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Abstract 

Background  In recent years, the use of non- and semi-parametric models which estimate hazard ratios for analysing 
time-to-event outcomes is continuously criticized in terms of interpretation, technical implementation, and flexibility. 
Hazard ratios in particular are critically discussed for their misleading interpretation as relative risks and their non-
collapsibility. Additive hazard models do not have these drawbacks but are rarely used because they assume a non- 
or semi-parametric additive hazard which renders computation and interpretation complicated.

Methods  As a remedy, we propose a new parametric additive hazard model that allows results to be reported 
on the original time rather than on the hazard scale. Being an essentially parametric model, survival, hazard and prob-
ability density functions are directly available. Parameter estimation is straightforward by maximizing the log-likeli-
hood function.

Results  Applying the model to different parametric distributions in a simulation study and in an exemplary applica-
tion using data from a study investigating medical care to lung cancer patients, we show that the approach works 
well in practice.

Conclusions  Our proposed parametric additive hazard model can serve as a powerful tool to analyze time-to-event 
outcomes due to its simple interpretation, flexibility and facilitated parameter estimation.

Keywords  Additive hazard, Parametric modeling, Survival analysis, Time-to-event model

Background
Regression models for time-to-event outcomes are pref-
erentially fitted by the proportional hazard model [9]. 
This is surprising because the hazard ratio, which is the 
generic effect estimate of that model, has been repeatedly 

criticized in recent years. Most relevant points of con-
cern were that the hazard ratio (i) is interpretable only 
when mistaken as a relative risk [25], (ii) has a built-in 
selection or left truncation bias even in randomized trials 
[2, 14, 24], and (iii) is non-collapsible [12], meaning that 
adjusting for a covariate that is associated with the event 
will in general change the hazard ratio, even if this covar-
iate is not associated with the exposure. To conquer these 
shortcomings, parametric survival models have been rec-
ommended as they are simpler, more informative, more 
robust, and have hazard, survival and probability density 
function directly available [18, 21].

A hazard-based model that does not suffer from the 
above mentioned problems is the additive hazard model 
introduced by Aalen [1]. Results from additive hazard 
models can be translated to a relative survival scale which 
is, for example, routinely used in cancer epidemiology 
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when a cohort of cancer patients is compared to the gen-
eral population in terms of expected survival [11]. More-
over, recent works showed that parameters of the additive 
hazard model do not suffer from non-collapsibility [19], 
at least when defined in continuous time [23]. How-
ever, the Aalen model is rarely used in applied research 
because it assumes a non-parametric hazard as well as 
time-dependent covariates. Of course, these properties 
give large flexibility in modeling, but also complicate 
parameter estimation considerably. In addition, Bradburn 
et  al. [4] state that “[...] the model coefficients are not 
easy to understand, and as they change repeatedly over 
time, can offer no single quantifiable effect size”. As a par-
tial solution for that problem, Lin et al. [17] proposed an 
additive hazard model for (constant,) time-independent 
covariates, but still use a semi-parametric hazard which 
may require lengthy computations for some statistical 
standard software [22].

As a remedy, in this article we combine the additive 
hazard model with time-independent (, i.e., constant) 
covariates and a parametric assumption for the base-
line hazard. This will result in a number of advantages in 
terms of interpretation, possible model extensions, and 
also enables parameter estimation using every software 
that allows maximizing a hand-coded likelihood function. 
In the Methods section, we proceed by introducing the 
formal notation and deriving the model’s equations. Then, 
we report the settings of our simulation study. We illus-
trate the model using a study which investigated provi-
sion of medical care to lung cancer patients in the eastern 
part of Germany [3] and present all results in Results sec-
tion. Finally, we conclude with a discussion (Discussion 
section).

Methods
Parametric additive hazard model
We start with the assumption that the hazard hx(t) with 
covariate vector x at time t can be expressed as

with a parametric baseline hazard function h0,θ (t) which 
is independent of the covariates. The parameter θ denotes 
the distribution parameters, which differ in terms of 
number and commonly used notation depending on the 
choice of the baseline distribution. The parameters β are 

(1)hx(t) = h0,θ (t)+ xβ ,

regression coefficients that measure the additive impact 
of covariates.

Using the well-known relations between hazard, prob-
ability density function (pdf) (f(t)) and survival function 
S(t), the corresponding pdf of model (1), fx(t) , can be 
expressed in terms of the baseline pdf f0(t) , the baseline 
survival function S0,θ (t) , and the covariates by

The complete derivation of the additive hazard 
model equation in terms of the pdf can be found in 
Additional file 1.

The corresponding survival function Sx(t) is given by

with Fx(t) denoting the cumulative distribution function 
(cdf ).

Using an additive hazard regression model allows to 
estimate relative survival instead of hazard ratios [27]. 
Contrarily to hazard ratios, which quantify the aver-
age or constant effect of covariates on the hazard func-
tion, relative survival measures the cumulative effect of 
covariates on the relative survival probability. Within 
this context and in case x = 0 represents the absence 
of disease, the relative survival probability can be 
interpreted as the observed survival probability of the 
population studied, divided by the expected survival 
probability if the population was free of the disease of 
interest. Using (3), we can confirm the relative survival 
interpretation of our additive hazard model:

It should be noted that this relative survival interpre-
tation is independent of the baseline distribution.

The likelihood function for the model can be derived 
by accounting for the fact that observations with an 
event contribute the logarithm of the pdf, and censored 
observations the logarithm of the survival function [7]. 
The contribution of a single observation i ( i = 1, ...,N  ) 
with covariate vector xi and observation time ti to the 
log-likelihood function ℓi is therefore

(2)fx(t) =
f0(t)+ xβS0,θ (t)

exp(txβ)
.

(3)Sx(t) =
S0,θ (t)

exp(txiβ)
= 1− Fx(t),

(4)Sx(t)

S0,θ (t)
=

S0,θ (t)
exp(txβ)

S0,θ (t)
=

1

exp(txβ)
.

ℓi = (1− δi) log(fxi(ti))+ δi log(Sxi(ti))

= (1− δi) log
f0(ti)+ xiβS0,θ (t)(ti)

exp(tixiβ)
+ δi log

S0,θ (t)(ti)

exp(tixiβ)

= (1− δi)(log(f0(ti)+ xiβS0,θ (t)(ti))− tixiβ)+ δi(log(S0,θ (t)(ti))− tixiβ).
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δi is the censoring indicator with δi = 1 if an obser-
vation is censored, and δi = 0 if an event has been 
observed. Parameter estimation is straightforward by 
maximizing the log-likelihood function with respect to 
the unknown regression coefficients β and the parame-
ters of the assumed baseline distribution. Each software 
that allows coding and maximizing such function, as 
for example SAS via the NLMIXED procedure or R via 
the optim-function, can be used to this task.

For practical application, it is possible to assume a wide 
range of baseline distributions, including for example the 
Exponential, Weibull, Gamma, Gompertz, Log-Normal 
and Log-Logistic distribution. For instance, assuming the 
Weibull distribution as baseline distribution and includ-
ing a covariate xi , the cdf is then given by:

Alternatively, using a Log-Logistic distribution as base-
line distribution, this leads to

aWB, bWB, aLL and bLL denote the distribution-specific 
parameters.

Results from applying the different baseline distribu-
tions can be compared via model selection criteria as the 
AIC or BIC. Parameters of main interest are finally the 
estimated regression coefficients and suitable transfor-
mations of the distribution parameters that have more 
intuitive interpretations, as the baseline mean or median 
of the assumed distribution.

Simulation study
To evaluate the parametric additive hazard model, 
we conducted a simulation study. For comparison, we 
included the semi-parametric additive hazard model of 
Lin et  al. [17]. The simulation study was implemented 
using R (version 4.1.2), the full code is publicly available 
on Zenodo [26].

Setting
Our parameter settings were motivated by the Halle 
Lung Carcinoma (HALLUCA) study which we also use 
as exemplary application in the Example section (Exam-
ple: the HALLUCA study) [3]. The data from the HAL-
LUCA study has been used in previous work proposing 
an extension of relative survival models for clustered 
responses [16] and are also suitable for our purpose. 

(5)Fxi (ti) = 1− Sxi (ti) = 1− exp

(

−

(

ti

bWB

)aWB

− tixiβ

)

.

(6)
Fxi(ti) = 1− Sxi(ti) = 1−

(

(

ti
aLL

)bLL
+ 1

)

−1

exp(tixiβ)
.

Accordingly, we focused on simulating a single binary 
covariate which can be interpreted for example as expo-
sure in an observational study. Survival time is meas-
ured beginning with the day of diagnosis of lung cancer. 
As true underlying models used for data generation we 
assumed (i) the Weibull additive hazard model and (ii) 
the Log-Logistic additive hazard model as shown in 
equation (5) and (6). The true parameters of the distribu-
tions equaled their estimates from the HALLUCA study

–	 with aWB = 0.86, bWB = 1.77 for the Weibull distribu-
tion, and

–	 with aLL = 1.06, bLL = 1.14 for the Log-Logistic 
distribution.

In addition, we varied the number of participants per 
study which were set to 50 or 200. Moreover, we distin-
guish between a smaller number of observed events per 
study of 60% (40% censoring) and a higher number of 
80% observed events (20% censoring). Further, we eval-
uated the true effect of the binary covariate for β = 0 , 
β = 0.8 and β = 1.6.

Data generation
Combining all parameters led to 24 different settings, i.e., 
12 settings for each of (i) and (ii), for which data were 
generated. For every setting, we simulated 1000 data 
sets. Participants of each study were randomly allocated 
into two groups, as indicated by the binary covariate to 
which the finally estimated regression coefficient β cor-
responds. We assumed that our two groups are of equal 
size. Survival times for each participant were generated 
from the true underlying distribution using inverse trans-
form sampling. In case the covariate takes the value of 
zero, the cdf Fxi(ti) from which we had to sample simply 
equals the Weibull or Log-Logistic distribution. Contra-
rily, if the covariate takes a value of one, the procedure is 
less trivial. In that case, it is not possible to invert the cdf 
analytically and we used numerical inversion to obtain 
random numbers from the respective function [5]. The 
likelihood of whether a study participant experienced an 
event or if the event is censored was generated from a 
Bernoulli distribution with respective success probability. 
To guarantee uninformative censoring, we multiplied the 
original survival time with a uniformly distributed ran-
dom number in case the observation was censored.

Estimation methods and outcomes
For parameter estimation we used the Weibull and Log-
Logistic additive hazard model. The corresponding likeli-
hood functions were manually coded and implemented 
in the statistical software R. Optimization was done using 
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the optim-function. True parameter values served as 
starting values for this procedure. As described above, we 
also applied the semi-parametric additive hazard model 
of Lin et  al. [17] as comparative model. For this aim, we 
used the R-package addhazard [15] where the Lin and 
Ying model is already implemented. Outcome of primary 
interest was the estimated regression coefficient β as this 
parameter is estimated by the parametric as well as by the 
semi-parametric model. The estimated parameters were 
compared in terms of bias, mean squared error (MSE) and 
empirical coverage. Moreover, we identified the number of 
converged simulation runs to assess numerical robustness.

Results
Simulation study
In reporting the results of the simulation study, we con-
fine ourselves to the outcome of main interest, the esti-
mated regression coefficient β . In the following, we give 
a brief overview of the results concerning bias, MSE, 
empirical coverage and numerical robustness. The com-
plete simulation results can be found in Appendix II to V 
of the Additional file 1.

Bias
Appendix II of the Additional file  1 provides the 
numerical results in terms of bias. Figure  1 illustrates 
the corresponding estimates. If the estimated addi-
tive hazard model is consistent with the true underly-
ing distribution, we observe the best performance, i.e., 
smallest median bias, with some exceptions. Further, 
also considering that the estimated additive hazard 
model is consistent with the true underlying distribu-
tion, the additive hazard model slightly outperforms 
the semi-parametric model by Lin and Ying. This holds 
true for all estimated models, leading to a bias between 
−0.36 and 0.17. For most settings, the treatment effect 
is slightly underestimated which leads to a negative 
bias. The observed underestimation also holds for the 
Lin-Ying model which results in underestimation in 
more than 65% of all cases. We observe a change in the 
sign of the bias for settings where the Weibull-model 
is estimated using the new additive hazard model and 
relying on data that was generated via a Log-Logistic 
distribution. This underlines that in these settings the 
Weibull distribution is not an appropriate choice for 

Fig. 1  Box plots of estimated median bias for the regression coefficient β over 1000 simulations for each setting. Y-axis denotes each setting 
with an ID consisting of the abbreviated true model (WBAH = Weibull additive hazard, LLAH = Log-Logistic additive hazard), the true β , the number 
of participants per study and number of events (e.g., Weibull additive hazard model, true β = 0 , number of patients = 50 , number of events = 60% 
results in “WBAH_0_50_0.6”). Left-most plot shows results for the Weibull (WB) additive hazard model, middle plot shows results for the Log-Logistic 
(LL) additive hazard model and right plot shows results for the Lin-Ying (LY) model
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modeling data that follows a Log-Logistic distribution, 
and an alternative choice of the underlying distribution 
should be made. The most extreme positive bias of 0.17 
is observed for the estimated Weibull model when the 
Log-Logistic distribution, a true β of 0.8, 20% censor-
ing and 200 patients were assumed for data generation. 
The most extreme negative bias of −0.35 is observed 
for the estimated Weibull and Log-Logistic model in 
the setting with data generated from the Weibull addi-
tive hazard model, a true β of 1.6, 40% censoring and 
200 observations per sample. Generally, when data was 
generated assuming a Weibull distribution, all three 
models perform similarly. Though, if a Log-Logistic dis-
tribution is assumed as true, the estimated Log-Logistic 
and Lin-Ying model perform similarly, while results 
from the Weibull model slightly differ. The number of 
participants modeled per study minorly influences the 
median bias. The variability of the bias is smaller for 
higher numbers of observations (200 versus 50). Fur-
thermore, the estimated models are sensitive towards 

the true value of β , where generally the bias is closer 
to zero and its variability is reduced for smaller values 
of β . In most cases, the bias is smaller in settings with 
more events (80% compared to 60%). With regards to 
the Weibull model, this only holds true if the estimated 
and true distribution are consistent.

MSE
Appendix III of the Additional file 1 shows the detailed 
results with regards to the MSE. Figure  2 visualizes 
the findings. Generally, there are hardly any differ-
ences for the MSE across the three estimated models 
for the respective settings. In some settings we observe 
an MSE of 0.00. These results indicate that the model 
works very well at minimum in these contexts. Contra-
rily, we observe a maximum error of 0.45 for the Lin-Ying 
model in one setting (true model based on Log-Logistic 
distribution, true β = 1.6, number of observations = 50, 
number of events 60%). As for the bias, in most cases 
the MSE is slightly smaller when the estimated model 

Fig. 2  Box plots of estimated median mean squared error (MSE) for the regression coefficient β over 1000 simulations for each setting. Y-axis 
denotes each setting with an ID consisting of the abbreviated true model (WBAH = Weibull additive hazard, LLAH = Log-Logistic additive hazard), 
the true β , the number of participants per study and number of events (e.g., Weibull additive hazard model, true β = 0 , number of patients = 50 , 
number of events = 60% results in “WBAH_0_50_0.6”). Left-most plot shows results for the Weibull (WB) additive hazard model, middle plot shows 
results for the Log-Logistic (LL) additive hazard model and right plot shows results for the Lin-Ying (LY) model
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is consistent with the true underlying distribution. For 
almost any setting, it holds true that the median MSE 
of the Weibull and Log-Logistic model is better than the 
MSE of the respective Lin-Ying model. The MSE seems to 
be negatively correlated with the number of participants 
per study, as for settings with 200 observations per sam-
ple (versus 50 observations) the MSE is smaller. Similar 
results are found with regards to the assumed number of 
events: the MSE decreases when more events (80% com-
pared to 60%) are observed. Furthermore, for larger val-
ues of β , the MSE and its variability increase for each of 
the estimated models.

Empirical coverage
Appendix IV of the Additional file  1 provides detailed 
results about the models’ empirical coverage. Figure  3 
illustrates the corresponding estimates. In terms of 
empirical coverage (on the 95% level), the performances 
of the three estimated models are relatively similar with 
some exceptions for a handful of settings. For the major-
ity of the settings, the models again perform best when 
the estimated model and the true underlying distribution 
are equal. If the distributions are consistent, the Weibull 

and Log-Logistic model mostly outperform the Lin-Ying 
model, respectively. Overall, the empirical coverage 
often falls below 95%. Precisely, this is the case for 75% 
of the settings for the Weibull, for 71% of settings for the 
Log-Logistic and for 71% of all settings for the Lin-Ying 
model. The highest coverage of 100% is observed for the 
Log-Logistic model when data was generated from a Log-
Logistic distribution with β equal to 0, 60% events and 
200 observations. On the other hand, the smallest cov-
erage of 57.7% is observed for the Log-Logistic for data 
generated from a Weibull distribution with β equal to 
0, 80% events and 200 observations. Similar to bias and 
MSE, results depend on the true value of β . Coverage 
results for the estimated models seem to improve when 
β is closer to zero. With regards to the number of events, 
results correlate positively with the event probability. 
Precisely, coverage results improve in settings where the 
event probability is higher (80% versus 60%). The number 
of participants per sample seems to have a slight influ-
ence on coverage results. However, the correlation of 
coverage and sample size is less clear for all three models 
compared to the correlation of the bias and study size.

Numerical robustness
Appendix V of the Additional file  1 shows the results 
concerning the models’ convergence. The numerical 
robustness is very satisfactory for all estimated time-to-
event models. The Lin-Ying model performs most sta-
ble in terms of numerical robustness, always returning 
1000 converged simulation runs. With respect to the 
Weibull model, the results are also very satisfactory. 
Only for two settings where data was generated from 
a Log-Logistic distribution, the model converges for 
999 instead of 1000 simulation runs. The Log-Logistic 
model performs slightly less numerically robust with 
a minimum of 983 converged runs. In 75% of the set-
tings, the Log-Logistic model achieves convergence for 
all 1000 generated data sets.

Example: the HALLUCA study
For illustration purposes, we used data from the HAL-
LUCA study, an epidemiological study that investigated 
medical care for lung cancer patients in the region of 
Halle (Saale) in the eastern part of Germany [3, 26]. In 
the HALLUCA study, a total of 1696 lung cancer patients 
were observed between April 1996 and September 2000. 
1349 patients (79.5%) died until the end of follow-up. 
The median survival time in the population was 284 days 
(0.78 years). For the analysis reported here, we focused 
on a dichotomized version of the TNM-scale for the clas-
sification of malignant tumors as a predictor, where 739 
patients had a TNM-scale of IIIb or smaller (TNM < IV), 
and 621 patients had a TNM-scale of IV (TNM IV). The 

Fig. 3  Bar plot showing relative frequency of coverage 
for the regression coefficient β over 1000 simulations for each setting. 
Y-axis denotes each setting with an ID consisting of the abbreviated 
true model (WBAH = Weibull additive hazard, LLAH = Log-Logistic 
additive hazard), the true β , the number of participants per study 
and number of events (e.g., Weibull additive hazard model, true 
β = 0 , number of patients = 50 , number of events = 60% results 
in “WBAH_0_50_0.6”). Left-most plot shows results for the Weibull 
(WB) additive hazard model, middle plot shows results 
for the Log-Logistic (LL) additive hazard model and right plot shows 
results for the Lin-Ying (LY) model
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336 remaining patients for whom the TNM-scale was not 
reported, were deleted. The starting point for the survival 
definition relates to the day of diagnosis of lung cancer, 
while the end point of a patient’s survival time relates to 
death or the study end.

The Kaplan-Meier estimates for the two TNM classes 
and the estimated survival probabilities using the para-
metric additive hazard model with various distributions 
are given in Fig. 4. For the reference group (TNM < IV), 
for which we can estimate the parametric baseline dis-
tribution, the observed mean survival time is 1.69 years 

(95% confidence interval [1.56; 1.81]). The observed 
median survival time is 1.10 years [0.96; 1.24]. The fig-
ure shows that the estimated survival curves from the 
additive hazard model fit well with the Kaplan-Meier 
curves. For an increasing time t there are greater differ-
ences between the curves, especially for the Exponential, 
Weibull, Gamma and Gompertz model. However, for the 
Log-Normal and Log-Logistic distribution the fit is also 
quite well for larger survival times.

In Table  1, the results of the additive hazard model 
for six different baseline distributions are given. All 

Fig. 4  Estimated survival probabilities from the parametric additive hazard model using different distributions compared to the Kaplan-Meier 
curves



Page 8 of 11Voeltz et al. BMC Medical Research Methodology           (2024) 24:48 

models include a single binary covariate TNMIV, 
with (TNM < IV) being the reference group. Thus, we 
model the additive hazard of being in TNM stage IV. 
For evaluation purposes, we report the baseline mean 
and baseline median which can be compared to the 
empirical mean and median reported in the original 
HALLUCA study. To compare the model fit, we also 
report the Bayesian information criterion (BIC), where 
a smaller value indicates a better fit. The estimated 
regression coefficients for TNMIV show that being in 
stage IV increases the hazard by approximately 0.8. 
Being in an additive setting, the estimated β-value is 
added to the baseline distribution. That means being in 
the worse tumour group, the risk of dying rises because 
our model describes by how much the risk of dying 
changes in additive manner, not multiplicative. Alter-
natively, the coefficient could be interpreted in abso-
lute terms, saying that when observing 100 people for 
one year, there are an additional 80 deaths among can-
cer patients in TNM class 4 compared to those with a 
lower TNM class. The results change slightly depend-
ing on the different distributions. Overall however, esti-
mates from the parametric models are similar. In terms 
of the BIC, the Log-Logistic, Weibull and Gamma 
model fit best, returning almost identical parameter 
estimates and confidence intervals for βTNMIV . With 
respect to the baseline location measures, the differ-
ences between the distributions are rather large, rang-
ing from 1.77 to 7.90 for the baseline mean, and from 
1.06 to 1.22 for the baseline median. For example, for 
the Log-Logistic approach, the model with the best 
BIC, we get a large baseline mean of 7.90 with a broad 
95%-confidence interval of [3.39; 12.40]. With refer-
ence to Fig. 4, this can be explained by the flat survival 
curves at the end of the prediction range. Therefore, 
the baseline mean is necessarily larger with a broader 
confidence interval. However, regarding the baseline 
median, the Log-Logistic model yields an estimate of 
1.06 which is in line with the empirical median of 1.10 
from the Kaplan-Meier approach. The same holds true 
for the Log-Normal and Weibull model which achieve 
estimates that are also close to the empirical median.

Figure 5 compares the relative survival probability from 
the parametric additive hazard model assuming different 
baseline distributions. The relative survival curves, taken 
as the ratio of survival in a group of individuals with 
TNM stage IV in comparison to the survival of a corre-
sponding population with TNM < IV (see (4)), are rather 
similar between the various baseline distributions. It can 
easily be seen that survival strictly decreases over time, 
with a relative survival probability almost equal to zero 
after five years.

Discussion
In this article, we propose a new parametric additive haz-
ard model for time-to-event outcomes. Generally, para-
metric survival models are advisable as they are simpler, 
more informative and robust than non- or semi-paramet-
ric models [8, 10, 20]. In addition, they have hazard, sur-
vival and probability density functions directly available. 
We showed that the model is valid from a theoretical 
point of view. Further, in a simulation study as well as for 
an example from lung cancer research, we demonstrated 
that the model showed that the model works in practice. 
Convincingly, our proposed model can be implemented 
using any standard software that allows coding and maxi-
mizing a likelihood function. The corresponding SAS 
and R codes of our applications are publicly available on 
Zenodo [26].

The facilitated interpretation of our model is one of its 
most convincing advantages and is important for exam-
ple from a clinical point of view. For instance, allowing 
to communicate outcomes of the additive hazard model 
in relative and absolute terms increases the comprehen-
sibility of its results. Moreover, including time-independ-
ent (constant) covariates, our approach is advantageous 
over the additive hazard model of Aalen, since there, 
model coefficients often are difficult to understand as 
they change repeatedly over time and cannot be sum-
marised easily. Furthermore, by modeling regression 
coefficients and distribution parameters that have more 
intuitive interpretations, our approach overcomes inter-
pretational, mathematical and technical problems that 
arise when estimating hazard ratios as generic effect 

Table 1  Estimates for the HALLUCA data set with 95% confidence intervals

Distribution βTNMIV Baseline Mean Baseline Median No. of distribution 
parameters

BIC

Exponential 0.84 [0.72; 0.97] 1.77 [1.62; 1.92] 1.22 [1.12; 1.33] 1 2441.9

Weibull 0.78 [0.65; 0.91] 1.91 [1.70; 2.11] 1.15 [1.03; 1.26] 2 2427.1

Gamma 0.79 [0.67; 0.92] 1.85 [1.66; 2.03] – 2 2431.8

Gompertz 0.84 [0.72; 0.97] – 1.22 [1.12; 1.33] 2 2449.3

Log-Normal 0.80 [0.68; 0.92] 3.44 [2.75; 4.13] 1.07 [0.95; 1.19] 2 2450.3

Log-Logistic 0.78 [0.65; 0.91] 7.90 [3.39; 12.40] 1.06 [0.94; 1.18] 2 2417.6
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estimates. For practical application, several different 
distributions such as the Exponential, Weibull, Gamma, 
Gompertz, Log-Normal and Log-Logistic distribution 
can be implemented and compared via model selection 
criteria as the AIC or BIC. Moreover, parameter esti-
mation of our model by the maximum likelihood prin-
ciple is straightforward and can be accomplished with 
standard statistical software that allows for maximizing 
a likelihood function. Additionally, the proposed model 
is highly flexible in terms of possible extensions such as 
modeling correlated data by including random effects in 
the linear predictor, modeling non-linear covariate effects 
by splines, or by specifying baseline distributions that 
have more than two parameters. Maximum flexibility 
with respect to the baseline distribution can be obtained 
by using a piecewise-constant model, i.e., by dividing the 
observation period a-priori into intervals and assuming 
an exponential distribution in each of these intervals.

Evidently, there are some limitations with regards to 
our simulation study. The simulation was motivated 
by a real-world data example and thus offers a realistic 
setting, which we varied in a certain range of potential 
scenarios. However, these scenarios consider relatively 

small sample sizes and also rather moderate number of 
events. Consequently, it is not unlikely that the results 
of all models investigated in the simulation are biased 
in a certain extent and no optimal solution was found. 
For practical application, it should be considered posi-
tively that the treatment effect is more likely to be 
underestimated (versus overestimated). Thus, slightly 
biased inference in practical research may be less prob-
lematic than in a case of overestimation. Relying on 
the asymptotical properties and a correct implemented 
maximum likelihood estimation, we are confident that 
with an increased number of events and larger sample 
sizes, i.e., larger number of participants per study, the 
bias and its variability would asymptotically approach 
0. Further, in practical research, it would evidently be 
an option to tune the parameters, settings and start-
ing values of software functions used in the estimation 
to increase robustness and ensure convergence. For 
our study, we refrained from a comparison to the Cox 
model and instead used the Lin-Ying model for model 
evaluation. This is due to the fact that (i) the Lin-Ying 
model also relies on the additive hazards assump-
tion and is thus a more direct competitor and (ii) our 

Fig. 5  Relative survival probabilities from the parametric additive hazard model using different distributions. The gray shaded area depicts 
estimated confidence intervals
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proposed model and the Cox model are inherently dif-
ferent and in a certain way incomparable. For instance, 
converting the additive into the multiplicative effect 
estimate is impossible. Further, the Cox model assumes 
multiplicative effects. Therefore, if data are generated 
using an additive model, it is obvious that the addi-
tive model will perform superior to the Cox model in 
terms of the effect estimator and its corresponding 
confidence interval. Vice versa, when generating data 
using the Cox model, we presume that our proposed 
parametric model would perform worse as it relies on 
the additivity assumption. However, it is left open for 
future research to assess whether p-values are con-
sistent for the different models, even if they are simu-
lated from the “wrong” model. Overall, the choice of 
using the Cox model or generally any additive model 
is dependent on the primary effect measure and study 
question. If the hazard ratio is of interest, then the Cox 
model would be preferable. If that is not the case, an 
additive model might be the better choice as it offers 
more easily interpretable effect measures. Further, the 
choice must be made under consideration of whether 
the user wants to assume multiplicativity or additivity. 
There is a number of methods for checking the assump-
tions and model fit for the Cox model, however, not all 
can be extended to the additive model [6]. For instance, 
we are not aware of any methods to confirm the valid-
ity of the additivity assumption or of the multiplicativ-
ity assumption, which would be the pendant specified 
in the Cox model. Although the direct comparison with 
a Cox model is generally questionable and outside the 
scope of this article, it nevertheless may remain inter-
esting in case of insufficient knowledge about the effect 
of the covariates and whether to choose an additive 
or multiplicative model. We are unaware of an “over-
all”, combining model that contains both, additive and 
multiplicative models as a special case, and that has 
an additional parameter which measures the type of 
relationship (i.e., additive, multiplicative or something 
in between). The development of such a framework 
or model may be an interesting and valuable topic for 
future research.

With regards to the weaknesses of the proposed 
additive hazard model, our method suffers from the 
drawbacks that limits parametric versus semi- or 
non-parametric models. Non-parametric approaches 
generally require fewer assumptions about the data. 
Therefore, these may prove better when the true dis-
tribution is unknown and/or cannot be easily approxi-
mated. Vice versa, parametric methods are inherently 
dependent on the distribution chosen for estima-
tion and on the assumption that this distribution is 
correctly specified. Further, it must be noted that 

parametric procedures require starting values for the 
optimization which may sometimes be complicated 
or problematic to define in practice. In case a distri-
bution can be confidently specified to the data, para-
metric models will usually be more informative than 
semi- or non-parametric approaches. However, if this 
is not the case and the assumed distribution is false, 
results and conclusions are likely to be biased. For 
practical application, we recommend that the choice of 
the baseline distribution should be based on evidence 
from literature and previous research. However, if this 
is not applicable, and selection criteria such as the BIC 
or AIC is used for a data-based decision, this must be 
acknowledged in the reporting of the study and should 
be critically discussed. In that context, users should 
be cautious with any interpretation and should be are 
aware that confidence intervals for instance are poten-
tially estimated too narrow. Besides, and by defini-
tion, our model assumes that the covariates act in an 
additive way to the baseline hazard function. Appar-
ently, this assumption may be doubtful in some appli-
cations and in that case, other models may be more 
appropriate.

With regards to the framework of phases of methodo-
logical research Heinze et al. [13], the proposed additive 
hazard model currently belongs to early stages of meth-
odological development, i.e., phase I or II. The aim here 
was to introduce a new idea, as well as to demonstrate its 
validity and its potential to improve on existing methods. 
Into the bargain, we derived the new methodological idea 
while providing, logical reasoning and proofs of empirical 
evidence through a real-world data example and a simu-
lation study in a (yet) relatively narrow but suitable target 
setting. Carefully planned method comparison studies 
that investigate the model in future works could advance 
the proposed additive hazard model to later stages of 
methodological development and would be of great value 
for future users and the scientific community as a whole. 
Therefore, there is a need for future studies that explore 
the empirical properties of our model in a wider range 
of problems, highlight its advantages and limitations, 
and possibly uncover previously unknown behavior (e.g., 
in simulations with wide range of scenarios and differ-
ent outcome types and realistic or complex comparative 
example data analyses).

Conclusion
To summarize, the proposed parametric additive hazard 
model can serve as a powerful tool to analyze time-to-
event outcomes. By definition, it simplifies interpretation, 
facilitates parameter estimation and permits greater flex-
ibility than most existing and commonly used methods.
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