ∼ N (α + βθ2j , σ

2
e ).
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what we refer to as a no-pooling random effects (NP-RE) 
model for the jth trial within the ith subgroup.

We note that one could fit a no-pooling fixed-effects 
model by placing a prior directly on each θ2ji , rather than 
assuming the Gaussian distribution as above.

For the partial pooling approach, we can incorpo-
rate between-subgroup distributions as an intermedi-
ate layer in the Bayesian analysis to induce information 
sharing across subgroups [7, 12]. The terms controlling 
heterogeneity between subgroups are informed by the 
data. For example, if the data suggests a lack of between-
subgroup heterogeneity for any given term, fitting this 
model should result in substantial information sharing 
and similar subgroup-specific parameter estimates. The 
partial pooling model may generate some amount of 
bias, but could counter-balance this bias with increased 
precision due to information sharing [12]. Among other 
reasons, because between-subgroup variation drives the 
data-adaptive information sharing, between-subgroup 
variance terms were of primary interest in our investiga-
tion of the influence of priors.

A partial-pooling random effects (PP-RE) model is 
displayed below. Consider there are additional model 
parameters necessary to define this model. We let µs and 
σ 2
s  represent the between subgroup average and variance 

of true treatment effects on the surrogate; α and σ 2
α and β 

and σ 2
β represent the between subgroup average and vari-

ance of the meta-regression intercept and slope, respec-
tively; τs and τe denote the between-subgroup mean 
log-transformed true surrogate effects standard deviation 
and meta-regression residual standard deviation, respec-
tively; γ 2

s  and γ 2
e  denote the between subgroup variance 

of the log-transformed within-subgroup true surrogate 
treatment effects standard deviation and meta-regression 
residual standard deviation, respectively.

If fitting a partial-pooling fixed effects (PP-FE) model, 
a prior can be placed directly on each θ2ji , rather than 
assuming the hierarchical Gaussian distribution dis-
played above. We display an example of a PP-FE model 

(θ̂1ji , θ̂2ji)
′ ∼ N ((θ1ji , θ2ji)

′
,�ji),

θ2ji ∼ N (µsi , σ
2
si), and θ1ji|θ2ji ∼ N (αi + βiθ2ji , σ

2
ei)

(1)(θ̂1ji, θ̂2ji)
′ ∼ N ((θ1ji, θ2ji)

′,�ji),

(2)θ2ji ∼ N (µsi, σ
2
si), θ1ji|θ2ji ∼ N (αi + βiθ2ji, σ

2
ei),

(3)
µsi ∼ N (µs, σ

2
s ), αi ∼ N (α, σ 2

α ), βi ∼ N (β , σ 2
β )

(4)log(σsi) ∼ N (τs, γ
2
s ), log(σei) ∼ N (τe, γ

2
e ).

here to contrast it with the PP-RE model more clearly. In 
this example, we place a N(0,102 ) prior on each trial’s true 
treatment effect on the surrogate.

To our knowledge, there has been just one other paper 
to evaluate partial-pooling strategies for the trial-level 
analysis of a surrogate. As discussed in the introduction, 
Papanikos et  al. evaluated different fixed effects partial-
pooling approaches [7]. An additional difference between 
the PP-FE model displayed above and those considered 
by Papaniko’s et al. is that there was not a between-sub-
group distribution assumed for σei in their models. One 
advantage of allowing a between-subgroup distribution 
for σei is that it enables estimating posteriors for param-
eters defining between-subgroup distributions for all 
meta-regression parameters (intercept, slope, and resid-
ual variance). This subsequently facilitates prediction for 
a trial of a new subgroup, as is discussed in the Generat-
ing posterior predictive distributions section.

Analysis set 1: simulation study
We generated trial level summary data (estimated treat-
ment effects, standard errors, and the within-study 
correlations) based on four broad simulation setups, 
where within each we introduced two variants depend-
ing on the distribution used to simulate true treatment 
effects on the surrogate. The setups considered were 
motivated by applied data used to evaluate GFR slope. 
We consider three subgroups of trials as in previous 
evaluations of GFR slope and to reflect the likely sce-
narios where the available data limits the number of 
subgroups, stressing the potential for benefit from data 
adaptive partial-pooling [4]. We simulated 15 medium-
to-large trials per subgroup (standard errors on either 
endpoint reflect trials with roughly 300-2000 patients). 
Within-study correlations were drawn equally at ran-
dom from the range of values present in our application 
data. Without loss of generalizability, we modeled a 
negative trial-level association. As discussed in the sec-
tion titled Analysis set 2: application analysis of CKD 
trials, there is a negative association between treatment 
effects on the clinical endpoint and treatment effects on 
GFR slope. We also varied the sizes of subgroups and 

(5)(θ̂1ji, θ̂2ji)
′ ∼ N ((θ1ji, θ2ji)

′,�ji),

(6)θ2ji ∼ N (0, 102), θ1ji|θ2ji ∼ N (αi + βiθ2ji, σ
2
ei),

(7)αi ∼ N (α, σ 2
α ), βi ∼ N (β , σ 2

β )

(8)log(σei) ∼ N (τe, γ
2
e ).
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the degree of between-study variability in true effects 
on the surrogate. Broadly, we consider one setup (S1) 
where there is homogeneity in the quality of the sur-
rogate across subgroups, another setup (S2) where 
the surrogate is weak in two subgroups and strong in 
another, another setup (S3) where the surrogate is weak 
in one subgroup and strong in the other two, and a 
final setup (S4) where surrogate quality is different in 
all three subgroups. The strength of the surrogate was 
defined by the true meta-regression R2 . Earlier work 
has proposed that R2 ∈ (0, 0.49) , R2 ∈ (0.5, 0.72) , and 
R2 ∈ (0.73, 1) suggest a weak, moderate, and strong 
surrogate, respectively [13]. For our purposes, we 
simulated data from true parameter values to obtain 
R2 = 0.35, 0.65, 0.95 to define the surrogate as weak, 
moderate or strong within subgroups, respectively.

Consider the data generating model below for the 
first variant (V1) of the four simulation setups. To sim-
ulate estimated clinical and surrogate effects for trial j 
( j = 1, . . . , 15 ) in subgroup i ( i = 1, 2, 3 ) when true sur-
rogate effects are Gaussian, we first drew true surrogate 
effects from (9), then drew conditional true clinical 
effects from (10), and finally drew a pair of estimated 
effects using (11). The standard errors and within-
study correlations forming the matrices �ji were drawn 
according to the rules described above using uniform 
distributions to reflect variation in trial sizes.

We also sought to contrast results under the differ-
ent models when true treatment effects on the surro-
gate were distinctly non-Gaussian (V2). We used the 
following data generating model, where true effects on 
the surrogate for each trial were drawn from a bimodal 
distribution (12).

To summarize results, we provide simulation average 
posterior medians, 2.5th and 97.5th percentiles for mod-
els fit across 100 simulated datasets per setup. We also 
summarize posterior predictive distributions (PPDs - 
described further below).

(9)θ2ji ∼ N (µsi, σ
2
si),

(10)θ1ji|θ2ji ∼ N (αi + βiθ2ji, σ
2
ei)

(11)(θ̂1ji, θ̂2ji)
′ ∼ N ((θ1ji, θ2ji)

′,�ji)

(12)θ2ji ∼ 0.5N (µ1si, σ
2
si)+ 0.5N (µ2si, σ

2
si)

(13)θ1ji|θ2ji ∼ N (αi + βiθ2ji, σ
2
ei)

(14)(θ̂1ji, θ̂2ji)
′ ∼ N ((θ1ji, θ2ji)

′,�ji)

Analysis set 2: application analysis of CKD trials
We compare analyses using the models discussed above 
on a set of 66 CKD studies. Data from these studies was 
collected by the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI), an international research con-
sortium [3, 4]. Evaluations of GFR slope on this collec-
tion of studies have been described extensively [3, 4]. For 
the purposes of this paper, we focus on the GFR “chronic 
slope” as the surrogate [4]. Time-to-doubling of serum cre-
atinine or kidney failure is used as the clinical endpoint, 
which is accepted by regulatory agencies and is widely 
used as the primary endpoint in pivotal phase 3 clinical tri-
als of CKD [3]. Treatment effects on the clinical endpoint 
were expressed as log transformed hazard ratios (HRs), 
estimated using proportional hazards regression. A shared 
parameter mixed effects model was used to jointly model 
longitudinal GFR trajectories and the time of termination 
of GFR follow-up due to kidney failure or death for each 
randomized patient. Treatment effects on the chronic GFR 
slope are expressed as the mean difference in the treat-
ment arm slope minus the control arm slope, expressed in 
ml/min/1.73 m 2 per-year. Further detail on the methods 
used to estimate effects on GFR slope-based endpoints 
are described elsewhere in the literature [4, 14]. Finally, we 
obtained robust sandwich estimates of the within-study 
correlations using a joint model as in previous work by 
CKD-EPI [4].

Heterogeneity across the CKD-EPI trials can be attrib-
uted to many study level factors. We consider four dis-
ease-defined subgroups (CKD with unspecified cause 
(CKD-UC), diabetes (DM), glomerular diseases (GN), 
and cardiovascular diseases (CVD)) and 16 intervention-
defined subgroups (listed in the Additional file  1: Sec-
tion 1). For the application analyses, we focus on fitting 
the FP-RE and PP-RE models, and use different sets of 
priors under the PP-RE model (we also contrast results 
under the PP-RE and PP-FE models where subgroups 
are defined by disease to complement certain simulation 
analyses). To capture the scenario where there is interest 
in prediction for a future trial of a new subgroup, we first 
fit models by leaving out CVD studies, and we generated 
PPDs for those studies left-out. For intervention-defined 
subgroups, we fit the model for trials of 7 subgroups for 
which there were at least 3 studies, and we then gener-
ated PPDs for studies of the remaining left-out, smaller 
subgroups. We also summarize PPDs obtained for stud-
ies of the subgroups used for model fitting under these 
two subgroup schema.

Priors
For the purposes of the simulation study, we utilized 
diffuse priors, which is a common practice in surrogate 
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endpoint evaluations [4, 6–8]. For the full-pooling and 
no-pooling models, we used the N (0, 102) prior for the 
intercept ( α or αi ) and slope ( β or βi ), and for the mean 
true treatment effect on the surrogate ( µs , µsi under ran-
dom effects models) or for trial-specific true effects on 
the surrogate when fitting the fixed effects models ( θ2ji ). 
As in previous work in CKD, we used inverse-gamma 
priors on variance terms ( IG(a,b) for shape a and scale 
b ) [4, 5]. For the full-pooling and no-pooling models, 
we used σ 2

ei, σ
2
e ∼ IG(0.001, 0.001) . Where appropri-

ate (random effects models), we also used σ 2
s , σ

2
si ∼ 

IG(0.001, 0.001) . The IG(0.001, 0.001) prior is consid-
ered an approximation to the Jeffery’s prior. For par-
tial-pooling models, we let τ 2e ∼ IG(0.0025, 0.001) and 
γe ∼ half-normal(0, 32) , and for the random effects vari-
ants τ 2s ∼ IG(0.0025, 0.001) and γs ∼ half-normal(0, 32) . 
This combination translates to priors for within sub-
group standard deviations in the partial-pooling models 
matching those of the no-pooling models to the extent 
that the 25th , 50th , and 75th prior percentiles differed by 
less than 0.05. For σα , σβ , σs , we used half-normal(0, 22) . 
These specific half-normal priors should be considered 
highly diffuse for all of our analyses.

For our application analyses, we considered three vari-
ations on priors when employing the PP-RE model. We 
considered different priors for partial-pooling models 
because we hypothesized that not only narrow priors, 
but also highly diffuse priors could unduly influence cer-
tain results of our analyses. This is because there is often 
a limited number of studies available for meta-analysis, 
which can limit the number of subgroups. The catego-
rization of studies based on constructs such as disease 
subtype or treatment comparison class may also pro-
vide a small number of subgroups. When there are just 
a few subgroups, the data provides very little informa-
tion on subgroup-to-subgroup variation. The posteri-
ors for between-subgroup variance terms may be more 
likely to exhibit minimal updates from the priors based 
on the data. As such, if priors are so diffuse that they rep-
resent a range of variability that is beyond practical real-
ity, so too could the posteriors. As described below, this 
is also important because between-subgroup variance 
parameters are utilized in generating posterior predic-
tive distributions for a trial of a new subgroup. A practi-
cal degree of narrowing certain priors could be seen as a 
necessary middle ground between use of overly narrow 
or overly diffuse priors. While we narrowed all priors for 
our constrained “sets” considered, the priors we focused 
on were for between-subgroup standard deviations for 
meta-regression parameters. We first used the fully dif-
fuse priors displayed above. We then employed an itera-
tive procedure, where we narrowed priors (emphasizing 
between-subgroup standard deviation parameters such 

as σα , σβ , γe ) until a set was found that produced no more 
than 0.05 difference in the posterior median, 2.5th , and 
97.5th percentiles for the within-subgroup meta-regres-
sion posteriors, no matter how much narrower posteriors 
on between-subgroup parameters became (referred to 
as “Constrained Priors Set 1”, which were ultimately the 
same for either subgroup classification). Finally, we chose 
what we will refer to as “domain-constrained” priors 
(“Constrained Priors Set 2”). It is reasonable to choose a 
prior that constrains between-subgroup variability to a 
range that is actually plausible in reality based on subject 
matter expertise (e.g., through a prior elicitation process). 
For example, in our case the intercept is the expected 
true log-HR on the clinical endpoint when the true effect 
on the surrogate is the null effect. When there is a null-
effect on the surrogate, we may suspect a low probability 
of an expected HR on the clinical endpoint that is very 
strong in either direction (e.g., below 0.5 or above 2.0), 
and this logic can be used to provide a moderate to low 
probability for subgroup-specific intercepts to go beyond 
these values. Domain-constrained priors were the nar-
rowest among those considered for our analyses, and 
further detail on choosing these priors is provided in Sec-
tion 2 of Additional file 1.

We wish to also emphasize that there is an important 
distinction between narrowing priors for the terms that 
define variability in the treatment effects on the surro-
gate across studies, and for the meta-regression param-
eters. The degree of variability of treatment effects on the 
surrogate influences the extent to which the data allows 
the quality of the surrogate to be inferred. Priors for the 
distribution(s) of true treatment effects on the surrogate 
should be left sufficiently diffuse so as not to restrict vari-
ation in effects across studies. In our cases, these were 
narrowed because the diffuse priors typically used are 
excessively wide relative to the range of treatment effects 
that are reasonable. The priors of primary interest are 
again those governing the degree of variability between 
subgroups in the meta-regression terms (e.g., σβ).

Generating posterior predictive distributions
There are a number of strategies that can be used to gen-
erate PPDs for the treatment effect on the clinical end-
point based on the treatment effect on the surrogate. In 
our simulation study, we compare summaries of PPDs for 
the true treatment effect on the clinical endpoint, which 
only takes into account uncertainty in the estimated 
meta-regression parameters. This is possible in a simu-
lation analysis because we actually know the true effect 
on the surrogate [7]. For each study left-out of model fit-
ting, let the true effect on the surrogate for that study be 
denoted θN2  . Then, the PPD for the true effect on the clin-
ical endpoint is generated by taking m = 1, . . . ,M draws 
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(for each of M posterior draws obtained in model fitting) 
from N (α∗m + β∗mθN2 , σ ∗m2

e ) , where α∗m,β∗m, σ ∗m
e  rep-

resent draws from posteriors from either the full-pooling, 
no-pooling or partial-pooling models. For our purposes, 
subgroup-specific parameters were used when trials were 
simulated from the same subgroup if using no-pooling or 
partial-pooling.

In application analyses, it is only possible to obtain 
the PPD for the estimated effect on the clinical end-
point, which involves a procedure that takes into account 
not only uncertainty in the meta-regression posteriors, 
but also uncertainty due to sampling error in the treat-
ment effect estimates. Section  3 of the Additional file  1 
provides further detail on the procedures used for pre-
diction in our application analyses. We provide an over-
view here. For one part of our application analyses, we 
generated PPDs for trials of existing subgroups. Under 
full-pooling models, we directly used the single set of 
estimated meta-regression posteriors to map the effect 
on the surrogate to a predicted effect on the clinical end-
point. Under no-pooling and partial-pooling models, we 
used the appropriate subgroup-specific meta-regression 
posteriors estimated directly in model fitting (e.g., to 
make a prediction for a trial of subgroup i ∈ {1, . . . , I} 
we directly use a draw from the posterior for βi obtained 
through model fitting). In our second prediction exer-
cise we generated PPDs for trials of a new subgroup. 
Only the full-pooling and partial-pooling models were 
used as no-pooling models do not facilitate estimation of 
parameters which allow the surrogate to be applied in a 
new subgroup. Again, under full-pooling models we used 
the single set of estimated meta-regression posteriors, 
which induces the assumption that the new study is fully 
exchangeable with those used for model fitting despite 
that it pertains to a new subgroup. Under partial-pooling 
models we used draws from population subgroup distri-
butions (e.g., we draw a new βnew from N (β , σ 2

β ) ) to map 
the effect on the surrogate to the predicted clinical effect 
(that this process requires σβ , which again may be influ-
enced by the choice of priors in practical scenarios where 
the number of subgroups is small, is what motivated 
our interest in careful choosing of priors). This way, for 
all prediction exercises we were using subgroup-specific 
meta-regression posteriors for prediction, just that these 
were random draws from the population distribution 
when applying the surrogate to a new setting under the 
partial-pooling approach. When we are extrapolating the 
trial-level association to a new subgroup, drawing from 
the population distribution for each meta-regression 
posterior induces an additional degree of uncertainty 
into the prediction. This could be seen as a reasonable 
compromise between applying the fitted full-pooling 
model, which ignores that the new study represents a 

new scenario, and not applying the surrogate at all (i.e., 
the no-pooling approach). As discussed when intro-
ducing the PP-RE approach, the reason why we assume 
between-subgroup distributions for σe is to facilitate the 
possibility of drawing subgroup-specific residual stand-
ard deviations needed in prediction for a trial of a new 
subgroup.

Software
For simulation and applied analyses, we used the Uni-
versity of Utah Center for High Performance Comput-
ing Linux cluster. On the cluster, we used R version 4.0.3 
for data preparation and for generating model summa-
ries. The mcmc sampling algorithms for model fitting 
were implemented using RStan version 2.21.12 [15]. We 
utilized the Gelman-Rubin statistic to assess adequate 
convergence of chains and the effective sample size to 
evaluate whether there were sufficient mcmc draws to 
utilize certain posterior summaries such as tail per-
centiles (as well as additional visual summaries such as 
rank plots) [16, 17]. We landed on 10,000-20,000 mcmc 
iterations and 3 independent chains across all analyses. 
Finally, for the application analyses, the SAS NLMixed 
procedure was used to estimate treatment effects on the 
clinical and surrogate endpoints, standard errors, and 
within-study correlations within each study [18]. Exam-
ple RStan code (PP-RE model) and R code (for simulating 
data) is provided in Section 4 of Additional file 1.

Results
Simulation study results
Contrasting different random effects approaches 
under gaussian surrogate effects
Table  1 provides summaries of posterior distributions 
obtained from fitting models on simulation setups 1-4 
(V1 and V2). When there was no heterogeneity in the 
true meta-regression parameters across subgroups 
(Setup 1), the PP-RE model resulted in limited additional 
uncertainty in posteriors relative to the FP-RE model, and 
also resulted in negligible additional bias via the posterior 
medians. Across Setups 2-4, where the strength of the 
association between effects on the clinical and surrogate 
endpoint varied across subgroups, for any given meta-
regression parameter summarized, use of the FP-RE 
model naturally obscured such heterogeneity. The NP-RE 
and PP-RE models more adequately produced subgroup-
specific meta-regression posteriors that suggested het-
erogeneity in the quality of the surrogate, but in every 
case the PP-RE model produced more precise posteriors 
than that of the NP-RE model. Benefits were especially 
evident when focusing on posteriors for the meta-regres-
sion slope. While the PP-RE model typically resulted in 
a small degree of bias, between-subgroup heterogeneity 
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Table 1  Summary of analyses from simulation setups 1-4

Data Simulated: Gaussian True Surrogate Effects Non-Gaussian True Surrogate Effects

FP-RE Summary NP-RE Summary PP-RE Summary PP-RE Summary PP-FE Summary

Setup 1 (Truth)

     α1 (0) 0.00(-0.09,0.11) 0.02(-0.46,0.57) -0.01(-0.14,0.13) 0.00(-0.12,0.13) -0.05(-0.15,0.06)

     α2 (0) 0.00(-0.45,0.49) -0.01(-0.13,0.14) 0.00(-0.12,0.14) -0.05(-0.15,0.06)

     α3 (0) 0.01(-0.46,0.57) -0.01(-0.131,0.13) 0.01(-0.12,0.15) -0.05(-0.16,0.07)

     β1 (-0.45) -0.45(-0.63,-0.31) -0.49(-1.44,0.33) -0.44(-0.67,-0.24) -0.46(-0.68,-0.27) -0.35(-0.49,-0.22)

     β2 (-0.45) -0.46(-1.52,0.51) -0.45(-0.68,-0.25) -0.46(-0.69,-0.27) -0.35(-0.50,-0.22)

     β3 (-0.45) -0.47(-1.53,0.49) -0.44(-0.65,-0.25) -0.45(-0.67,-0.26) -0.35(-0.49,-0.21)

     σe1 (0.05) 0.06(0.02,0.14) 0.08(0.02,0.22) 0.06(0.01,0.17) 0.06(0.01,0.17) 0.07(0.01,0.18)

     σe2 (0.05) 0.08(0.02,0.22) 0.06(0.01,0.17) 0.07(0.01,0.17) 0.07(0.01,0.18)

     σe3 (0.05) 0.08(0.02,0.21) 0.06(0.01,0.16) 0.06(0.01,0.17) 0.07(0.01,0.18)

     R2 1 (0.95) 0.90(0.60,0.99) 0.80(0.20,0.99) 0.89(0.41,1.00) 0.91(0.49,1.00) 0.92(0.57,1.00)

     R2 2 (0.95) 0.78(0.23,0.98) 0.88(0.40,1.00) 0.90(0.48,1.00) 0.91(0.55,1.00)

     R2 3 (0.95) 0.80(0.23,0.98) 0.90(0.46,1.00) 0.90(0.48,1.00) 0.92(0.56,1.00)

Setup 2 (Truth)

     α1 (0) 0.00(-0.11,0.13) -0.01(-0.43,0.39) 0.01(-0.12,0.15) 0.01(-0.11,0.14) -0.02(-0.12,0.09)

     α2 (0) 0.01(-0.57,0.62) 0.01(-0.14,0.18) 0.01(-0.12,0.16) -0.03(-0.14,0.09)

     α3 (0) 0.03(-0.54,0.77) -0.02(-0.20,0.18) -0.02(-0.20,0.17) -0.09(-0.25,0.05)

     β1 (-0.25) 0.47(-0.70,-0.27) -0.25(-1.93,1.54) -0.32(-0.73,0.06) -0.33(-0.66,0.00) -0.24(-0.42,-0.05)

     β2 (-0.35) -0.40(-1.85,0.97) -0.40(-0.75,-0.09) -0.40(-0.72,-0.11) -0.28(-0.46,-0.11)

     β3 (-0.6) -0.65(-1.88,0.29) -0.57(-0.88,-0.30) -0.55(-0.85,-0.30) -0.42(-0.61,-0.24)

     σe1 (0.15) 0.13(0.06,0.22) 0.11(0.03,0.27) 0.10(0.02,0.23) 0.11(0.03,0.23) 0.11(0.03,0.24)

     σe2 (0.115) 0.09(0.03,0.24) 0.09(0.02,0.20) 0.10(0.02,0.22) 0.10(0.03,0.22)

     σe3 (0.06) 0.09(0.03,0.26) 0.08(0.01,0.21) 0.09(0.02,0.22) 0.10(0.02,0.22)

     R2 1 (0.35) 0.69(0.33,0.91) 0.45(0.02,0.93) 0.53(0.07,0.95) 0.59(0.10,0.95) 0.66(0.16,0.95)

     R2 1 (0.65) 0.61(0.07,0.96) 0.69(0.14,0.98) 0.71(0.17,0.97) 0.76(0.25,0.97)

     R2 3 (0.95) 0.84(0.29,0.99) 0.85(0.38,1.00) 0.84(0.37,0.99) 0.87(0.48,0.99)

Setup 3 (Truth)

     α1 (0) 0.01(-0.10,0.13) 0.02(-0.39,0.43) 0.03(-0.10,0.18) 0.01(-0.11,0.14) -0.02(-0.12,0.09)

     α2 (0) 0.02(-0.47,0.62) 0.00(-0.15,0.17) -0.01(-0.15,0.15) -0.07(-0.19,0.05)

     α3 (0) 0.05(-0.53,0.81) 0.00(-0.17,0.20) -0.01(-0.18,0.18) -0.09(-0.24,0.05)

     β1 (-0.25) -0.56(-0.80,-0.36) -0.33(-1.90,1.20) -0.40(-0.80,-0.03) -0.36(-0.71,-0.03) -0.25(-0.44,-0.06)

     β2 (-0.6) -0.65(-2.09,0.51) -0.59(-0.95,-0.31) -0.58(-0.91,-0.32) -0.42(-0.61,-0.24)

     β3 (-0.6) -0.68(-1.93,0.26) -0.60(-0.93,-0.35) -0.58(-0.87,-0.34) -0.43(-0.61,-0.26)

     σe1 (0.15) 0.11(0.05,0.20) 0.11(0.04,0.27) 0.10(0.02,0.23) 0.10(0.03,0.23) 0.11(0.03,0.24)

     σe2 (0.06) 0.09(0.03,0.25) 0.08(0.01,0.20) 0.09(0.01,0.21) 0.10(0.02,0.23)

     σe3 (0.06) 0.09(0.03,0.25) 0.08(0.01,0.20) 0.08(0.01,0.21) 0.09(0.02,0.22)

     R2 1 (0.35) 0.80(0.46,0.95) 0.51(0.04,0.94) 0.64(0.11,0.96) 0.64(0.12,0.96) 0.69(0.18,0.95)

     R2 1 (0.95) 0.81(0.20,0.99) 0.87(0.36,1.00) 0.88(0.41,1.00) 0.88(0.47,0.99)

     R2 3 (0.95) 0.86(0.29,0.99) 0.89(0.42,1.00) 0.87(0.43,0.99) 0.89(0.51,0.99)

Setup 4 (Truth)

     α1 (0) 0.01(-0.11,0.13) -0.01(-0.45,0.42) 0.01(-0.13,0.16) 0.01(-0.12,0.14) -0.01(-0.12,0.10)

     α2 (0) 0.00(-0.64,0.62) 0.01(-0.16,0.19) 0.02(-0.13,0.18) -0.01(-0.13,0.11)

     α3 (0) 0.02(-0.59,0.80) -0.03(-0.23,0.18) -0.03(-0.22,0.18) -0.09(-0.25,0.06)

     β1 (-0.25) -0.44(-0.68,-0.23) -0.22(-1.91,1.50) -0.31(-0.73,0.10 -0.31(-0.65,0.02) -0.23(-0.41,-0.04)

     β2 (-0.25) -0.26(-1.84,1.35) -0.31(-0.70,0.06) -0.33(-0.67,0.00) -0.23(-0.42,-0.04)

     β3 (-0.6) -0.64(-1.93,0.37) -0.55(-0.89,-0.25) -0.55(-0.85,-0.28) -0.41(-0.61,-0.23)

     σe1 (0.15) 0.15(0.08,0.24) 0.12(0.04,0.28) 0.11(0.03,0.23) 0.11(0.03,0.24) 0.12(0.04,0.24)

     σe2 (0.15) 0.12(0.04,0.27) 0.11(0.03,0.24) 0.12(0.03,0.24) 0.12(0.04,0.25)

     σe3 (0.06) 0.09(0.03,0.25) 0.09(0.02,0.22) 0.10(0.02,0.23) 0.11(0.02,0.23)
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was potentially more evident due to improved precision. 
Precision gains under the PP-RE over the NP-RE model 
were also observed in the sensitivity analyses considered 
(Tables  2 and 3 of Additional file  1), including where 
there was heterogeneity in subgroup sizes. There was 
a larger degree of pooling away from parameter values 
true for smaller subgroups under partial-pooling, but the 
PP-RE model still allowed for heterogeneity in posterior 
medians and 95% credible intervals to aid in understand-
ing variations in surrogate quality across subgroups. One 
potential drawback of all approaches considered was that 
R2 posterior medians appeared biased in every scenario 
evaluated, reflecting the challenge associated with accu-
rate estimation of R2 with limited data. The average pos-
terior median R2 under partial-pooling was more biased 
than under no-pooling in certain scenarios such as where 
the surrogate was weak, possibly due to information shar-
ing. The challenges associated with estimating R2 empha-
size why it is important to consider not only reporting R2 

point estimates but also credible intervals. The credible 
intervals under the PP-RE approach remained wide in 
subgroups where the surrogate was weak. Differences in 
model performance were also evident in evaluations of 
model-based prediction of treatment effects on the clini-
cal endpoint (Table 2). Coverage of true clinical effects by 
95% posterior prediction intervals was lower when using 
the FP-RE model even where meta-regression param-
eters were truly the same across subgroups. The NP-RE 
model resulted in highest coverage because of excessively 
wide prediction intervals, whereas prediction under the 
PP-RE model resulted in improved precision with ade-
quate coverage.

Contrasting fixed vs. random effects partial‑pooling models 
under non‑Gaussian surrogate effects
Where the true treatment effects on the surrogate were 
non-Gaussian, the PP-FE model resulted in downward 
bias in meta-regression intercept posteriors (e.g., via the 

Table 2  Posterior predictive comparisons on simulated data

V1 Setups where true surrogate effects are Gaussian, V2 Setups with Non-Gaussian true surrogate effects, SG “Subgroup.”, Cvg Coverage, RRnp Ratio of NP-RE prediction 
RMSE over PP-RE prediction RMSE, WRnp : Ratio of NP-RE average 95% PPD width to PP-RE average 95% PPD width, RRfe Ratio of PP-FE prediction RMSE over PP-RE 
prediction RMSE, WRfe Ratio of PP-FE average 95% PPD width to PP-RE average 95% PPD width

FP-RE NP-RE PP-RE PP-RE PP-FE

Cvg Cvg Cvg RRnp WRnp Cvg Cvg RRfe WRfe

Setup 1 (V1) Setup 1 (V2)

SG 1 0.99 1.00 1.00 1.813 2.685 SG 1 1.00 0.97 1.352 0.861

SG 2 0.99 1.00 1.00 1.549 3.027 SG 2 1.00 0.97 1.319 0.844

SG 3 0.99 1.00 1.00 1.773 3.246 SG 3 1.00 0.97 1.362 0.857

Setup 2 (V1) Setup 2 (V2)

SG 1 0.87 0.95 0.90 2.035 2.642 SG 1 0.90 0.90 0.912 1.041

SG 2 0.94 0.96 0.94 2.250 2.766 SG 2 0.94 0.93 0.937 1.078

SG 3 0.97 0.99 0.99 2.234 2.600 SG 3 0.99 0.91 1.584 1.057

Setup 3 (V1) Setup 3 (V2)

SG 1 0.79 0.95 0.89 1.892 2.492 SG 1 0.89 0.90 0.887 1.000

SG 2 1.00 1.00 0.99 1.772 2.668 SG 2 0.99 0.95 1.529 1.090

SG 3 0.99 0.99 0.99 1.925 2.726 SG 3 0.99 0.92 1.670 1.057

Setup 4 (V1) Setup 4 (V2)

SG 1 0.92 0.96 0.92 1.886 2.502 SG 1 0.92 0.91 0.923 1.116

SG 2 0.89 0.94 0.90 1.888 2.630 SG 2 0.90 0.90 0.881 1.046

SG 3 0.98 0.99 0.99 1.697 2.507 SG 3 0.99 0.92 1.592 1.112

Summaries include the posterior median and, in parentheses, the 95% credible interval, averaged across simulations

Data Simulated: Gaussian True Surrogate Effects Non-Gaussian True Surrogate Effects

FP-RE Summary NP-RE Summary PP-RE Summary PP-RE Summary PP-FE Summary

     R2 1 (0.35) 0.60(0.24,0.87) 0.47(0.03,0.93) 0.50(0.06,0.94) 0.56(0.08,0.94) 0.63(0.14,0.94)

     R2 1 (0.35) 0.47(0.03,0.94) 0.51(0.06,0.93) 0.55(0.07,0.94) 0.63(0.12,0.93)

     R2 3 (0.95) 0.84(0.28,0.99) 0.82(0.31,0.99) 0.82(0.34,0.99) 0.86(0.44,0.99)

Table 1  (continued)
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posterior median), whereas the PP-RE model either did 
not result in any bias or resulted in a lesser degree of bias. 
The PP-FE model also resulted in downward bias in the 
meta-regression slope posteriors (regression dilution 
bias) in subgroups where the surrogate was simulated to 
be moderate-to-strong. We hypothesize that this down-
ward bias was due to the absence of shrinkage of true 
treatment effects on the surrogate (the “x-axis” variable 
in the meta-regression) towards one another. Because no 
common distribution is assumed for true effects on the 
surrogate across studies, the true effects are likely to be 
more dispersed in contrast to use of the random effects 
model, where the Gaussian distributional assumption 
could result in pooling of true treatment effects on the 
surrogate across studies. Although the random effects 
model resulted in a small degree of upward bias in the 
meta-regression slope in subgroups where the surrogate 
was weak, the R2 posteriors were wider and their medi-
an’s lower than under the fixed effects model. This means 
that the risk of concluding a stronger surrogate than was 
true in reality was mitigated due to the less optimistic R2 
posteriors. The implications of these biases observed in 
meta-regression posteriors are also evidenced in sum-
maries of prediction in Table 2. Despite the use of fixed 
effects, coverage of the true treatment effect on the clini-
cal endpoint by 95% posterior predictive intervals under 
the PP-FE model was poorer than under the PP-RE 
model, to the largest extent in subgroups where the sur-
rogate was strongest, which is likely where prediction is 
of greatest interest.

Application analysis results
The primary goal of the application analysis was to com-
pare meta-regression posteriors and PPDs obtained after 
fitting the PP-RE model with different priors. However, we 
also note that Fig. 7 in the Additional file 1 indicates dif-
ferences in the meta-regression slope estimates under the 
PP-RE and PP-FE models from the analysis where models 
were fit to disease-defined subgroups. The discrepancy in 
the posterior median between the two models grew larger 
for subgroups with a stronger meta-regression slope 
under the PP-RE model (under the PP-RE model, medians 
were -0.25, -0.30, -0.35, whereas, under the PP-FE model, 
these were -0.27, -0.29, -0.29).

Table  3 summarizes meta-regression slope posteri-
ors from the application analyses (3 disease-defined 
subgroups, with 59 studies for model fitting in one 
analysis and 7 intervention-defined subgroups with 51 
studies used for model fitting in the other). Additional 
file 1: Tables 5 and 6 contain posterior summaries for the 
full set of meta-regression parameters from these analy-
ses. When there were three disease-defined subgroups, 
using increasingly narrow priors resulted not only in nar-
rower posteriors for between-subgroup standard devia-
tion parameters but also for the between-subgroup mean 
parameters (even when priors for between-subgroup 
means were left the same). However, priors could be nar-
rowed considerably before the within-subgroup posteri-
ors narrowed. In most cases, even the narrowest priors 
used did not meaningfully change the inference on sub-
group-specific posteriors. When there were 7 subgroups, 

Table 3  Application: results under the partial pooling random-effects model with different priors

Intervention subgroup names: DPP-4 Dipeptidyl peptidase 4 inhibitor, RASB Renin-angiotensin system blockers, CCB Calcium channel blockers, SGLT-2 Sodium-glucose 
Cotransporter-2 inhibitors, SD Standard deviation

Parameter (Subgroup, N Studies) Diffuse Priors Constrained Priors Set 1 Constrained Priors Set 2

Analysis: Cardiovascular Studies Left-Out (3 Subgroups in Model Fitting)

     Mean β -0.30(-0.85,0.2) -0.30(-0.68,0.02) -0.30(-0.61,-0.06)

     Between-Subgroup SD of β 0.15(0.01,1.53) 0.13(0.01,0.77) 0.12(0.01,0.55)

     β1 (CKD, 28) -0.25(-0.39,-0.13) -0.25(-0.38,-0.13) -0.25(-0.37,-0.13)

     β2 (Diabetes, 21) -0.30(-0.48,-0.13) -0.30(-0.48,-0.14) -0.30(-0.48,-0.15)

     β3 (Glomerular Diseases, 10) -0.35(-0.66,-0.16) -0.35(-0.66,-0.17) -0.35(-0.66,-0.18)

Analysis: Small Intervention Subgroups Left-Out (7 Subgroups in Model Fitting)

     Mean β -0.41(-0.75,-0.13) -0.41(-0.74,-0.13) -0.4(-0.68,-0.18)

     Between-Subgroup SD of β 0.19(0.02,0.73) 0.18(0.02,0.70) 0.15(0.01,0.47)

     β1 (Antiplatelets, 3) -0.39(-1.03,0.34) -0.39(-1.01,0.33) -0.39(-0.88,0.14)

     β2 (DPP-4, 3) -0.40(-1.04,0.16) -0.40(-1.01,0.14) -0.39(-0.89,0.04)

     β3 (Immunosuppressants, 9) -0.47(-0.92,-0.23) -0.47(-0.94,-0.24) -0.46(-0.87,-0.24)

     β4 (Modify Blood Pressure, 7) -0.45(-0.84,-0.18) -0.44(-0.83,-0.17) -0.43(-0.78,-0.18)

     β5 (RASB vs CCB, 4) -0.41(-0.81,-0.06) -0.41(-0.79,-0.06) -0.41(-0.75,-0.14)

     β6 (RASB vs Control, 21) -0.50(-0.82,-0.25) -0.49(-0.82,-0.24) -0.47(-0.75,-0.23)

     β7 (SGLT-2, 4) -0.25(-0.49,0.01) -0.25(-0.49,0.00) -0.27(-0.48,-0.07)
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Fig. 1  Posterior predictive median and 95% interval are summarized. FP-RE: Full-pooling random effects. PP-RE: Partial-pooling random effects. 
P1: Diffuse priors used in fitting the PP-RE model. P2: Constrained priors set 1 in fitting the PP-RE model. P3: Constrained priors set 2 (narrowest) 
in fitting the PP-RE model. Studies listed are described further in Additional file 1. The “ESG” (existing subgroup) studies were used for model fitting. 
The “NSG” (new subgroup) studies were left-out of model fitting
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Fig. 2  Posterior predictive median and 95% interval are summarized. FP-RE: Full-pooling random effects. PP-RE: Partial-pooling random effects. 
P1: Diffuse priors used in fitting the PP-RE model. P2: Constrained priors set 1 in fitting the PP-RE model. P3: Constrained priors set 2 (narrowest) 
in fitting the PP-RE model. Studies listed are described further in Additional file 1. The “ESG” (existing subgroup) studies were used for model fitting. 
The “NSG” (new subgroup) studies were left-out of model fitting
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narrower priors again resulted in equivalent or narrower 
posteriors for between-subgroup means and standard 
deviations, but to a lesser extent when compared to the 
analysis with fewer subgroups. Similarly, the use of nar-
rower priors resulted in little, if any change in the within-
subgroup posteriors under the options considered for 
intervention-defined subgroups.

Figures 1 and 2 display and illustrate the implications 
of the choice of priors on prediction for trials of a new 
subgroup or an existing subgroup. A subset of trials is 
displayed in the figures to be concise, and the remain-
ing results are displayed in Additional file 1: Tables 7-12. 
Firstly, consider the trials of novel subgroups. For every 
study, the PP-RE model resulted in wider PPDs than the 
FP-RE model. When there were fewer subgroups, pre-
dictive distributions for left-out studies were excessively 
and unrealistically wide when using completely diffuse 
priors under the PP-RE model. The use of constrained 
priors, especially those motivated by domain-specific 
reasoning (P3), resulted in PPDs which were narrowest 
among those obtained, but still wider than those under 
the FP-RE model with diffuse priors. Increasingly con-
strained priors resulted in more realistic uncertainty in 
HRs relative to the use of diffuse priors. When predict-
ing for a trial of a novel intervention class (Fig. 2), where 
more subgroups were available for model-fitting, PPDs 
were narrower under the PP-RE approach (contrast 
PPDs in Fig. 1 relative to Fig. 2). This could be because 
of improved inferential precision for parameters asso-
ciated with between-subgroup variability when more 
subgroups are present. These results indicate the PP-RE 
model may be more suitable for prediction to induce 
an appropriate degree of added uncertainty in predict-
ing a clinical effect in a trial meaningfully different than 
those used to evaluate the surrogate. However, these 
results also suggest that PPDs can be excessively wide 
due to overly diffuse and unrealistic priors and not due 
to the true quality of the surrogate or its applicability 
to a new setting. Next, when trials were of a subgroup 
available for model fitting, the summaries of PPDs under 
the PP-RE model were more robust to the choice of pri-
ors relative to prediction for studies of a new subgroup 
(even for subgroups with few trials). In our setting, pre-
dictive distributions were also similar in width under 
the PP-RE relative to FP-RE model (evidenced by the 
2.5th and 97.5th percentiles). The PP-RE model may thus 
increase accuracy and precision in prediction of clinical 
effects for future trials of existing subgroups over use of 
the FP-RE model by allowing subgroup-specific meta-
regression parameters.

Discussion
Trial-level surrogate endpoint evaluations are often per-
formed on collections of heterogeneous clinical trials. 
Standard methodology that yields estimates of a single 
set of meta-regression parameters may not be appropri-
ate when trials meaningfully differ across pre-specified 
subgroups, and may also provide unrealistic precision 
in prediction of clinical effects in new studies that differ 
from those used to evaluate the surrogate. In this paper, 
we explored a class of models we refer to as “partial-pool-
ing” models, where subgroup-specific meta-regressions 
are assumed, and yet between-subgroup distributions 
facilitate data adaptive information sharing across sub-
groups. Partial-pooling models provide a framework 
both for prediction of treatment effects on the clinical 
endpoint for a trial that meaningfully differs (is of a new 
subgroup) from those used for the surrogate evaluation 
itself and for prediction of future studies of an existing 
subgroup. There are various challenges in the implemen-
tation of a partial-pooling approach, such as the choice of 
priors and distribution for the true treatment effects on 
the surrogate. We conducted analyses to help guide such 
decision making.

Under the scenarios considered (e.g., unless there 
are a large number, exceeding at least 30, of large trials 
within a given subgroup), our analyses indicated that fit-
ting separate models for surrogate endpoint evaluation 
within subgroups (no-pooling) can result in excessive 
uncertainty in posteriors. We found that partial-pooling 
methods can be a practical solution with noteworthy 
benefits (we saw improved precision in posteriors with 
limited bias due to information sharing in our analyses). 
If interest is in inference for subgroup-specific meta-
regression posteriors, our results showed key differ-
ences in interpretations when using fixed versus random 
effects under the partial-pooling approach. In our analy-
ses, the partial-pooling fixed effect variant produced 
downward bias in the meta-regression slope in sub-
groups of trials where the surrogate was strong, which 
translated to more biased prediction. The partial-pool-
ing random effects approach did not produce such biases 
in subgroups where the surrogate was strong. We also 
did not see noteworthy biases under the partial-pooling 
random effects approach when the Gaussian distribu-
tional assumption of the true treatment effects on the 
surrogate was definitively violated.

A key theme of our results is that posterior distribu-
tions of the meta-regression parameters within each 
subgroup under the partial-pooling random effects 
model were robust to a degree of narrowing of priors 
on between-subgroup parameters. Similarly, inferences 
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which apply the meta-regressions fit under the partial 
pooling model to estimate the posterior predictive distri-
bution for the treatment effect on the clinical endpoint 
in a new trial were robust to the prior distributions when 
the new trial belonged to one of the same subgroups 
included when fitting the meta-regression. Conversely, 
however, inferences to a new trial which did not belong 
to one of the subgroups of the prior trials could be highly 
dependent on the prior distributions, especially for pri-
ors on the between subgroup standard deviations of the 
meta-regression parameters. Notably, when highly dif-
fuse priors were used, the posterior predictive distribu-
tions for the new trial exhibited very high dispersion, 
indicating poor ability to extend the relationship between 
the treatment effects on the surrogate and clinical end-
points from the previous trials to the new trial. The 
extent to which the choice of priors influenced dispersion 
of posterior predictive distributions for a trial of a new 
subgroup was greater when there were fewer subgroups 
used in model fitting (e.g., if there were 3 as opposed to 
7 subgroups, as in our analyses). This suggests that when 
fitting partial-pooling models, not only the use of overly 
constrained, but also the use of overly diffuse priors can 
unduly influence certain predictive analyses, and it is 
thus important to consider a strategy to identify more 
practical priors.

These quantitative findings are consistent with the 
general concept that the relationship between treat-
ment effects on the surrogate and clinical endpoints 
observed in previously conducted trials can be reason-
ably applied to a new trial if at least one of the follow-
ing three conditions hold: 1) there is strong evidence for 
a high-quality surrogate with a lack of heterogeneity in 
performance across a large number of subgroups rep-
resenting an exhaustive array of intervention types and 
disease sub-classifications; 2) the new trial can be viewed 
as a member of the same subgroups used to evaluate the 
surrogate; 3) subject matter knowledge is sufficiently 
strong to support informative prior distributions, which 
mitigate heterogeneity in the meta-regression parameters 
between subgroups. This third condition appears related 
to the stress regulatory agencies place on the strength 
of evidence for a strong biological relationship between 
the surrogate and clinical endpoints. If the new trial is 
evaluating a novel treatment or disease subtype which 
is fundamentally distinct from any of the previous sub-
groups of trials, and subject matter knowledge cannot 
rule out heterogeneity in the meta-regression param-
eters between subgroups, application of the relationship 
between the surrogate and clinical endpoints observed in 
the prior trials to the new trial is tenuous. Of course, pri-
ors which drive the applicability of the meta-regression 
for prediction to a trial of a new subgroup can be tuned 

with multiple considerations in mind. In one regard, even 
without strong subject matter knowledge, basic logic 
can be used to narrow priors to some degree (such as for 
the meta-regression intercept, a log hazard ratio in our 
case, which is a commonly used metric and need not be 
expected to vary excessively). On the other hand, priors 
could be further constrained if there is strong subject 
matter knowledge indicating to do so, ideally from multi-
ple stakeholders. Key is that the use of completely diffuse 
priors is likely to be highly impractical when employing 
partial-pooling models for surrogate evaluation, and the 
applicability of the surrogate should not depend on the 
excessive uncertainty imposed by the use of such priors 
as opposed to those that are realistic according to sound 
subject matter reasoning.

A noteworthy implication of our findings is that use of 
a partial-pooling model on a diverse collection of studies 
may be more useful than highly targeted surrogate evalu-
ations on small subsets of studies. For example, there 
have been many evaluations of surrogates such as tumor 
response or progression free survival for highly specific 
tumor types in cancer [19–22]. However, there may be 
insufficient data in such settings to truly infer the qual-
ity of the surrogate. Partial-pooling models (with appro-
priately defined priors) fit to data sets with more tumor 
types, for example, may yield more useful information 
than fitting separate models within the small subgroups.

There are potential limitations to our analyses and 
findings. The use of Bayesian methods for surrogate 
evaluation is computationally demanding and we thus 
considered a limited number of scenarios in our appli-
cation and simulation analyses. There may also be many 
additional distributions that could provide further bene-
fit over the Gaussian or fixed-effects approaches we con-
sidered. For example, Bujkiewicz et al. showed potential 
benefits of using a t-distribution for certain terms [8]. 
Other strategies to refine priors may also be appropriate 
in other disease settings. Our analyses and discussion are 
embedded within the context where we initiate the analy-
sis by assuming (through our priors) there may be some 
heterogeneity in the meta-regression across subgroups, 
but that priors on terms related to between-subgroup 
heterogeneity can be narrowed to some degree to ensure 
the inference is not unduly influenced by unrealistically 
wide priors. An alternative approach may be to use priors 
which, to some degree, induce the assumption that there 
is no between-subgroup heterogeneity in the quality of 
the surrogate to start the analysis, forcing the data to 
provide strong evidence for heterogeneity for the meta-
regression posteriors to differ at all across subgroups. 
For example, spike and slab priors could be considered in 
future work, if the use of such priors aligns with the ana-
lytical goals in a given surrogate evaluation.
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It is also important to note that there are many 
approaches to trial-level surrogate endpoint evaluation. 
For example, Buyse et al. have proposed joint models that 
can be fit in a single-stage analysis to simultaneously esti-
mate within and between-study surrogacy metrics [23]. 
While joint modeling strategies have a number of advan-
tages, their uptake appears less common than two-stage 
approaches in practice [9]. Other authors have also used 
network meta-regression strategies for surrogate endpoint 
evaluations on collections of heterogeneous studies [24]. 
Finally, within the context of evaluating whether there is 
heterogeneity in trial-level associations, alternative model 
structures may be useful depending on the ultimate sci-
entific question. For example, one might consider a single 
linear regression with interaction terms. One potential 
drawback to such an approach is that with increasing 
trial-level factors (e.g., subgroups), such models become 
increasingly complex, potentially over-parameterized, 
and may pose challenges for non-statisticians to interpret. 
On the other hand, an advantage of the partial-pooling 
approaches discussed is that these maintain the linear 
regression structure within subgroups, which is again an 
approach that is already familiar to many investigators.

Conclusions
The methods discussed in this paper are applicable to the 
two-stage approach often used to establish the trial-level 
validity of a surrogate endpoint. Because establishing 
trial-level surrogacy requires a collection of clinical trials, 
analysts are often confronted with limited data. A strat-
egy to overcome such data limitations is to incorporate a 
broad collection of studies with various disease and ther-
apy sub-categories. However, analyses on such data in, for 
example, chronic kidney disease has encouraged regula-
tory agencies to question whether surrogate performance 
varies across pre-specified and clinically motivated sub-
groups of trials defined by disease or intervention classes. 
Analyses requiring sub-dividing available trials into sub-
groups will only exacerbate issues associated with model 
fitting on small amounts of data. We performed analyses 
that showed that partial-pooling modeling approaches 
may improve the potential to infer the quality of the sur-
rogate within subgroups of trials even on limited data-
sets. However, our analyses also showed that even diffuse 
priors used for partial-pooling analyses can strongly 
influence the perceived quality of the surrogate as well 
as the ability to predict the treatment effect on the clini-
cal endpoint. We discussed strategies that can be used to 
constrain priors used for the analysis to obtain more real-
istic estimates of key parameters for surrogate endpoint 
evaluation. Ultimately, analyses of a surrogate endpoint 
could result in appropriately expanding the feasibility of 
trials in an entire disease area, or could lead to the use of 

an endpoint that is not ultimately useful for patients. Par-
tial-pooling models should be considered for surrogate 
endpoint evaluation on heterogeneous collections of tri-
als, but the choice of a given model and priors to imple-
ment the model should be handled rigorously.
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