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Abstract 

Background The primary treatment for patients with myocardial infarction (MI) is percutaneous coronary interven-
tion (PCI). Despite this, the incidence of major adverse cardiovascular events (MACEs) remains a significant concern. 
Our study seeks to optimize PCI predictive modeling by employing an ensemble learning approach to identify 
the most effective combination of predictive variables.

Methods and results We conducted a retrospective, non-interventional analysis of MI patient data from 2018 
to 2021, focusing on those who underwent PCI. Our principal metric was the occurrence of 1-year postoperative 
MACEs. Variable selection was performed using lasso regression, and predictive models were developed using 
the Super Learner (SL) algorithm. Model performance was appraised by the area under the receiver operating 
characteristic curve (AUC) and the average precision (AP) score. Our cohort included 3,880 PCI patients, with 475 
(12.2%) experiencing MACEs within one year. The SL model exhibited superior discriminative performance, achiev-
ing a validated AUC of 0.982 and an AP of 0.971, which markedly surpassed the traditional logistic regression models 
(AUC: 0.826, AP: 0.626) in the test cohort. Thirteen variables were significantly associated with the occurrence of 1-year 
MACEs.

Conclusion Implementing the Super Learner algorithm has substantially enhanced the predictive accuracy 
for the risk of MACEs in MI patients. This advancement presents a promising tool for clinicians to craft individualized, 
data-driven interventions to better patient outcomes.

Keywords Ensemble learning, Super Learner, Myocardial infarction, Percutaneous coronary intervention, Major 
adverse cardiovascular events
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Introduction
Percutaneous coronary intervention(PCI) has been sug-
gested to be the primary treatment for patients with 
myocardial infarction [1–3], and its technical means 
have become increasingly mature [4]. Despite extensive 
progress in the field of interventional therapy, the inci-
dence of major adverse cardiovascular events (MACEs) 
in patients with acute myocardial infarction (AMI) is still 
high [5]. A retrospective study of 15,009 patients with 
AMI showed that approximately 5.9% of patients with 
AMI developed MACEs [6]. However, PCI is still accom-
panied by various complications, such as bleeding, reflux, 
and thrombosis [7]. This will not only cause the failure 
of PCI to treat the original diseases, but may also lead to 
re-occurrence of myocardial infarction(MI) and death 
and other serious consequences. As such, tools available 
to assist clinicians in predicting events before they occur 
have vital utility in managing the health of MI patients.

At the same time, with the gradual improvement of the 
hospital information management system, the informa-
tion platform of the hospital has formed a large amount 
of real world data. Real world data is defined as data 
relating to patient health status and/or the delivery of 
healthcare routinely collected from a variety of sources 
[8]. Martin Anderson further assessed the similarities 
between clinical trials and the real world population by 
comparing clinical trials with real world data for com-
parative analysis of peak inspiratory flow rates in patients 
with COPD [9].

Despite the continuous improvement in the quantity 
and quality of clinical patient data, the current status of 
research on prognosis outcome prediction of PCI for 
patients with myocardial infarction is still not optimis-
tic. Almost all PCI prediction models are based on single 
models such as Cox regression and artificial neural net-
work analysis, and validation is generally limited. A Japa-
nese study screened out seven risk factors of acute kidney 
injury in patients after PCI by Lasso and SHAP methods, 
and applied the light GBM and logistic regression to con-
struct prediction models, while the AUC of light GBM 
and logistic regression were 0.772 and 0.755 respectively 
[10]. Jacob A Doll adopted six machine learning methods, 
but the fitting results of each model were uneven [11]. 
As a result, another part of machine learning (ensemble 
learning) arises at the historic moment. Ensemble learn-
ing trains multiple machine learners through a certain 
combination strategy, and finally obtains a model with 
stronger learning ability [12]. Up to now, ensemble learn-
ing in machine learning [13–16] has become a priority in 
the establishment of prediction models based on PCI.

Among them, Super Learner(SL) algorithm [17] pro-
posed by van der Laan integrates and learns multiple 
classical models such as random forest, artificial neural 

network and support vector machine by virtue of stack 
generalization principle and ensures the stability of the 
prediction model through cross validation. Compared 
with some single and emsemble prediction models, its 
risk prediction ability and generalization ability are sig-
nificantly improved [18]. Multiple studies have shown 
that the predictive ability of the SL model ultimately 
formed in the fields of postpartum infection, disease 
onset and emotional disorders is significantly superior to 
the single model [19–21]. In addition, Super Learner has 
performed well in disease burden estimation in epidemi-
ology [22].

Therefore, we constructed an ensemble learning model 
for PCI prognosis by collecting real world data of patients 
after PCI and screening out the risk factors that affect the 
incidence of MACEs after PCI by using Super Learner. 
The present study was to to explore the best model com-
bination that accords with the prognosis of PCI and vali-
date a Super Learner prediction model to predict risk of 
1-year MACEs after percutaneous coronary intervention 
in patients with MI.

Materials and methods
This study conformed to the TRIPOID(Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis or Diagnosis) reporting guidelines [23].

Source of data
The research data were retrospectively collected from 
a large comprehensive medical institution( the Sec-
ond Affiliated Hospital of Nanchang University) by two 
researchers. The relevant information of the patients 
(general information, medical history, blood test, and 
PCI related information) was obtained from the Hospital 
Management Information System (HIS).

Participants
All patients who met the criteria of PCI and underwent 
PCI for MI were included from January 2018 to Decem-
ber 2021. The classification criteria for disease diagno-
sis were based on ICD-10 classification. The surgical 
indications of PCI include non-ST-segment elevation 
myocardial infarction, and acute ST-segment elevation 
myocardial infarction [24]. Patients with incomplete 
medical records, a history of PCI treatment or complica-
tions due to other heart conditions were excluded [25].

Outcome
The primary outcome was 1-year MACEs. MACEs [26] 
mainly includes cardiac death, myocardial infarction, 
angina pectoris attack, heart failure, revascularization, 
malignant arrhythmia, stent thrombosis, etc. MACEs 
were obtained through follow-up by trained investigators.
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Predictor characteristics
Age, sex, Body Mass Index(BMI), pulse(The number of 
arterial beats per minute in the patient at rest), Killip 
classification, Previous disease (hypertension, hyperlipi-
demia, diabetes, renal insufficiency, pulmonary infec-
tion), systolic and diastolic blood pressure, smoking, 
ETOH abuse, family medical history (diabetes, hyperten-
sion, coronary heart disease), number of hospitalizations, 
number of diseased coronary arteries, electrocardiogram 
(sinus rhythm, atrial fibrillation, pacing rhythm, high or 
III degree atrioventricular block, ST segment changes, 
complete left bundle branch block, complete right bun-
dle branch block, abnormal Q wave, left ventricular high 
voltage, and T-wave change), blood test (B-type natriu-
retic peptide(BNP), aspartate transaminase(AST), cre-
atine kinase(CK), creatine kinase isoenzyme(CKMB), 
serum creatinine(Scr), estimated glomerular filtra-
tion rate(eGFR), and potassium(K)), vascular stenosis 
degree (left main shaft(LMA), left anterior descending 
branch(LAD), left circumflex branch(LCx), and right 
crown(RCA)), thrombolysis in myocardial infarction 
(TIMI) blood flow classification (LMA, LAD, LCx, and 
RCA), PCI information (cardiac arrest, time from onset 
to PCI, intervention approach, surgical method, and 
number of stents implanted) were included in the study 
as explanatory variables. The index information comes 
from the hospital information system and is obtained by 
professional clinicians.

Data analysis and sample size were performed using R 
software version 4.2.1 (R Foundation for Statistical Com-
puting, Vienna, Austria). The missing values of continu-
ous variables were filled by predictive mean matching, 
while the classified variables were filled by classification 
regression tree method. The sample size is calculated by 
using the pmsampsize function in R. Descriptive statis-
tics were presented as median and quartile spacing or 
number and percentages for continuous and categorical 
variables, respectively.

Model building and validation
Super Learner [17] is an estimator based on loss func-
tion, which combines multiple parametric, semi-par-
ametric models or other appropriate models through 
multi-fold cross-validation. First, Super Learner auto-
matically selects the function form of the initial candi-
date prediction model according to the provided data, 
and uses the loss function (mean square error, MSE) 
to evaluate the candidate model and the combination 
model. At the same time, different weights are given to 
each model through the coefficients to obtain an optimal 
combination model. Super Learner [27] includes multiple 
models, such as artificial neural network [28], recursive 

partition tree [29], support vector machine [30], ran-
dom forest [31], extreme random tree [32], Xgboost [33], 
generalized additive model [34] and gradient boosting 
machines(gbm) [35], etc.

We had included the following kinds of algorithms in 
the SL model: Classification and Expression Training 
(caret) [36], RandomForest, conditional inference trees 
(cforest), multivariate adaptive regression splines (earth), 
generalized linear model (glm), Generalized addi-
tive model (gam), AIC stepwise regression (step), ridge 
regression (ridge), regularization regression (glmnet), 
Xgboost algorithm, bagging algorithm (ipredbagg), gradi-
ent boosting machines(gbm), non-negative least squares 
regression (nnls), support vector machine (svm), linear 
regression model (lm).

The model structure was further simplified by screen-
ing with lasso regression variables(Eliminate the variables 
with coefficient of 0 in the model), and the training set 
and test set were divided according to the proportion of 
75% [37]. The Super Learner models with different com-
binations were trained based on the fivefold cross vali-
dation and the ROC curve and PR curve were drawn for 
model evaluation. The importance of explanatory vari-
ables was calculated by the MSE of the model after the 
explanatory variables were eliminated one by one (Fig. 1).

Results
Patients’ characteristics
We collected 4167 patients after PCI, excluding 287 
patients who lost follow-up, and finally collected 3,880 
patients who underwent PCI. Characteristics of patients 
are presented in Table  1: the follow-up patients with 
1-year MACEs accounted for 12.2%, with age of 65 (57 to 
72)years. Male patients numbered 2862 (73.8%) and a few 
suffered from hyperlipidemia (28.8%), diabetes (29.7%) 
and renal insufficiency (13.5%). Some patients had the 
habit of smoking (34.1%) and ETOH abuse (24.0%). 
There were fewer patients with family history. The results 
of electrocardiogram(ECG) showed that 95.4% of the 
patients had sinus rhythm, and most of them had Killip 
II (45.7%) and III (38.9%). In the 1-year MACEs group, 
patients had a higher proportion of diabetes and abnor-
mal Q wave, a lower proportion of smoking, more dis-
eased coronary artery branches and number of implanted 
stents, higher levels of BNP and Cre, and lower level of 
eGFR.

Prediction model development
Variable and model selection
With 1-year MACEs as outcome variables, variables 
were included in lasso regression, and 13 variables that 
affected the outcome were screened out and included in 
the SL model. Since the proportion of outcome variable 
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was too small and belonged to unbalanced data [38], the 
data were subjected to over-sampling processing, and 
the sample size finally included in the model was 5000 
cases. Then the training set (n = 3751) and the test set 
(n = 1249) were randomly divided, and different hybrid 
models (Model 1: caret, RandomForest, cforest, earth; 
Model 2: glm, gam, and step; Model 3: ridge, glmnet; 
Model 4: Xgboost, ipredbagg, gbm, and Model 5: nnls, 
svm, and lm). The five models were trained one by one 
through the training set. The cross-validation risks and 
confidence intervals of the five models are shown in 
Fig. 2. The models with nonzero coefficients in Model 1 
are RandomForest (coef = 0.173) and caret (coef = 0.827). 
The models with nonzero coefficients in model 2 were 
gam (coef = 0.618) and step(coef = 0.382), the model with 
nonzero coefficients in model 3 were ridge (coef = 0.622) 
and glmnet(coef = 0.378), the models with nonzero coeffi-
cients in model 4 was only Xgboost, and the models with 
nonzero coefficients in model 5 were nnls (coef = 0.141), 
svm (coef = 0.859).

Model performance
According to the representation of the training set on 
each hybrid model, two ensemble models were estab-
lished. Em1 and Em2 were respectively the single model 
combination with the highest coefficient (caret, gam, 
ridge, Xgboost and svm) and nonzero coefficient (Ran-
domForest, caret, gam, step, ridge, glmnet, Xgboost, 
nnls and svm). The specific single models included in 
the ensemble model are shown in Table 2. The predic-
tive abilities of the four ensemble models were tested 
on the test set and the ROC and PR plots were drawn. 

The results showed that all the models performed 
well on the test set, with AUC ranging from 0.826 to 
0.982, and AP ranging from 0.626 to 0.971. Em1 and 
Em2 showed the best performance (AUC:0.982 (95% 
CI: 0.975–0.989) and AP:0.971(95% CI: 0.947–0.994)), 
which was significantly higher than that of logis-
tic regression (AUC:0.826 (95% CI: 0.804–0.848)and 
AP:0.626(95% CI: 0.602–0.650)) (Fig. 3). The confusion 
matrix results showed that Em1 and Em2 had the same 
accuracy(0.922, 95% CI: 0.906–0.937), the sensitivity of 
Em1 was the highest (0.907) and the specificity of Em2 
was the highest (0.957).In addition, the Kappa of Em1 
and Em2 both were both above 0.8.

Variable importance
The importance of each included variable was calculated 
and sorted by eliminating the variables one by one. For 
Em1, the most important factors were the number of 
hospitalizations(1.43% MSE difference), number of dis-
eased coronary artery(0.24% MSE difference), BNP(0.23% 
MSE difference), Killip(0.18% MSE difference), and car-
diac arrest(0.17% MSE difference) (Fig.  4). Both sets of 
models considered that the number of hospitalizations 
is the most important predictor(MSE > 1). It showed that 
the number of hospitalizations is the most influential fac-
tor in the occurrence of MACEs after PCI. The number 
of diseased coronary artery, Killip, and cardiac arrest 
were positively correlated with the predicted value of 
1-year MACEs. And the number of hospitalizations and 
BNP were negatively correlated with the prediction of 
1-year MACEs.

Fig. 1 Workflow diagram
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Table 1 Baseline characteristics

Variable Total
(n = 3880)

1-year MACEs
(n = 475)

nonMACEs
(n = 3405)

Age(Years), median(IQR) 65(57 to 72) 66(59 to 73) 65(57 to 72)

Sex(male), n(%) 2862(73.8) 364(76.6) 2498(73.4)

Previous disease, n(%)

 Hypertension 2220(57.2) 292(61.5) 1928(56.6)

 Hyperlipidemia 1117(28.8) 127(26.7) 990(29.1)

 Diabetes 1151(29.7) 165(34.7) 986(29.0)*

 Renal insufficiency 523(13.5) 78(16.4) 445(13.1)

 Pulmonary infection 353(9.1) 59(12.4) 294(8.6)

Smoking,n(%) 1324(34.1) 160(33.7) 1164(34.2)*

ETOH abuse,n(%) 933(24.0) 113(23.8) 820(24.1)

Family medical history, n(%)

 Diabetes 83(2.1) 10(2.1) 73(2.1)

 Hypertension 161(4.1) 18(3.8) 143(4.2)

 Coronary heart disease 71(1.8) 8(1.7) 63(1.9)

Electrocardiogram, n(%)

 Sinus rhythm 3701(95.4) 452(95.2) 3249(95.4)

 Atrial fibrillation 172(4.4) 22(4.6) 150(4.4)

 Pacing rhythm 374(9.6) 47(9.9) 327(9.6)

 High or III degree atrioventricular block 76(2.0) 11(2.3) 65(1.9)

 ST segment change 1623(41.8) 198(41.7) 1425(41.9)

 Complete left bundle branch block 60(1.5) 8(1.7) 52(1.5)

 Complete right bundle branch block 225(5.8) 31(6.5) 194(5.7)

 Abnormal Q wave 1058(27.3) 133(28.0) 925(27.2)*

 Left ventricular high voltage 545(14.0) 71(14.9) 474(13.9)

 T-wave alternans 1131(29.1) 143(30.1) 988(29.0)

Killip classification, n(%)

 I 249(6.4) 27(5.7) 222(6.5)

 II 1772(45.7) 219(46.1) 1553(45.6)

 III 1508(38.9) 197(41.5) 1311(38.5)

 IV 154(4.0) 19(4.0) 135(4.0)

Number of hospitalizations, median(IQR) 2(2 to 3) 2(2 to 3) 2(2 to 3)

Number of diseased coronary arteries, median(IQR) 2(2 to 3) 3(2 to 3) 2(2 to 3)*

BMI(kg/m2), median(IQR) 23.9(22.0 to 25.7) 23.8(21.9 to 25.7) 23.9(22.0 to 25.7)

Pulse(bpm), median(IQR) 87(80 to 94) 88(79 to 94) 87(80 to 94)

SBP(mmHg), median(IQR) 129(115 to 145) 128(115 to 145) 129(115 to 145)

DBP(mmHg), median(IQR) 70(63 to 77) 70(63 to 77) 70(63 to 77)

Blood test, median(IQR)

 BNP(pg/mL) 150.3 (50.0 to 445.7) 223.7(75.6 to 591.9) 142.9(48.4 to 423.3)*

 AST(U/L) 28.3(21.2 to 54.1) 27.6(21.1to 50.8) 28.4(21.2 to 54.2)

 CK(U/L) 126.5(82.0 to 317.9) 127.1(80.5 to 376.9) 126.5(82.3 to 315.2)

 CKMB(U/L) 19.8(13.7 to 39.9) 19.7(13.5 to 41.0) 19.8(13.7 to 39.7)

 Cre(μmoI/L) 81.8(68.6 to 99.7) 87.2(71.8 to 106.3) 81.4(68.1 to 98.7)*

 eGFR(ml/ (min × 1.73m2)) 82.4(65.1 to 99.0) 76.3(59.4 to 95.8) 83.1(65.8 to 99.5)*

 Scr(mg/dL) 66.9(48.0 to 87.5) 61.5(42.7 to 76.0) 67.8(48.7 to 88.7)

 K(mmol/L) 3.9(3.6 to 4.2) 3.9(3.7 to 4.2) 3.9(3.6 to 4.2)

PCI surgery information,n(%)

 Cardiac arrest 58(1.5) 11(2.3) 47(1.4)

 Time from onset to PCI

  < 3 h 189(4.9) 23(4.8) 166(4.9)
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Table 1 (continued)

Variable Total
(n = 3880)

1-year MACEs
(n = 475)

nonMACEs
(n = 3405)

  3-6 h 202(5.2) 25(5.3) 177(5.2)

  6-9 h 362(9.3) 56(11.8) 306(9.0)

  9-12 h 359(9.3) 45(9.5) 314(9.2)

  > 12 h 2630(67.8) 301(63.4) 2329(68.4)

 Intervention approach

  Femoral artery 178(4.6) 34(7.2) 144(4.2)

  Radial artery 3676(94.7) 436(91.8) 3240(95.2)

  Ulnar artery 26(0.7) 5(1.1) 21(0.6)

 Surgical method

  Thrombus aspiration 44(1.1) 8(1.7) 36(1.1)

  PTCA 3595(92.7) 445(93.7) 3150(92.5)

  Stent placement 241(6.2) 22(4.6) 219(6.4)

 Number of stents implanted 2(1 to 2) 2(1 to 3) 1(1 to 2)*
* P-value < 0.05

Fig. 2 Cross validation risk map of training model (n = 3751)

Table 2 Basic learning algorithm contained in each integration model (n = 3751)

Model Ensemble 1
(Em1)

Ensemble 2
(Em2

Logistic

RandomForest X √ X
Classification and Expression Training (caret) √ √ X
Generalized additive model (gam) √ √ X
AIC stepwise regression (step) X √ X
Ridge regression √ √ X
Regularization regression (glmnet) X √ X
Xgboost √ √ X
Non-negative least squares regression (nnls) X √ X
Support vector machine (svm) √ √ X
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Discussion
The present study used a large population-based clinical 
database and machine learning with ensemble learning. 
Our results showed that 12.2% of the follow-up patients 
with PCI developed MACEs in a year.We also found that 
the most appropriate and simplest model combination 
for PCI prognosis is Em1 (caret, gam, ridge, Xgboost and 
svm). The SL predictive model established for MACEs 
in a year after PCI showed good performance (AUC: 

0.982, AP: 0.971).The model relied on the integration of 
multiple models and used real world data from hospital 
systems.

In fact, 1-year MACEs has become a common index to 
evaluate the prognosis of PCI. The definition of MACEs 
includes stent thrombosis, cardiac death, myocardial 
infarction, and all-cause death [39]. Obviously, compared 
with the simple postoperative mortality and readmis-
sion rate, MACEs include most of the adverse prognosis 

Fig. 3 ROC and PR of ensemble model (n = 1249)

Fig. 4 Importance ranking of Em1 variables (A grey bar indicates a positive correlation and black indicates a negative correlation 
with the SL-predicted score)
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of patients with MI after PCI, which is very important 
to evaluate the surgical treatment. Several studies [39, 
40] have shown that 1-year MACEs is significantly more 
accurate in evaluating the prognosis of patients with PCI 
than other indicators. For this reason, the present study 
aims to develop a SL model to explore the related risk fac-
tors for 1-year MACEs after PCI. Our model ultimately 
included 3880 patients, of which 475 (12.2%) developed 
MACEs within 1 year. The incidence of 1-year MACEs is 
similar to data recently in other study [41].

Various machine learning models have been applied to 
predict MACEs in the prognosis studies of PCI. A retro-
spective cohort study from New York used the adjusted 
Cox regression model to assess the effect of high-sen-
sitivity C-reactive protein on MACEs after PCI [42]. 
Another prospective study in China compared and ana-
lyzed six different models (svm, decision tree, Random-
Forest, gradient-based decision tree, neural network, and 
logistic regression) for predicting the long-term progno-
sis of PCI [43]. Besides, a prediction model based on an 
artificial neural network showed that the accuracy in the 
test set was more than 80% [44]. Different models have 
different effects on predicting the prognosis of PCI and 
have their own advantages and disadvantages. Ensemble 
learning combines the advantages of each single model 
with the hybrid learning of a single model, thus effec-
tively improving the accuracy and applicability of the 
prediction model. Multiple studies had shown that an 
ensemble machine learning model is often superior to 
a single prediction model [45, 46]. And Super Learner 
belongs to stacking generalization in integration method, 
that is, combining several different prediction model 
algorithms into an integrated model, and then using 
V-fold cross validation to construct the optimal weighted 
combination of prediction from the candidate algorithm 
library, thus improving the prediction accuracy of the 
final model [47]. In fact, some studies have confirmed 
that Super Learner performs well in both survival predic-
tion [48] and disease severity prediction [49]. Compared 
with some models related to the prognosis of PCI [13–
16], our research found that the most suitable combina-
tion of PCI prognosis prediction models mainly includes 
caret, gam, ridge, Xgboost and svm. And compared with 
the traditional logistic regression model, the predictive 
performance of that ensemble learning model in the test 
set is sufficient to indicate the application value of the 
Super Learner(AUC:0.982 (95% CI: 0.975–0.989) and 
AP:0.971(95% CI: 0.947–0.994)).

Our study determined that the number of hospitali-
zations was an important risk factor for MACEs after 
PCI. Our findings align with Sinjini, which observed a 
relationship between the number of hospitalizations 
and the occurrence of heart disease after PCI [50]. The 

reasons for such an association are likely multifacto-
rial. May be one or more hospitalizations before cardiac 
problem treatment due to different diseases, and these 
previous disease histories also cause changes in patients’ 
health conditions and increase the recurrence rate of car-
diac problems after discharge, thus increasing the risk of 
readmission [51–53]. In addition, Grace Dibben summa-
rized that with the increase in the number of hospitali-
zations, the exercise time of patients with heart disease 
decreased, resulting in an increased risk of myocardial 
infarction and greatly improved all-cause hospitalization 
and small increase in all-cause mortality [54].

BNP has also been found to be a risk factor for the 
prognosis of PCI. The conclusions of our study are con-
sistent with those of many studies [55–59]. As a hor-
mone secreted by the heart, BNP has been proved to 
have multiple effects. In the kidney, they increase glo-
merular filtration and inhibit sodium reabsorption, caus-
ing natriuresis and diuresis. For cardiovascular, BNP 
can relax vascular smooth muscle, causing arterial and 
venous dilatation, and resulting in decreased blood pres-
sure and ventricular preload. Moreover, a meta-analysis 
confirmed the predictive power of BNP for postoperative 
major adverse cardiac events. And the heart risk index is 
remarkably improved after the BNP index is increased 
[60]. A clinical randomized controlled trial of patients 
who successfully underwent revascularization showed 
that compared with placebo, patients who received BNP 
injection and had a baseline left ventricular ejection frac-
tion of < 40% tended to reduce the size of left ventricular 
infarction [61]. In addition, compared with conventional 
risk factors and other markers of arterial compliance, 
inflammation and autonomic nerve function, BNP has a 
higher value in predicting the outcomes of patients with 
altered risk of coronary artery disease, and is more capa-
ble of independently identifying patients with slightly 
impaired cardiac function [62].

Compared with the previous study [63], we also found 
an additional correlation between the number of diseased 
coronary artery and the occurrence of MACEs. In fact, as 
early as the twentieth century, X Bosch have proved that 
patients with myocardial infarction with more diseased 
coronary arteries are more likely to have early ischemia 
[64]. However, for patients undergoing percutaneous 
transluminal coronary angioplasty, the number of dis-
eased coronary segments with stenosis greater than 70% 
is the most important parameter affecting the outcome of 
patients [65]. Instead, several studies [66] have not con-
firmed the relationship between the number of diseased 
coronary arteries and cardiovascular adverse events. We 
believe that there may be several reasons. First, this rand-
omized trial included patients with multi-vessel coronary 
artery disease and patients with ST-segment elevation 
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myocardial infarction, and did not analyze the number of 
diseased coronary artery. However, the patients included 
in our study were patients with myocardial infarction. 
Patient-to-patient comparability may be greater by col-
lecting the number of diseased coronary arteries for 
analytical comparison. Second, there are differences 
in outcome indicators for comparison. The prognos-
tic outcome of our study was 1-year MACEs, while the 
main cardiovascular and cerebrovascular adverse events 
(MACCE) in this randomized controlled trial were 
collected.

The main advantages of this study lie in that the patient 
data were obtained from the medical record system of 
medical institutions, while the prediction model con-
structed based on the real world data could be better 
applied to clinical practice. Compared with randomized 
controlled trials with more stringent inclusion and exclu-
sion criteria, clinical evidence formed from real world 
data can explore the disease characteristics in the real 
diagnosis and treatment environment, understand the 
patient size, disease burden, clinical characteristics and 
treatment mode in the real target population, and pro-
vide important evidence for the evaluation of the clini-
cal value of the prediction model. Therefore, compared 
with the research conducted by Shi B et  al [67], our 
research results are more suitable for scoring construc-
tion in the Asian population. In addition, another benefit 
of this study is the reporting that followed the TRIPOID 
statement.

Some limitations should be mentioned. First, the col-
lection of case data of the study is conducted in a medical 
institution with extensive experience in PCI treatment. 
Although Super Learner allows the model to establish 
internal verification and conduct five-fold cross-verifica-
tion, the results of this research still lack external verifica-
tion. Second, most of the variables included in the study 
were pre-PCI examination data, and no detailed analy-
sis of post-PCI examination data was conducted and 
included in the study. Whether the changes in the val-
ues of post-PCI examination data have an impact on the 
occurrence of 1-year MACEs remains to be discussed. 
Finally, although Super Learner improves the prediction 
performance of the prediction model, class-imbalance 
data and fewer observed events remain a limitation of 
this study. Therefore, a larger scale verification research 
should be carried out in the future to ensure the univer-
sality and stability of the algorithm.

Conclusions
In conclusion, our study provide evidence of improved 
MACEs risk prediction and classification associated 
with the Super Learner algorithm in patients with 

MI, also highlighting the potential value of ensemble 
machine learning algorithms to improve risk predic-
tion tools. These tools have the potential to aid cli-
nicians to develop targeted interventions that may 
prevent an unnecessary MACEs.
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