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Abstract 

Background There is divergence in the rate at which people age. The concept of biological age is postulated to cap‑
ture this variability, and hence to better represent an individual’s true global physiological state than chronological 
age. Biological age predictors are often generated based on cross‑sectional data, using biochemical or molecular 
markers as predictor variables. It is assumed that the difference between chronological and predicted biological age 
is informative of one’s chronological age‑independent aging divergence ∆.

Methods We investigated the statistical assumptions underlying the most popular cross‑sectional biological age pre‑
dictors, based on multiple linear regression, the Klemera‑Doubal method or principal component analysis. We used 
synthetic and real data to illustrate the consequences if this assumption does not hold.

Results The most popular cross‑sectional biological age predictors all use the same strong underlying assumption, 
namely that a candidate marker of aging’s association with chronological age is directly informative of its association 
with the aging rate ∆. We called this the identical‑association assumption and proved that it is untestable in a cross‑
sectional setting. If this assumption does not hold, weights assigned to candidate markers of aging are uninformative, 
and no more signal may be captured than if markers would have been assigned weights at random.

Conclusions Cross‑sectional methods for predicting biological age commonly use the untestable identical‑associa‑
tion assumption, which previous literature in the field had never explicitly acknowledged. These methods have inher‑
ent limitations and may provide uninformative results, highlighting the importance of researchers exercising caution 
in the development and interpretation of cross‑sectional biological age predictors.

Keywords Aging, Biological age, Aging divergence, Aging rate, Aging clocks, Cross‑sectional biological age 
predictors, Klemera‑Doubal

Background
Individuals of the same chronological age show consider-
able variation in the rate at which they age: while some 
enjoy long and healthy lives, others experience early-
onset functional decline, suffer from a range of diseases 
and die young [1]. This variability gave rise to the idea 
that, in addition to a chronological age, individuals also 
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possess a biological age [2, 3]. This biological age should 
be an accurate reflection of one’s position on their life-
course: when biological age exceeds chronological age 
this is indicative of accelerated aging (marking a higher 
physiological vulnerability, lower lifespan expectancy and 
increased risk to develop (multi)morbidity), the reverse 
of slow aging.

The question why, how and how fast we age is not only 
of biological interest, but has direct societal relevance. 
The enormous increase in average human lifespan that 
has been observed throughout most of the world in the 
last centuries has not been matched by an equal increase 
in healthspan (life years spent in good health) [1, 4]. This 
has led to a global healthcare burden, which is expected 
to only increase in the decades to come [5]. Measuring 
biological age could contribute to identifying individu-
als most at risk and helping them with targeted interven-
tions. In addition, a better insight in the processes that 
underlie aging might help in designing interventions to 
slow down, delay or even reverse aging.

Biological age is latent: it cannot be directly measured, 
which complicates a direct evaluation of predictions. 
Many different operationalizations of this latent (and 
potentially multifaceted [6, 7]) concept are possible, and 
often not made explicit [8]. However, there is consensus 
that biological age, regardless of how it is exactly defined, 
should be a holistic measure of aging that contains infor-
mation on aging above and beyond chronological age [9, 
10]. We refer to the chronological age-independent part 
of biological age as the ‘aging divergence’ and denote it by 
the symbol ∆. Hence, we capture by aging divergence ∆ 
the difference between biological and chronological age 
(more precisely, biological age conditional on chronologi-
cal age). Note that this quantity has also been referred 
to as the ‘aging rate’ or as the ‘age acceleration’, but these 
terms are less appropriate in a cross-sectional context, 
which is why we opt for the more neutral term ‘diver-
gence’. We choose not to formally define biological age, as 
the key message of this paper holds for any definition of 
biological age that is based on the premise that the aging 
divergence ∆ contains information on one’s aging status 
above and beyond chronological age and that it is possi-
ble to predict (an aspect of ) ∆.

In line with this consensus, predictions of biological 
age are generally evaluated by checking if the chronologi-
cal age-independent part of a prediction, denoted by � , 
is associated with time-to-death or other outcomes that 
are known to be measurable physiological outcomes rep-
resenting the aging process (e.g., grip strength, frailty or 
cognitive function), in a model adjusted for chronological 
age.

The aging field is trying to detect (bio)markers indica-
tive of the biological age of individuals, in this paper 

referred to as ‘candidate markers’ (of biological aging). 
Such candidate markers of biological aging must be 
informative of biological age beyond chronological age, 
i.e., they must be associated with one’s aging divergence 
∆. Candidate markers can consist of molecular, biochem-
ical, clinical or physiological health data. The earliest 
attempts to capture biological age made use of a limited 
number of physiological and biochemical markers [3, 11, 
12]. More recently, the advent of high throughput bio-
molecular technologies has resulted in the development 
of numerous high-dimensional omics-based age pre-
dictors. This renewed interest was initiated by the pub-
lication of the Horvath and Hannum DNA methylation 
(DNAm) age predictors [13, 14]. It was soon found that 
DNAm age predictions are associated with aging above 
and beyond chronological age [15–17]. Since then, vari-
ous other omics-based age predictors have been devel-
oped, e.g., based on IgG glycomics [18], metabolomics 
[19], proteomics [20] or transcriptomics [21].

Biological age prediction methods, often referred to 
as ‘aging clocks’, can be divided in several generations. 
The first-generation prediction methods are based on 
the association of candidate markers of biological aging 
with chronological age. These methods hence require 
cross-sectional data only, where chronological age and 
candidate markers are measured at a single point in time. 
The second-generation prediction methods are based on 
the association of candidate markers with time-to-age-
related-event data (as of yet, only time-to-mortality has 
been considered as outcome of interest). The three most 
well-known second-generation predictors are PhenoAge 
[22] and GrimAge [23], which both use DNAm marker 
data as (surrogate) predictor variables, and a mortal-
ity predictor named MetaboHealth [24], using metabo-
lome data as predictor variables. It is speculated that the 
third generation will consist of prediction methods that 
are constructed using repeated measurement data, e.g., 
multiple measurements of the candidate predictors of 
interest [25]. Early examples of such methods are Duned-
inPoAm [26], which aims to measure the pace of biologi-
cal aging, and DunedinPACE [27], which is constructed 
by regressing DunedinPoAm on DNAm marker data.

Although second- and third-generation epigenetic and 
metabolomics-based methods outperform first-genera-
tion (cross-sectional) methods in terms of their strength 
of association with time-to-mortality and other aging-
related outcomes [25, 27–30], cross-sectional methods 
are still frequently developed, used and debated [31]. 
From a practical point of view, the ongoing popularity of 
cross-sectional methods can easily be explained: cross-
sectional data are simply much more abundant than lon-
gitudinal (time-to-event) data. Moreover, the predicted 
aging divergences ∆ of several recent cross-sectional 
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age predictors were found to be associated with time-to-
mortality and the onset of other aging-related outcomes 
[15, 16, 19, 32].

The general consensus in the field therefore seems to be 
that even though cross-sectional biological age predictors 
are suboptimal, they still capture some signal related to 
biological aging, and can therefore still be of value. Nev-
ertheless, how and under which assumptions they can 
capture this signal is not clear, neither from a statistical 
nor from a biological point of view. We believe that the 
statistical assumptions underlying these cross-sectional 
methods, and the consequences if they are not met, must 
be known and well understood for aging researchers to 
evaluate whether it makes sense use to such an approach. 
Lack of understanding of the assumptions and limita-
tions of any prediction method can hamper progress in 
the field of biological age prediction and in the identifica-
tion of relevant markers of aging. Though certain aspects 
of various cross-sectional methods have been sporadi-
cally criticized before (discussed in more detail in the 
next section), to the best of our knowledge an in-depth 
discussion of the key assumption that all cross-sectional 
approaches—often implicitly—use does not yet exist.

With this paper we attempt to fill that gap by consider-
ing this matter from several angles. We start by providing 
a comprehensive overview of the most popular cross-
sectional biological age prediction methods. We discuss 
the assumption under which they are expected to work, 
namely that any marker’s association with chronological 
age is directly informative of its association with the age-
independent part of the difference between predicted and 
chronological age, denoted by ∆. We call this the iden-
tical-association assumption and provide a theoretical 
result why this assumption is untestable. To illustrate the 
consequences in settings where this assumption does not 
(fully) hold, we use two synthetic data examples. Finally, 
we use real data to illustrate that caution must be taken 
when using cross-sectional data to predict biological age. 
With this we hope to increase awareness that all cross-
sectional methods that either directly or indirectly use 
candidate markers’ correlation with chronological age 
may be superfluous, and in any case should not be used 
without carefully reflecting beforehand on the assump-
tions these methods make.

Methods
Overview of cross‑sectional statistical approaches
By far the most popular statistical approach to estimate 
biological age (B) is to perform multiple linear regres-
sion (MLR) on cross-sectional data: chronological age 
(C) is taken as the outcome variable and regressed 
on a set of candidate markers of biological aging (X) 
that were measured at the same time as chronological 

age. Then the model’s predicted chronological age is 
considered to be informative of one’s biological age: 
B̂ = Ĉ = β0 +

∑
m

i=1
βixi , where m represents the num-

ber of candidate markers included in the regression and x 
represents a single marker. In this method predictions for 
the aging divergence ∆ are generally defined as the result-
ing residuals after regressing predicted biological age 
(i.e., Ĉ ) on chronological age. Hence, the residuals of the 
chronological age model are considered to be informa-
tive of ∆. This approach is used with both low- and high-
dimensional markers.

The MLR approach does not follow from an underlying 
model of biological age; however, it relies on a model that 
predicts chronological age to be indicative of the aging 
divergence ∆. For this to work it must hold that mark-
ers that are correlated with chronological age are also 
correlated with ∆, and vice versa. In fact, it is implicitly 
assumed that the higher the correlation with chrono-
logical age (in a multivariable model, so adjusting for all 
other included markers), the stronger it is correlated with 
∆. Markers that are insignificant predictors of chronolog-
ical age are assumed to be insignificant predictors of ∆.

Although the MLR approach is the most often-used 
cross-sectional approach, it has been criticized for vari-
ous reasons. It suffers from inherent methodological 
problems, such as regression to the mean (fitted values 
regress towards the sample’s mean age such that bio-
logical ages calculated for those younger than the sam-
ple mean age tend to be too high and for those older, 
too low) and the so-called ‘biomarker paradox’ (a (bio)
marker that perfectly correlates with chronological age 
is useless in estimating biological age) [33, 34]. The bio-
marker paradox is more than a mere theoretical danger: 
with epigenetic biological age predictors, in principle a 
nearly perfect chronological age predictor can be devel-
oped, as long as the sample size is large enough [35]. In 
such a case all signal related to biological aging would be 
lost. This paradox therefore illustrates the peculiarities 
that arise when the residuals of a linear regression are 
interpreted as meaningful quantities in their own right, 
while in the model formulation those residuals are per 
definition nothing but noise.

Alternative cross-sectional approaches have been pro-
posed in an attempt to overcome some of these meth-
odological issues. The most notable alternatives are 
principal component (PC)-based methods and the Klem-
era-Doubal (KD) method [36]. PC-based methods trans-
form candidate markers to a set of uncorrelated principal 
components [37–40]. Most of the times, first a pre-selec-
tion of candidate markers is made based on how strongly 
each individual marker is correlated with chronological 
age. Often, the first principal component of this subset of 
variables is found to be correlated with chronological age 
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and is hence interpreted as an ‘unscaled’ or ‘standardized’ 
biological age score BS. This score is sometimes trans-
formed to an age-scale based on the mean and standard 
deviation of chronological age (µC and σC) in the training 
sample: B = BS ∗ σC + µC.

The Klemera-Doubal method [36] uses a reversed 
regression approach (regressing each candidate marker 
on chronological age). In contrast to the above meth-
ods, the KD method is based on an explicit underly-
ing model of biological age. It assumes that the relation 
between biological age and chronological age can be 
expressed by B = C + ∆. Each marker x is governed by 
B but is also affected by random fluctuations. Assum-
ing a linear relation between marker x and biological 
age, x equals β0 + β1 ∗ B + ϵ. This can also be expressed 
as x = β0 + β1 ∗ (C + ∆) + ϵ. That the coefficient β1 is the 
same for C and ∆ is a key assumption of the Klemera-
Doubal method: in their model, a marker’s strength of 
association with chronological age is directly informa-
tive of its association with ∆. A biological age prediction 
is obtained by taking a linear combination of all included 
markers, each of them weighted in terms of the estimated 
slopes and residual variances resulting from the reversed 
regressions.

Though in certain settings the Klemera-Doubal method 
has been found to outperform MLR- and PC-based 
methods [41], extending the method to high-dimensional 
settings is not straightforward, since it assumes that all 
included markers are functionally uncorrelated. There-
fore the KD method is primarily used in low-dimensional 
settings [38, 42, 43], or prior to applying the KD method 
principal component analysis is used to obtain a set of 
lower-dimensional markers [41, 44]. The limitations of 
the alternative cross-sectional approaches might explain 
the continued popularity of the MLR approach in high-
dimensional settings. In a recent review of omics-based 
biological age predictors the Klemera-Doubal method is 
not mentioned and PC-based methods play a minor role 
[31].

Reflection on the assumption underpinning cross‑sectional 
biological age predictors
Use of the cross-sectional methods described above can 
be justified if a common assumption holds, namely that a 
candidate marker’s strength of association with chrono-
logical age is identical to its strength of association with 
one’s aging divergence (the chronological-age independ-
ent part of biological age) ∆. So by using one of the above 
cross-sectional methods for biological age prediction it 
is assumed that the traits most strongly associated with 
chronological age are the ones most informative of ∆. If 
a marker changes with chronological age irrespective of 
relevant changes in ∆, or vice versa, the assumption is not 

met. Note that this requires biological age to be defined 
as something other than simply the predicted chrono-
logical age: if not, a marker per definition cannot change 
with chronological age without changes in ∆. Then any 
trait associated with chronological age (e.g.,  percentage 
of grey hair) would per definition be a valid measure of 
biological age, which we believe to be a false premise.

For ease of reference, we henceforth refer to this shared 
assumption that the traits most strongly associated with 
chronological age are the ones most informative of ∆ as 
the identical-association assumption. The KD method 
explicitly makes this assumption. For the MLR approach 
the story is slightly more nuanced: as mentioned pre-
viously, this approach is not based on any underlying 
model of biological age, and it hence does not explicitly 
rely on any assumptions regarding biological age. One 
is therefore forced to ‘reverse engineer’ assumptions 
under which it is justified to use the MLR approach. One 
assumption under which this approach can be expected 
to work (i.e., captures signal related to ∆) is if the iden-
tical-association assumption holds. Markers with high 
absolute coefficient values will have a strong effect on the 
resulting chronological age prediction Ĉ , which is consid-
ered equal to biological age prediction B̂ . The identical-
association assumption is hence a sufficient assumption 
for the MLR approach, where it is a necessary one for the 
KD method. For the PC-based approaches this assump-
tion is used when making a preselection of markers prior 
to finding the principal components, since only vari-
ables significantly correlated with chronological age are 
selected. It is therefore not surprising that the first prin-
cipal component is often found to be correlated with 
chronological age: the variables were selected to share 
this common source of variance.

There are different degrees to which the identical-
association assumption might hold in real data. For any 
set of candidate markers of biological aging, one can 
roughly distinguish four possible scenarios. The first sce-
nario is that the identical-association assumption holds. 
If one would then plot the true association of mark-
ers with chronological age against their true association 
with aging divergence ∆, one would end up with a plot 
as given in the top left panel (A) of Fig. 1. (There are of 
course several ways to define ‘association’ – since we do 
not want to assume a specific model, we deliberately keep 
this term vague. The plots are therefore conceptual rep-
resentations of the four scenarios.) As mentioned, the 
Klemera-Doubal method explicitly makes this assump-
tion, as it assumes an identical regression coefficient 
(effect size) for chronological age and aging divergence ∆ 
and no other sources of shared variance. In this first sce-
nario it would make perfect sense to use a cross-sectional 
prediction method. The second scenario (shown in panel 
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B of Fig. 1) is one in which the opposite of the identical-
association assumption holds: the stronger a marker is 
positively associated with chronological age, the stronger 
it is negatively associated with aging divergence ∆. This 
is an unlikely possibility, which is only included such 
that the four scenarios discussed here are collectively 
exhaustive. The third scenario (shown in panel C of 
Fig.  1) is that the markers’ strength of association with 
chronological age is not informative of their association 
with aging divergence ∆ at all. In such a scenario, using 
a cross-sectional prediction method would be useless: 
the weights that cross-sectional methods give to mark-
ers will be based on their association (both strength and 
direction) with chronological age, but these weights will 
be completely uninformative of the markers’ association 
with ∆. The fourth and final possibility (shown in panel D 
of Fig. 1) is that the markers’ strength of association with 
chronological age is somewhat, but not exactly, informa-
tive of their association with aging divergence ∆. Of the 
four scenarios this appears to be the most realistic one.

For this fourth scenario it is important to remem-
ber that many of the high-dimensional cross-sectional 
biological age predictors perform some kind of marker 
selection, either before including them in the model or 

during the model fitting itself. If one would then only 
include the variables most strongly correlated with 
chronological age (i.e., only the edges of Fig. 1D would be 
included, as illustrated in Fig. 2), there no longer is a rela-
tion between strength of association with chronological 
age and with aging divergence ∆. However, in Fig. 2 there 
still is a relation between the direction of the association 
of the selected markers with chronological age and with 
∆. This suggests that in a scenario where the fourth sce-
nario holds and candidate markers of biological aging 
have been pre-selected, the size of a candidate marker’s 
association with chronological age will not be informa-
tive of its association with ∆, but the sign (positive/nega-
tive) of this association will be.

Which scenario holds in a given data set determines 
whether or not it makes sense to use a cross-sectional 
method to predict biological age. Unfortunately, in cross-
sectional data the identical-association assumption can-
not be proven or disproven, because it is untestable: it 
is impossible to tell to what extent a marker is associ-
ated with aging divergence ∆ based on its association 
with chronological age alone. For a formal theorem and 
proof of the untestability of the identical-association 
assumption we refer to (Additional file  1). An intuitive 

Fig. 1 Conceptual visualization of the four scenarios. A scenario in which the identical‑association assumption holds (A), a scenario in which 
the inverse relation holds (B), a scenario in which there is no association (C) and a scenario in which the identical‑association assumption partially 
holds (D)
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visualization of the proof is given in Fig. 3. It shows cor-
relation Venn diagrams [45] for two candidate markers 
of biological age, X and X′. The two candidate markers 
have the same association with chronological age C, but 
where marker X shares association with biological age B, 
candidate marker X′ has no such association. Since B is 
unobserved, we only have information on the joint distri-
bution of X and C, or X′ and C, respectively. With respect 
to this observable variation, the diagrams for X and X′ are 
identical. It follows that we cannot distinguish between 
the true marker X of biological age and the false marker 
X′. Hence, if the identical-association assumption does 
not hold, it is impossible to distinguish true markers of 
∆ from false ones. Using cross-sectional biological age 
prediction methods, thereby (implicitly) believing in the 
identical-association assumption, is therefore based on 
biological hope or knowledge alone, not on a statistical 
property of the cross-sectional methods.

Whether or not it is justified to believe in the identi-
cal-association assumption will depend on the situation 
at hand. In the real data illustration section of this paper 
we provide an example where this assumption turns out 
not to hold. The discussion section contains several other 
examples of scenarios where this assumption is likely not 
to hold.

Results
Two illustrative examples
This section contains two synthetic data examples 
that illustrate two aspects of the identical-association 
assumption.

Example 1: untestability of the identical‑association 
assumption
We created a synthetic data set with four variables: 
chronological age C, biological age B, true marker of 
biological age X and false marker of biological age X′. X 
and X′ follow the same distribution and have the same 
strength of correlation with C. We based our data gen-
eration approach on the type of additive model proposed 
by Klemera and Doubal [36]. We generated n observa-
tions as follows. Independently generate the following 
elements:

• C ~ N(µ, σ 2
c );

• ∆ ~ N(0, σ 2
�);

• Λ ~ N(0, σ 2
�);

• ϵ ~ N(0, σ 2);
• ϵ′ ~ N(0, σ 2).

From these elements, construct:

• B = C + ∆;
• X = α + β × (C + ∆) + ϵ (= α + β × B + ϵ);
• X′ = α + β × (C + Λ) + ϵ′.

We used the following parameter values: n = 1000, 
μ = 50,σ 2

c  = 10,σ 2 = 2,σ 2
� = σ 2

�  = 3, α = 1, β = 1. X and X′ 
have the same distribution and the same relation with 
chronological age, as seen in Fig. 4. However, X correlates 
with the individual aging divergence ∆ while X′ does not, 
as seen in Fig. 5. This implies that X has useful informa-
tion on biological age that is not already in chronologi-
cal age while X′ does not. However, in real cross-sectional 
data ∆ is not observed: with respect to their association 
with the observable variable chronological age these two 
candidate markers are identical, as can be seen in Fig. 4.

Since the observable data (X,C) and (X′,C) are indis-
tinguishable from each other, any method we would 
apply on either (X,C) or (X′,C) would assign the same 
weight to either X or X′. This holds for the linear 

Fig. 2 Zoomed‑in version of the bottom right panel of Fig. 1. If 
markers are (pre‑)selected based on their strength of correlation 
with chronological age, those in the grey area (i.e., those most weakly 
associated with chronological age) are not selected

Fig. 3 Venn diagrams illustrating the variance shared 
between biological age (B), chronological age (C) and the candidate 
markers of biological aging X (true, left diagram) and X’ (false, right 
diagram). Black indicates observed variance; grey unobserved
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regression method, as is clear from Fig. 5. It also holds 
for the Klemera-Doubal method, since that method 
would assign the same weights to both X′ and X. Prin-
cipal components-based methods would not be able 
to distinguish an informative source of variance (i.e., 
∆) from an uninformative source of variance (here 
denoted by Λ). In fact, no cross-sectional method can 
distinguish between X and X′ based on their association 
with chronological age C, because the identical-asso-
ciation assumption is untestable. Therefore, no cross-
sectional method can provide evidence that a candidate 
marker is a truly informative X rather than a completely 
uninformative X′.

Example 2: consequences of believing 
in the identical‑association assumption under the four 
different scenarios
The first example illustrated that cross-sectional meth-
ods cannot be relied upon to select true markers of the 
aging divergence ∆. Nevertheless, predicted ∆-values of 
several cross-sectional age predictors have been found 
to be associated with time-to-mortality and several 
other age-related outcomes [31], albeit often weakly. 
This can only be the case if a marker’s strength of cor-
relation with chronological age is at least somewhat 
indicative of its strength of association with true aging 
divergence ∆.

Fig. 4 Chronological age plotted against the marker value for true marker X and false marker X′

Fig. 5 Aging divergence Δ plotted against predicted Δ for true marker X and false marker X′. The biological age predictions were obtained using 
linear regression
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To illustrate this, we generated a possible realiza-
tion of each of the four conceptual scenarios depicted 
in Fig.  1. We obtained predictions for aging diver-
gence ∆ using multiple linear regression (MLR) and the 
KD  method. We know that if the identical-association 
assumption does not hold, the weights found by MLR 
and the KD  method are uninformative of a marker’s 
strength of association with ∆. If the identical-associa-
tion assumption partially holds, the size of the weights 
that cross-sectional methods assign to markers will not 
be informative but the signs (positive/negative direc-
tion) of these weights still are (Fig.  2). We illustrate 
this by also including a third, ‘naive’ prediction method 
in this second example, where similar to the MLR 
approach we took a linear combination of markers. In 
this third prediction method each marker was assigned 
the same weight, namely the mean of the MLR coeffi-
cients. The sign of each coefficient was kept unchanged, 
because we generally expected the sign to be correct. 
We included this third approach to illustrate that if 
the identical-association assumption does not hold, 
weights obtained using the MLR or Klemera-Doubal 
method might result in less accurate predictions than 
naively assigning each marker the same weight.

For this second example we generated four data sets, 
DFA, DFB, DFC and DFD, corresponding to the scenar-
ios in Fig.  1. To keep it simple, each data set has only 
three markers(X1, X2 and X3), which are associated 
with chronological age C and with aging divergence ∆ 
to varying degrees in each of the four scenarios. We 
generated n observations as follows. Independently 
generate:

• C ∼ N(µ,σ 2
c );

• Δ ~ N(0, σ 2
�);

• ϵi ∼ N(0, σ 2

i
).

Construct biological age:

• B = C + ∆.

Construct markers:

• X1 = βC,1 × C + β∆,1 × ∆ + ϵ1;
• X2 = βC,2 × C + β∆,2 × ∆ + ϵ2;
• X3 = βC,3 × C + β∆,3 × ∆ + ϵ3.

Per scenario, the values chosen for βC,1 and β∆,1 can be 
found in Table  1. The following parameter values were 
used in all four scenarios: n = 1000, µ = 50,σ 2

c  = 10 and σ 2
� 

= 5. The standard deviation of the errors ϵ were chosen 
such that the relation between the (scaled and centered) 
three markers and chronological age is the same in in all 
four data sets (see Additional file 2). Hence, based on the 
observable variables alone (X1, X2, X3 and C) the four data 
sets are indistinguishable.

If the identical-association assumption holds (sce-
nario A), the MLR approach and the Klemera-Dou-
bal approach outperform the equal weights approach 
(Fig. 6, first row: the closer the points are to the diago-
nal line ∆ = predicted ∆, the better the performance of 
the method). In this case a marker’s association with 
chronological age is directly informative of its asso-
ciation with aging divergence ∆, so any method that 
weighs markers according to their strength of cor-
relation with chronological age will do well. In the 
unrealistic case that a marker’s association with chron-
ological age is inversely related to its association with 
aging divergence ∆ (scenario B), all methods will per-
form badly, as is to be expected (Fig.  6, second row). 
If there is no relation between a marker’s association 
with chronological age and its association with aging 
divergence ∆ (scenario C), the equal weights approach 
outperforms the two cross-sectional approaches, 
which appear to capture only noise (Fig. 6, third row). 
In our realization of scenario D, it can be seen that all 
methods capture some signal (Fig. 6, fourth row). The 
Klemera-Doubal method does best, but that might 
not be surprising given the data generation approach, 
which was based on the type of additive model Klem-
era and Doubal assume. Interesting is that the same 

Table 1 The coefficients used to construct the markers  X1,  X2 and  X3 for the four different scenarios (A‑D) as presented in synthetic 
data example 2

X1 X2 X3

βc β� βc β� βc β�

Scenario A 10 10 3 3 5 5

Scenario B 10 ‑10 3 ‑3 5 ‑5

Scenario C 10 0 3 10 5 ‑1

Scenario D 10 9 3 5 5 5
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weights approach outperforms the MLR-approach. 
Naturally, this is just one possible realization: with dif-
ferent values for βC and β∆ the coin could flip in favor 
of the MLR-method over the equal weights method 
(and with a different data generation mechanism, pos-
sibly also over the KD method).

Real data illustration
The insights gained from the synthetic data scenarios are 
of immediate practical relevance. We illustrate this with a 
real data illustration.

We used data from the Leiden Longevity Study (LLS) 
[46]. The LLS follows long-lived siblings of Cauca-
sian descent, their offspring and the partners of their 

Fig. 6 Aging divergence Δ plotted against predicted Δ in synthetic data example 2 for all four scenarios (A, B, C and D). Results are presented 
for the MLR approach, the Klemera‑Doubal method and the MLR approach where each marker is assigned the same weight
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offspring. We used data on the offspring and part-
ners (N = 2312). Participants who were lost to follow-
up (N = 10) or who had at least one missing metabolite 
value (N = 37) were excluded. In total 1593 offspring and 
674 partners were included, of which 998 men and 1269 
women (mean age at inclusion 59.2  years, sd 6.7). Par-
ticipants were included between March 2002 and May 
2006. Registry-based follow-up until November 2021 was 
available. Median follow-up time was 16.3  years (IQR: 
15.3–17.1). 309 deaths were observed. The Medical Eth-
ics Committee of the Leiden University Medical Center 
approved the study and informed consent was obtained 
from all participants.

As candidate markers of biological aging we used 
blood-based metabolic variables. The metabolic vari-
ables were quantified using a well-standardized high-
throughput nuclear magnetic resonance (1H-NMR) 
metabolomics platform [47, 48] of Nightingale Health 
Ltd. (Helsinki, Finland). Of the more than 200 metabolic 
variables available, a subset of 59 was selected, previously 
found to be most reliable and independent [24] and used 
in various subsequent publications [19, 49]. Prior to anal-
ysis, a small constant was added to all metabolic variables 
after which they were log-transformed and scaled.

The complete two-generation Leiden Longevity Study 
has previously been used in two major analyses by our 
group, constructing biological age predictors (on cross-
sectional as well as time-to-event basis) based on the 
same metabolic variables in much larger data sets. From 
these studies we observed that the constructed predictors 
as well as many of the 59 metabolic variables separately 
were predictive of prospective mortality [19, 24].

To illustrate the problems that can arise when using 
cross-sectional methods to predict biological age, we 
took a similar approach as in synthetic data example 2: 
we contrasted an often-used cross-sectional approach to 
obtain predictions for aging divergence ∆—in this case 
penalized regression, hereafter denoted by method 1—
with naive methods to obtain predictions for ∆—in this 
case first selecting metabolites univariately associated 
with chronological age and then using (unpenalized) 
multiple linear regression (method 2), a linear combina-
tion with either equal weights (method 3) or randomly 
drawn weights (method 4).

For each of the four methods, predictions for aging 
divergence ∆ were obtained as follows. For method 
1 we first obtained an age prediction using penalized 
MLR with a ridge penalty. Using 10-fold cross-valida-
tion, the penalization parameter λ was chosen such that 
the mean cross-validated error was minimized. Chron-
ological age was taken as the outcome variable and all 
59 metabolic variables were included as predictor varia-
bles. In method 2 we performed (unpenalized) multiple 

linear regression on a subset of variables correlated 
with chronological age. 26 of the 59 metabolic vari-
ables were significantly correlated with chronological 
age, using a Bonferroni-corrected significance thresh-
old of 0.05/59 = 8.47 ×  10−4. For method 3 we again 
took a linear combination of the 26 metabolic vari-
ables significantly correlated with chronological age. 
Here we assigned each variable same weight, namely 
the mean of the absolute value of the MLR-coefficients 
from method 2 (excluding the intercept). Although the 
coefficients were averaged, the sign of each variable’s 
coefficient was kept, for the same reason as illustrated 
by Fig.  2: in general we deem it unlikely that a varia-
ble is positively correlated with chronological age but 
negatively with ∆, though exceptions, for example due 
to compensatory processes, may exist. Method 4 is a 
variation on method 3: 1,000 different linear combina-
tions of the same 26 variables were taken, where each 
variable was assigned a coefficient randomly drawn 
from a uniform distribution. Similar to method 3, the 
weights were drawn at random but the signs were kept. 
For each of the four methods, predictions for ∆ were 
obtained by regressing the linear combination of meta-
bolic variables (the fitted values) on chronological age 
and obtaining the residuals.

We then compared the performance of the four meth-
ods by scaling the predictions for aging divergence ∆ 
obtained using each of the four methods and includ-
ing them in a Cox proportional hazards (PH) model 
with time-to-mortality as outcome. This is a common 
approach to check the validity of ∆-predictions if data 
on time-to-death is available [15, 16, 19, 25, 28, 32, 50]. 
We used chronological age as the timescale of the Cox 
PH model, taking delayed entry into account by includ-
ing age-at-baseline as the left truncation variable, and 
adjusted for sex. Since all predicted ∆-values were scaled 
prior to inclusion, the higher the coefficient for ∆, the 
stronger the association with time-to-mortality.

The Cox PH coefficients of the different ∆-predictions 
(i.e., the effect sizes of the association with prospective 
mortality) obtained with these four methods are com-
pared in Fig.  7. It can be seen that the coefficient for 
aging divergence ∆ obtained with method 1 is lower than 
those of methods 2 and 3: hence, association with time-
to-death is weaker. The blue and green lines of methods 
2 and 3 are very close to each other: using multiple lin-
ear regression (method 2) works just as well as assigning 
each marker the same coefficient (method 3). The histo-
gram represents the distribution of the 1,000 coefficients 
obtained by assigning each metabolic variable a randomly 
drawn weight (method 4), repeated 1,000 times. More 
than half of the histogram area is to the right of the yel-
low line of the ridge-based coefficient (method 1), and a 
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substantial part is even to the right of the blue and green 
lines of methods 2 and 3. These results imply that in this 
particular setting, the naive methods capture more signal 
related to prospective mortality than the ‘proper’ cross-
sectional method 1.

Although Fig. 7 shows that predictions for aging diver-
gence ∆ obtained via ridge regression on 59 metabolic 
variables (method 1) are less strongly associated with 
mortality than predictions for ∆ obtained using stand-
ard multiple linear regression on 26 metabolic variables 
(method 2), the chronological age predictions obtained 
with method 1 are more accurate than the ones obtained 
with method 2 (root-mean-square error method 1: 6.01, 
root-mean-square error method 2: 6.18). This exempli-
fies the biomarker paradox: improved chronological age 
predictions do not imply improved biological age pre-
dictions. In fact, after a certain point the association will 
weaken. We see that the better chronological age predic-
tion performance of method 1 already results in a weaker 
association of ∆ with prospective mortality.

Note that all coefficients in Fig.  7 are positive. Since 
we kept the coefficient signs of method 2 for methods 3 
and 4, it confirms our earlier assertion that if a marker is 
positively associated with chronological age, it is unlikely 
to be negatively associated with aging divergence ∆ (and 
vice versa). This explains why despite the suboptimality 

of cross-sectional methods, cross-sectional ∆-predic-
tions have repeatedly been found to be associated with 
prospective mortality and other age-related outcomes 
[15, 16, 19, 32]—albeit (much) weaker than second-gen-
eration biological age predictors [25, 28–30]. The direc-
tion of the coefficients contains information regarding 
the signal. However, one must realize that unless the 
identical-association assumption (almost fully) holds, no 
more signal will be captured with cross-sectional meth-
ods than if markers would have been assigned weights at 
random.

Discussion
We have shown that the most popular cross-sectional 
biological age predictors, where candidate markers of 
biological aging and chronological age are measured at a 
single point in time, rely on the same underlying assump-
tion to justify their use: a candidate marker’s strength 
of association with chronological age should be directly 
indicative of its strength of association with the differ-
ence between biological and chronological age, also 
known as one’s aging divergence ∆. We have called this 
assumption the identical-association assumption. We 
noted that there is no inherent statistical reason why a 
candidate marker’s association with chronological age 
C is indicative of its association with ∆: this depends on 

Fig. 7 Regression coefficients (effect sizes) of the predicted Δ‑values in a Cox PH model with time‑to‑mortality as the outcome, using the LLS data 
and 59 metabolic variables as predictor variables. The predicted Δ‑values were calculated using 4 methods: using ridge regression (method 1), using 
multiple linear regression on a subset of metabolites (method 2), taking a linear combination where each metabolic variable was assigned the same 
weight (method 3), and taking a linear combination where each metabolic variable was assigned a weight randomly drawn from a standard 
uniform distribution, repeated 1,000 times (histogram, method 4; median of histogram values denoted by grey dashed line)
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the biological context. Importantly, as we have proven, 
whether the identical-association assumption holds is 
untestable in a cross-sectional setting. As a consequence, 
one cannot distinguish true markers of biological age 
from false ones in such settings. A candidate marker can 
be correlated with chronological age but be completely 
uninformative of ∆. The opposite holds as well: a candi-
date marker may not be associated with chronological 
age, while being a true marker for ∆. We illustrated that 
unless chronological age and ∆ are equally strongly asso-
ciated with each marker, there is no guarantee that the 
size of the weights that a cross-sectional method assigns 
to candidate markers is informative of the underlying 
truth. The identical-association assumption did not hold 
in the empirical data we considered. It should however be 
noted that we worked with a single real data set which is 
limited in size and scope. Our real data section is there-
fore primarily meant as an illustration of the potential 
practical consequences of constructing a cross-sectional 
biological age predictor if the identical-association 
assumption does not hold. It does not provide evidence 
for or against the extent to which this assumption holds 
in larger data sets or data sets with other types of can-
didate markers. Still, there is evidence that the identical-
association assumption also does not hold in DNAm 
data: Levine et al. [22] regressed a phenotypic age meas-
ure that captured differences in lifespan and healthspan 
on CpG-sites and found that the CpG-sites with the high-
est resulting weights did not correlate with chronologi-
cal age at all. One can think of other realistic scenarios 
in which the strength of association of candidate markers 
of aging diverges between chronological age and ∆: the 
strength of association of a true marker of biological age 
with either chronological age or ∆ might change in differ-
ent periods of the lifespan, might be non-linear, could be 
subject to cohort effects or measurement error, et cetera.

In this paper we chose not to provide a formal defini-
tion or operationalization of biological age, as the key 
message of this paper holds for any definition of biologi-
cal age that is based on the premise that there exists such 
a thing as (a possibly multi-dimensional) biological age, 
that the aging divergence ∆ contains information on one’s 
aging status above and beyond chronological age and that 
it is possible to predict (an aspect of ) ∆. We are aware 
that aging is generally considered a multi-faceted process 
[6, 7] and that some researchers question whether there 
exists a single unitary biological age, as aging is likely not 
a single biological phenomenon [51]. This is an interest-
ing debate in itself: whether or not one finds it reasonable 
to believe in the existence of (one or more) latent bio-
logical age(s) should ideally precede any methodological 
considerations, such as those discussed in this paper. But 
as cross-sectional methods are frequently used for the 

prediction of biological age, we believe there is a value in 
discussing their underlying assumptions in depth.

We are not the first to consider which (statistical) 
assumptions must hold in order for a cross-sectional 
biological age predictor to be truly informative: Hertel 
and al. [52] discussed with great mathematical rigor 
the slightly more general, but closely related problem 
which statistical constraints must hold for the pre-
diction error of prediction scores (in this context: the 
prediction error of predicted chronological age) to be 
informative about hidden biological traits (in this con-
text: biological age). Similar conclusions are drawn: 
Hertel and al. also stress that it is not a sensible pro-
cedure to maximize model fit (they use the illustrative 
term ‘conceptual overfitting’ for the previously men-
tioned biomarker paradox) and state that ideally, pre-
dictor selection should be done on theoretical grounds 
only. In that, the scope of their work differs from ours: 
we focus solely on biological age prediction and discuss 
the assumption that must hold if one starts with a large 
number of candidate predictors from which true mark-
ers of aging are to be identified (as is common within 
the biological aging field) instead of starting from a set 
of known true markers.

Recently Nelson et  al. [53] addressed another impor-
tant concern related to identification of aging mark-
ers based on cross-sectional data: mortality selection 
can bias the identification of markers, up to a point 
where cross-sectional analyses are less likely to identify 
true markers than if markers had been selected at ran-
dom. While Nelson et al. [53] state that this issue can be 
circumvented by only including markers that are known 
to be truly associated with mortality, in our second syn-
thetic data example we illustrated that even in cases 
where all candidate markers are truly associated with 
biological age given chronological age, cross-sectional 
methods might not contribute either to selecting mark-
ers or to proving their validity.

We would like to stress that we do not claim that 
cross-sectional predictors of biological age cannot cap-
ture any signal. Although the identical-association 
assumption might not be realistic, for some (perhaps 
most) candidate markers the direction of a marker’s 
association with chronological age can still be informa-
tive. This also explains why many cross-sectional clocks 
were indeed found to be (weakly) correlated with vari-
ous age-related outcomes [15, 16, 19, 32]: the sign of a 
candidate marker’s association with chronological age 
can be informative or uninformative of its association 
with aging divergence ∆, but it is unlikely to be counter-
informative. Hence, most cross-sectional methods can 
be expected to still capture some signal—but potentially 
not better than any other approach that in some naive 
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or random way assigns weights to markers associated 
with chronological age. We do not reject the possibility 
that markers exist for which the identical-association 
assumption does hold. This assumption may or may not 
hold for different types of markers, but in a cross-sec-
tional setting there is no way to tell.

Since there is no way in which the quality of a bio-
logical age predictor can be assessed using cross-
sectional data alone, it follows that there is no way 
to optimize the quality of biological age predictions 
using cross-sectional data. Therefore, it is likely that 
biological age predictors based on cross-sectional data 
are highly suboptimal—they primarily capture sig-
nals related to chronological age, as also remarked by 
[31]—and that much better predictors could be con-
structed if researchers could work directly with longi-
tudinal data.

This raises the question whether cross-sectional 
methods still have a place in the biological aging pre-
diction landscape, or whether they should be aban-
doned completely in favor of methods that use 
longitudinal (time-to-mortality) data [22–24]. By mak-
ing the reasonable assumption that a higher biological 
age corresponds to a higher mortality risk, these time-
to-mortality-based methods overcome the testability 
issue inherent to cross-sectional methods. The track 
record of these prospective mortality-trained methods 
in predicting various aging-related outcomes is indeed 
better than that of cross-sectional ones [25, 28–30]. 
Nevertheless, due to the relative abundance of cross-
sectional data over longitudinal (time-to-event) data, 
cross-sectional predictors of biological age remain pop-
ular [31]. We think cross-sectional data can still play a 
role if the number of candidate markers is too high for 
to the limited sample size of the longitudinal data that 
is available and/or if there is little prior knowledge on 
the association between the candidate markers under 
consideration and aging divergence ∆,  which in this 
new era of high-dimensional omics-based aging clocks 
is quite a likely scenario. In such a case, cross-sectional 
data could be used to make a pre-selection of markers 
most strongly correlated with chronological age, as one 
might reasonably expect that at least part of these can-
didate markers will also be strongly correlated with ∆. 
Such a pre-selection does not have to be conducted in a 
multivariate way, but can be done per marker, as we did 
in our real data illustration.

Our view is that if longitudinal (aging-related out-
come) data is available, methods using this information 
are to be preferred above cross-sectional ones to develop 
a biological age predictor. Depending on the extent to 
which the identical-association assumption holds in 
the data set under consideration, longitudinal methods 

might be preferred even if the sample size of the avail-
able longitudinal data is much smaller. Furthermore, 
we believe that the sizes of the coefficients of candidate 
markers obtained with cross-sectional methods should 
neither be used nor interpreted. If researchers do decide 
to develop a biological age predictor based on cross-sec-
tional data only, they should be explicit about the under-
lying assumptions of the method they used and to what 
extent these assumptions are expected to hold.

Conclusions
In conclusion, we discussed that the most popular cross-
sectional biological age predictors all use the same 
underlying assumption, which we have called the identical-
association assumption. This assumption is untestable in a 
cross-sectional setting. There is no statistical reason why 
this assumption should hold: it depends on the biologi-
cal context. If it does not hold, weights assigned to candi-
date markers of aging are uninformative of the underlying 
truth, and no more signal may be captured than if mark-
ers would have been assigned weights at random. Any 
researcher interested in developing, using or interpreting 
cross-sectional models of biological age should be aware of 
the inherent limitations of these models.
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