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Abstract 

Background  Group sequential designs incorporating the option to stop for futility at the time point of an interim 
analysis can save time and resources. Thereby, the choice of the futility boundary importantly impacts the design’s 
resulting performance characteristics, including the power and probability to correctly or wrongly stop for futility. 
Several authors contributed to the topic of selecting good futility boundaries. For binary endpoints, Simon’s designs 
(Control Clin Trials 10:1–10, 1989) are commonly used two-stage designs for single-arm phase II studies incorporating 
futility stopping. However, Simon’s optimal design frequently yields an undesirably high probability of falsely declar-
ing futility after the first stage, and in Simon’s minimax design often a high proportion of the planned sample size 
is already evaluated at the interim analysis leaving only limited benefit in case of an early stop.

Methods  This work focuses on the optimality criteria introduced by Schüler et al. (BMC Med Res Methodol 17:119, 
2017) and extends their approach to binary endpoints in single-arm phase II studies. An algorithm for deriving opti-
mized futility boundaries is introduced, and the performance of study designs implementing this concept of optimal 
futility boundaries is compared to the common Simon’s minimax and optimal designs, as well as modified versions 
of these designs by Kim et al. (Oncotarget 10:4255–61, 2019).

Results  The introduced optimized futility boundaries aim to maximize the probability of correctly stopping for futility 
in case of small or opposite effects while also setting constraints on the time point of the interim analysis, the power 
loss, and the probability of stopping the study wrongly, i.e. stopping the study even though the treatment effect 
shows promise. Overall, the operating characteristics, such as maximum sample size and expected sample size, are 
comparable to those of the classical and modified Simon’s designs and sometimes better. Unlike Simon’s designs, 
which have binding stopping rules, the optimized futility boundaries proposed here are not adjusted to exhaust 
the full targeted nominal significance level and are thus still valid for non-binding applications.

Conclusions  The choice of the futility boundary and the time point of the interim analysis have a major impact 
on the properties of the study design. Therefore, they should be thoroughly investigated at the planning stage. The 
introduced method of selecting optimal futility boundaries provides a more flexible alternative to Simon’s designs 
with non-binding stopping rules. The probability of wrongly stopping for futility is minimized and the optimized futil-
ity boundaries don’t exhibit the unfavorable properties of an undesirably high probability of falsely declaring futility 
or a high proportion of the planned sample evaluated at the interim time point.
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Background
Single-arm trials with binary endpoints are commonly 
used in oncological phase II studies. For example in 
the field of oncology, some trials rely on response rate 
as short-term endpoints to scan for an early indica-
tion of anti-tumor activity as a go or no-go decision for 
conducting further large phase III trials. Adaptive trial 
designs offer the benefit of possibly faster decisions due 
to the opportunity for early termination. The option to 
stop for futility is an important feature in adaptive tri-
als, especially in phase II trials when screening for pos-
sible treatments plays a much greater role than proof of 
efficacy. It is important that the decision on which treat-
ments to continue investigating is reliable and made as 
soon as possible so that the number of patients treated 
with potentially ineffective treatments is minimized. 
Therefore, several authors investigated the theory behind 
optimal futility boundaries in general [1–5] and the time 
point of the interim analysis [6, 7]. There are many dif-
ferent two-stage designs for single-arm phase II clinical 
trials with binary endpoints. The first one was introduced 
by Gehan [8] in 1961. Simon’s two-stage designs [9] from 
1989 were commonly used in practice and numerous 
adaptations of this design have been investigated. The 
most well-known are the admissible two-stage designs 
by Jung et  al. [10] which present a trade-off between 
Simon’s optimal and minimax design. However, the bal-
ance between the sample sizes of the first and second 
stages is rarely taken into account, even though it is 
important to achieve a good ethical benefit: If the interim 
analysis for futility is carried out with too little data, cor-
rect decision-making will be difficult and if the interim 
analysis is conducted at a late time point a potential early 
stop provides hardly any benefit in patient saving, as e.g. 
Lawrence Gould points out [7]. Kim et  al. [11] contrib-
uted to incorporating a reasonable time point for the 
interim analysis into Simon’s designs. They put an upper 
and a lower bound on the time point, among other con-
straints, and used the expected sample size under the null 
hypotheses and the total sample size as the optimization 
criteria for the modified versions of Simon’s optimal and 
minimax designs, respectively. In most of the previous 
works, the expected sample size is a key performance 
parameter for futility stopping boundaries. Although this 
is an important operational characteristic, it should not 
be used as the only performance measure. Some existing 
works [12, 13] investigate the sample size together with 
the power as a combined performance score. The overall 
power has to be controlled in clinical trials [14] to favor 
positive results when the null hypothesis should indeed 
be rejected. Therefore, the power loss introduced by futil-
ity stopping is also an important performance measure. 
Also, the probability of wrongly stopping for futility at 

the interim analysis should be low for not throwing the 
existing resources of conducting the trial in vain. Schül-
er’s and Li’s publications [15, 16] investigate futility 
stopping boundary based on both power loss and prob-
ability of wrongly stopping for futility while maximizing 
the probability of correctly stopping for futility. Schüler 
et al. (2017) discussed these optimality criteria for futil-
ity boundaries for the special case of trials with (multiple) 
time-to-event endpoints [15]. Their concept was adopted 
by Li et al. for continuous endpoints [16].

There are two types of futility stopping boundaries: 
binding and non-binding. When using a binding rule, 
the trial must be stopped when the corresponding crite-
ria are fulfilled – regardless of external input and other 
factors. In exchange, the critical boundaries (i.e. the 
thresholds for the actual testing) can be increased to fully 
exhaust the targeted nominal significance level α . This 
is because the option of stopping for futility reduces the 
probability of rejecting the null hypothesis, which also 
reduces the power [17]. This adjustment of the criti-
cal boundary could allow a smaller sample size needed 
to meet the desired values for β and overall α . However, 
if a binding stopping rule for futility is ignored and the 
study nevertheless continues to the second stage the 
overall type I error rate is inflated, as binding bounda-
ries are derived with an assumption requiring early stops 
whenever the boundary is crossed. This is not the case 
with non-binding rules. There, no critical boundary can 
be adjusted and the study can continue e.g., if external 
information suggests that the criteria have been set too 
strictly or a secondary endpoint seems promising. Non-
binding rules are more commonly applied in conducted 
clinical trials, as flexibility is preferred and stopping for 
futility often is a multidimensional decision not solely 
based on the interim results but also including the total 
evidence of the data like e.g. toxicity and also new exter-
nal data can sometimes influence the decision in addition 
to the interim data generated by the trial in question. In 
our approach, we will not adjust the critical boundary to 
allow for this kind of flexibility and non-binding deci-
sions. However, in absence of solid reasons adherence to 
the stopping rule is expected in order to protect patients 
from inefficacious regimens – even if non-binding futility 
boundaries are used.

The methods by Simon and Kim et al. adjust the criti-
cal boundaries incorporating the binding futility stopping 
rules so that overall the type I error will be controlled 
by the pre-specified targeted nominal significance level 
α . This means the assumption that the binding rule is 
strictly followed is part of the design algorithm search-
ing for the critical boundaries while controlling the type I 
error. By translating the critical boundaries to the p-value 
scale, this results in a threshold higher than the targeted 



Page 3 of 10Freitag et al. BMC Medical Research Methodology           (2024) 24:80 	

nominal significance level α , in case of non-adherence to 
the binding rule.

Methods
After introducing some notations for binary endpoints, 
we extend Schüler’s definition of “optimal” futility bound-
aries to single-arm studies with a single binary endpoint. 
First, we introduce the analytic algorithm to derive 
these futility boundaries. Then the performance of study 
designs with an optimized futility boundary are com-
pared to Simon’s minimax and optimal designs, as well as 
modified versions of these designs by Kim et al. [9, 11].

The test problem
Consider a single-arm, two-stage design with a binary 
endpoint variable Yi = 1 if the event occurs and Yi = 0 if 
it does not, with i = 1 . . . n for a given sample size n. In 
the first stage, n1 patients are evaluated, and in the sec-
ond stage n2 = n− n1 patients. For pre-specified null and 
alternative response proportions p0 and pa with p0 < pa , 
the test problem reads as

The value p0 denotes the maximum response prob-
ability so that the treatment would be deemed unsuc-
cessful and pa is the minimum response probability in 
order to warrant further studies. If for the true response 
probability it holds that p ≤ p0 the probability to reject 
the null hypothesis should be below a pre-specified tar-
geted nominal significance level α . If it holds that p ≥ pa 
this probability should be above the pre-specified power 
level 1− β . However, rejecting the null hypothesis does 
not necessarily imply for the true response rate to be 
larger than pa which the study is powered for. Suppose 
x1 , x2 , and x are the number of responses from the first 
stage, the second stage, and the total responses from both 
stages combined, respectively. The trial will be stopped 
after the first stage if x1 ≤ r1 out of n1 patients, where r1 
is the futility threshold. Otherwise, the trial proceeds to 
the second stage, and additional n2 patients are recruited. 
If x > r the new treatment is considered effective, oth-
erwise the trial fails to reject the null hypothesis. Due 
to limited sample size in these designs, test statistics are 
based on the exact binomial test, evaluating the exact 
ratio of r and n. The rejection region is defined as

The corresponding probability is calculated as the 
sum of the conditional probability of x2 given x1 where 
b(r,  n,  p) denotes the binomial probability mass func-
tion and B(r, n, p) the cumulative binomial distribution 
function:

(1)H0 : p ≤ p0 versus H1 : p > p0.

(2)� = {(x1, x) : x1 > r1 and x > r}.

The required sample size n to achieve the desired tar-
geted nominal significance level α and power 1− β is 
determined together with r1 and r. The overall probability 
to reject H0 after stage 2 can be controlled by the global 
level α as

It should be noted that even though α and β are set as 
desired targeted type I and type II error rates they are 
usually not reached exactly. They instead act as upper 
boundaries for the actual design specific error rates 
αd ≤ α , and βd ≤ β as the test statistic is non-continuous.

Simon’s and the modified Simon’s two‑stage designs
For given values of α , β , the upper bound for the sam-
ple size nmax and given rates p0 and pa Simon’s designs 
are characterized by four values r1 , n1 , r, and n. Within 
all possible tuples (r1, n1, r, n) fulfilling the desired con-
straints for α (as in the Eq. 4), β and nmax , Simon’s opti-
mal design selects the one, that minimizes the expected 
sample size under the null hypothesis and Simon’s mini-
max design the one that minimizes the maximum sample 
size n. Kim’s modified minimax and optimal designs [11] 
put two additional constraints on the tuples - namely, a 
bound for the probability of wrongly stopping for futility 
and a range for the proportion of the sample size evalu-
ated at the interim analysis. The same criteria to select 
the optimal tuple as in Simon’s designs are applied.

In the case of Simon’s optimal design, the probability 
of wrongly stopping for futility can be undesirably high. 
In the minimax design, often such a large proportion of 
the total number of cases is evaluated at interim that the 
benefit from the interim analysis is limited. The modified 
Simon’s optimal and minimax designs and the introduced 
optimized futility boundaries address those issues and 
keep the corresponding characteristics in pre-specified 
bounds.

Optimality criteria for futility boundaries
Various criteria are quantifying the performance of 
adequate futility boundaries. One goal is to avoid the 
power loss caused by the option of an early futility stop 
becoming too large if the alternative hypothesis holds 

(3)

min(n1,r)

i=r1+1

P(x1 = i)P(x2 > r − i|x1 = i)

=

min(n1,r)

i=r1+1

b(i, n1, p) · (1− B(r − i, n2, p)).

(4)

1− [B(r1, n1, p0)

+

min(n1,r)
∑

i=r1+1

b(i, n1, p0)B(r − i, n2, p0)] ≤ α.
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true. In this regard, the interim analysis should make 
as many correct decisions as possible. Thus, the prob-
ability of stopping correctly for futility should be as 
high as possible and the probability of stopping incor-
rectly as low as possible. Unfortunately, it is not pos-
sible to optimize all those performance measures at the 
same time. If the stopping boundary at interim is large, 
we will often stop correctly, but the power loss can 
be very high and the study may too often be stopped 
wrongly. On the other hand, if the boundary is weak 
(i.e. a small boundary value for the responses), the loss 
of power is small, but at the same time, it is also rare to 
stop correctly if there is only a very small effect or even 
an opposite effect. One approach is to find a balance 
between these characteristics. In this sense, admis-
sible conditions for selecting futility boundaries were 
defined in the paper by Schüler et  al. (2017) for time-
to-event endpoints and adopted in a paper by Li et al. 
(2020) to continuous endpoints [15, 16]. The basic idea 
is to maximize the probability of correctly stopping for 
futility under the null hypothesis, i.e., to increase the 
probability of correctly identifying very small or oppo-
site treatment effects in the interim analysis while keep-
ing both the loss of global power under the alternative 
limited as well as the probability of incorrectly stopping 
for futility.

Some parameters are introduced for this concept: Let 
Powloss < 1− β denote the acceptable overall power 
loss compared to the power that would be reached in 
a trial with the same total sample size but without an 
interim analysis. This sample size refers to the small-
est providing at least a power of 1− β in a one stage 
trial. Moreover, the probability of wrongly stopping for 
futility, i.e. the probability of early termination under 
pa PET(pa ), should be limited by πwrong ∈ [0, 1] given 
the underlying treatment effect is in fact at least the 
assumed minimally relevant effect pa . The publications 
by Schüler et al. and Li et al. apply a different method 
of formalizing the stopping rule than the one we intro-
duced for Simon’s designs [15, 16]. There the study is 
stopped for futility if the p-value at the time point of 
the interim analysis is pinterim > α0 , where α0 is the 
futility boundary. The null hypothesis H0 is rejected at 
the final analysis if the corresponding p-value is smaller 
or equal to the one-sided significance level ptotal ≤ α . 
Both methods of formalizing the stopping rule can 
equivalently be converted into each other. Using the 
p-value notation for decision-making, a futility bound-
ary fulfills the so-called admissible conditions [15, 16] 
if the following requirements are satisfied: 

1.	 Ppa(pinterim > α0) = PET(pa ) ≤ πwrong,
2.	 Ppa(pinterim < α0 ∩ ptotal ≤ α)) ≥ 1− β − Powloss.

Any futility boundary fulfilling the admissible condi-
tions is denoted as α0,ad . For predefined values Powloss 
and πwrong there exists a whole set of admissible futil-
ity boundaries fulfilling the above conditions. Within 
this set, the “optimal” futility boundary is selected as 
the one with the highest probability of correctly stop-
ping for futility, i.e. the probability of early termination 
under p0 , given by PET(p0 ). Although there are more 
elegant mathematical approaches to define good futility 
boundaries, like optimization problems with constraints 
[3, 4] or maximizing utility functions [5], the advantage 
of Schüler’s approach is that this concept of “optimized” 
futility boundaries is simple and easy to communicate to 
applied researchers. The expression “optimized” refers 
to the investigated performance indicators and there is 
no claim to a universal best solution. In the publications 
of Schüler and Li, the interim analyses were conducted 
when half of the total sample size had been reached [15, 
16]. Commonly a futility boundary for the p-value of 0.5 
is implemented in clinical trials with these kinds of end-
points as it prompts to stop the trial whenever the treat-
ment effect points in the wrong direction. For example, 
the software ADDPLAN sets this value as the default [18] 
and the R-package rpact uses this value for its illustrating 
examples of the use of futility boundaries [19]. Therefore, 
these publications use the boundary value 0.5 as a refer-
ence point even though there is no unique standard. The 
futility boundaries found by the introduced method were 
mostly smaller than 0.5 and provided in many cases bet-
ter performance characteristics than the designs with the 
standard futility boundary of 0.5. However, the works of 
Schüler et al. and Li et al. [15, 16] refer to two-armed tri-
als with time-to-event or continuous endpoints, and the 
performance for a single-arm trial with a binary endpoint 
was not yet evaluated.

Application to the single‑arm, binary case
We apply the general formulation of admissible condi-
tions from Schüler and Li [15, 16] to the specific case of 
a binary endpoint in a single-arm trial. For this purpose, 
we rephrase the admissible conditions in terms of bound-
aries for the response rates instead of boundaries for 
p-values. Additionally, we describe the algorithm used to 
derive optimized boundaries.

First, the sample size (and also the critical value r) 
are selected such that a given effect can be detected 
with power 1− β and a one-sided targeted nominal sig-
nificance level α in a study without an interim analysis. 
Next, r1 and n1 are selected by determining all admis-
sible values for n1 and r1 and then maximizing PET(p0 ) 
over this set. In this process, the critical boundary is not 
adjusted. Thus, the calculated bounds allow for the flex-
ibility of non-binding futility decisions. The constraints 
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on the admissible designs are similar to those in Schül-
er’s approach, which also used constraints for power loss 
Powloss and the probability of wrongly stopping for futility 
πwrong . Here, in addition to Powloss and πwrong , the interim 
analysis is not necessarily performed at 50% of the total 
sample size. So an additional condition for the interim 
time point is added and bounds ( ratiolower and ratioupper ) 
for the ratio of n1 to n can be specified by the user. Within 
these admissible boundaries, the probability of correctly 
stopping for futility PET(p0 ) is maximized.

The applied admissible conditions for the selection of r1 
and n1 are: 

1.	 ratiolower ≤ n1
n ≤ ratioupper,

2.	 B(r1, n1, pa) = PET(pa ) ≤ πwrong,

3.	 1−
(

∑min(n1,r)
i=r1+1

b(i, n1, pa) · B(r − i, n2, pa)+

B(r1, n1, pa)
)

≥ 1− β − Powloss.

Results
We compare the optimized design with Simon’s designs 
and Kim’s modified Simon’s designs. Additionally to the 
here presented results, we provide as Supplementary 
material an R-program which calculates the optimized 
futility boundaries for arbitrary pre-specified design 
parameters, and tables with specific design characteris-
tics for additional scenarios.

Investigated scenarios and operating characteristics
We have selected six operating characteristics based on 
which we want to compare the introduced optimized 
design with Simon’s optimal and minimax designs and 
Kim’s modified versions of these designs. The selected 
operating characteristics are: 

1.	 the proportion of patients evaluated at the interim 
analysis, i.e. n1/n,

2.	 the probability of wrongly stopping for futility at the 
interim analysis, i.e. the probability of early termina-
tion under the alternative hypothesis PET(pa),

3.	 the probability of correctly stopping for futility at the 
interim analysis, i.e. the probability of early termina-
tion under the null hypothesis PET(p0),

4.	 the actual type I error when ignoring the futility 
boundary, i.e. αd

no stop,
5.	 the actual power, i.e. 1− βd,
6.	 the maximum sample size and the expected sample 

sizes under the null and alternative hypothesis, i.e. 
n = nmax , EN(p0 ), and EN(pa ) respectively.

The proportion of patients evaluated at the interim 
analysis n1/n should neither be too high nor too low 
to benefit most from the interim analysis, as described 

earlier [7]. As bounds for the fraction of patients  
investigated at the time point of the interim analysis, 
we selected ratiolower = 1/3 and ratioupper = 2/3 for 
all investigated scenarios. The probability of wrongly 
stopping for futility PET(pa ) should be as low as pos-
sible so that more data can be collected on promis-
ing treatments. The exact admissible value is subject 
to the user’s choice. We selected πwrong = 0.05 as the 
admissible parameter for the investigation. The prob-
ability of correctly stopping for futility PET(p0 ) should 
be as high as possible so that a high proportion of cor-
rect decisions is made at the interim analysis and fewer 
resources are used for futile treatments. Since deci-
sions in the industry are often not solely based on the 
number of responses when they are in the margin area 
and sometimes additional external data is investigated, 
it is interesting to examine the type I error when not 
adhering to the stopping rule αd

no stop and treating the 
boundaries as non-binding. It would be desirable if in 
this case, the actual type I error would still be below 
α = 0.05 , but it could be inflated if the critical boundary 
was adjusted upwards due to binding futility stopping 
rules. For binary endpoints, the targeted power and the 
actual power often don’t match and the actual power 
can be higher. The actual power is subject to the tar-
geted power and the admissible power loss which we set 
for these investigations to Powloss = 0.05 . The higher the 
power the better. The last investigated operating char-
acteristics, maximum sample size and expected sam-
ple sizes under the null and alternative hypotheses, are 
measures for the cost of the trial. The lower the sample 
sizes the fewer resources are needed and the faster the 
trial can be conducted.

In the following, we investigate these characteristics for 
possible designs with an assumed effect of pa − p0 = 0.15 
and error rates α = 0.05 and β = 0.2 using a step width 
of 0.05 for p0.

Performance comparison
Figure  1 depicts the proportion of the sample size that 
is evaluated at the interim analysis. For the optimized 
design and Kim’s modified Simon’s designs a range for 
this ratio is pre-specified in the planning stage but the 
actual ratio is subject to the results of the algorithms. 
Simon’s original designs don’t set any constraints on 
this ratio. The x-axis gives the value for the null hypoth-
esis p0 . The alternative hypothesis pa always corre-
sponds to the value p0 + 0.15 . The exact study designs 
(r1, n1, r, n) are not given in the figures but can be found 
in tables in the Supplementary material. The blue lines 
in the figures depict the classical Simon’s designs, the 
violet ones the modified Simon’s designs, and the green 
line the introduced new approach. For example, for the 
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value 0.25 on the x-axis, we get the ratio of n1 to n for 
p0 = 0.25 and pa = 0.4 for the five designs. In Simon’s 
optimal design (r1, n1, r, n) = (5, 20, 23, 71), a ratio of 
0.28 of the total sample size is evaluated at the interim 
analysis, and in Simons’s minimax design (r1, n1, r, n) = 
(16, 51, 20, 60) a ratio of 0.85. In Kim’s modified Simon’s 
optimal design (r1, n1, r, n) = (6, 24, 22, 67) and mini-
max design (r1, n1, r, n) = (10, 40, 21, 62) these values are 
0.36 and 0.65 respectively. The introduced new design 
(r1, n1, r, n) = (10, 39, 21, 62) evaluates a ratio of 0.63 at 
the interim analysis. The orange lines indicate the bounds 
ratiolower = 1/3 and ratioupper = 2/3 that were set in 
the planning stage. These bounds are an indicator of the 
performance as it is important for an efficient interim 
analysis that neither too few patients are included nor the 
proportion of the total data is too high. Simon’s designs 
often lie outside this range, as illustrated in Fig. 1 and the 
example above. The optimized design and Kim’s modified 
Simon’s designs are an improvement in this regard. The 
optimized designs often nearly exhaust the upper bound 
for the ratio whereas Kim’s modified optimal design tends 
towards the lower bound.

The probability of wrongly stopping for futility PET(pa ) 
which is the probability of early termination under the 
alternative hypothesis Ha is always below the predefined 
threshold for the introduced optimized design (as depicted 
in Fig. 2). The figure shows that for the other designs this 
probability is much higher and goes as high as 18.9% for 
p0 = 0.5 and pa = 0.65 in Simon’s minimax design. This 
means that they spend a much higher proportion of the 
allowed type II error rate after the first stage. Note how-
ever that it was a design choice for the modified Simon’s 
designs by Kim to control the probability of wrongly stop-
ping for futility more loosely at 0.1. This input parameter 

(as well as the other input parameters) could easily be 
modified to accommodate the more strict 0.05 boundary 
but this would result in higher expected sample sizes as the 
ones depicted later in this Results section.

The probability of correctly stopping for futility 
PET(p0 ) in the introduced optimized design is mostly 
higher than in Kim’s modified Simon’s designs, see Fig. 3, 
even though the probability of wrongly stopping for futil-
ity is mostly lower. This makes the optimized design a 
better choice than the modified designs with regard to 
the proportion of correct decisions. The original Simon’s 
designs often have a higher probability of correctly stop-
ping for futility than the modified designs and the intro-
duced design. This is to be expected since the probability 
of wrongly stopping for futility is often also much higher 
and these values are correlated.

Fig. 1  Ratio of n1 to n for pa − p0 = 0.15 , α = 0.05 and β = 0.2 . The 
dotted lines show the set boundaries for the proportion of n1 to n, 
here 1/3 and 2/3

Fig. 2  Probability of early termination under the alternative hypothesis 
pa for pa − p0 = 0.15 , α = 0.05 and β = 0.2 . PET(pa ) corresponds 
to the probability of wrongly stopping for futility at the interim analysis

Fig. 3  Probability of early termination under the null hypothesis 
p0 for pa − p0 = 0.15 , α = 0.05 , and β = 0.2 . PET(p0 ) corresponds 
to the probability of correctly stopping for futility at the interim 
analysis
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All designs keep the prespecified type I error rate of 
0.05 if the investigators follow the futility sopping rules. 
If they should for some reason choose to continue the 
trial nevertheless this is not always the case, as shown 
in Fig.  4. Simon’s designs and Kim’s modified designs 
do not consistently keep the type I error rate if the futil-
ity boundaries are treated as non-binding. Especially 
for Simon’s optimal design, the type I error can get very 
inflated up to about 7% for p0 = 0.2 and pa = 0.35 . This 
is because those designs apply binding futility stopping 
rules with adjusted critical boundaries. In contrast, by 
construction, the introduced method to derive optimized 
futility boundaries keeps the type I error under the pre-
defined targeted nominal significance level of 0.05 even if 
the stopping rules are not adhered to.

Figure  5 shows that the admissible power loss Powloss 
is often not exhausted in the introduced design and 
often even higher power than the targeted power 1− β 
is reached. The targeted power 1− β is marked by a dot-
ted line in Fig. 5. Possibly reaching a higher power than 
the target value is caused by the nature of binary end-
points. Sometimes the power in the introduced design 
is even higher than in the other four designs. Whenever 
the power is lower, it is within the bounds of the prede-
fined power loss. Naturally, it is difficult to compare a 
design that allows power loss below the targeted value 
1− β to designs without this kind of power loss. One 
could increase the targeted power for the design by 
the accepted power loss (i.e. setting 1− β + Powloss as 
the targeted power value in the original design without 
interim stopping) to get only power values higher than 
1− β in the introduced optimized design.

Figure 6 shows the maximal sample size n = nmax and 
the expected sample sizes under the alternative and the 
null hypothesis EN(pa ) and EN(p0 ). Simon’s optimal 
design and Kim’s modified version of Simon’s optimal 
design yield a smaller expected sample size under the null 

Fig. 4  Type I error rate when not adhering to the stopping 
rule and always proceeding to the second stage αd

no stop 
for pa − p0 = 0.15 , α = 0.05 and β = 0.2 . The introduced optimized 
design always keeps the type I error rate even if the stopping rules 
are not adhered to

Fig. 5  Power for pa − p0 = 0.15 , α = 0.05 and β = 0.2 . Only 
on a few occasions, a power loss below 80% can be observed. This 
loss is always within the boundaries of the predefined admissible 
power loss Powloss

Fig. 6  Sample sizes for pa − p0 = 0.15 , α = 0.05 and β = 0.2 . Left is the maximal sample size, in the middle is the expected sample size 
under the alternative hypothesis, and right is the expected sample size under the null hypothesis
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hypothesis than the introduced optimized design and the 
minimax designs of Simon and Kim. This was expected as 
a minimal expected sample size under the null hypothesis 
is the optimization criterion for those designs. However, 
they have a higher maximal sample size and expected 
sample size under the alternative hypothesis compared 
to the other designs. The optimized design’s maximal 
sample size and the expected sample size under the alter-
native hypothesis are within a close range of those from 
Simon’s minimax design. Only three times the differ-
ence for these measures is 3 or more patients and they 
are often the same as those for Kim’s modified Simon’s 
minimax design. Only three times the maximum sam-
ple sizes of the introduced optimized design and Kim’s 
modified minimax design differ from each other. Also for 
the expected sample size under the null hypothesis, we 
get quite similar values between these three designs. So 
if one wants to decide between these three designs, the 
decision can be based on the other operating character-
istics instead.

The exact designs and operating characteristics for 
these scenarios are provided as a table in the Supplemen-
tary material. It also includes tables for the design speci-
fications (α,β) = (0.1, 0.1) , and (α,β) = (0.05, 0.1) , as 
well as for other values of Powloss , and πwrong . These addi-
tional scenarios in general give a similar picture for the 
comparison of the five designs. The selection of stricter 
boundaries for Powloss and πwrong in the introduced opti-
mized design affects only r1 and n1 but not r and n. It 
yields higher values for EN(p0 ) and EN(pa ) and smaller 
values for PET(p0).

Discussion
Since ensuring the correctness of interim decisions is 
crucial, it is necessary to investigate the implications 
of different futility boundaries. In the case of single-
arm studies with binary endpoints, often the futility 
boundaries from Simon’s designs are used. However, 
these designs have limitations and do not yield the most 
promising performance characteristics, as shown in 
the Results section. Several authors have addressed the 
shortcomings of Simon’s optimal and minimax designs 
in the past by altering and improving the designs [10, 11, 
20–22]. Kim’s modified Simon’s designs address two of 
the known issues of Simon’s designs - namely, that they 
can evaluate a high proportion of the planned sample size 
at the time point of the interim analysis and that they can 
yield an undesirably high probability of falsely declaring 
futility after the first stage. Kim’s designs also perform 
well in terms of the other investigated operating charac-
teristics power and expected and maximal sample size. 
They provide an improvement to Simon’s designs and 
can be used effectively in clinical practice. Kim’s modified 

designs follow the logic of Simon’s designs with the opti-
mal design performing better with regard to the expected 
sample size and the minimax design performing better 
with regard to the maximum sample size. The optimized 
design introduced here follows a different approach. The 
benefit of this approach is that it is easy to communicate 
to clinicians through a clear discussion about the desired 
study characteristics a priori: The sample size n and the 
efficacy boundary expressed in responders r are deter-
mined by designing a fixed trial, i.e. as if no interim anal-
ysis would take place. Then, the investigators can decide 
what power loss they would be willing to risk, how high 
the probability of wrongly stopping for futility should be 
at most, and in what range the interim analysis should be. 
The introduced optimized design gives the design with 
the highest probability of correctly stopping for futil-
ity while meeting these constraints. We also provide a 
straightforward R-program for implementation. Due to 
the fact that we didn’t increase the critical boundaries, 
the boundaries could be treated as non-binding bounda-
ries. The type I error rate would still be protected in con-
trast to the binding rules of Simon’s optimal and minimax 
designs and Kim’s modified versions of those.

However, for non-binding futility stopping rules it is 
unclear how to make inference on interim-look adjusted 
confidence intervals. Therefore, in applications where 
inference on simultaneous confidence intervals is desired, 
an approach using binding futility boundaries should be 
preferred [23]. For Simon’s designs e.g. the method intro-
duced by Koyama and Chen or Zhao et al. can be applied 
to deduce adjusted confidence intervals [24, 25].

Kim’s optimal and minimax designs and the intro-
duced optimized design generally perform better than 
Simon’s optimal and minimax designs in terms of the 
proportion of patients evaluated at the interim analy-
sis and the probability of wrongly stopping for futil-
ity. They should therefore be preferred over Simon’s 
designs and we will focus the following discussion on 
the selection process between the introduced opti-
mized design and Kim’s modified designs. As the first 
step in this selection process, investigators need to 
weigh whether the expected sample size under the null 
hypothesis is more important to them or the propor-
tion of correct interim decisions and the flexibility of 
non-binding futility stopping rules. When prioritiz-
ing the expected sample size under the null hypothesis 
over all else, Kim’s modified optimal design should be 
used. This design yields an expected sample size under 
the null hypothesis which is nearly as low as the one of 
Simon’s optimal design and it is much lower than the 
ones for the introduced optimized design and Kim’s 
minimax design. However, the maximum sample size 
is higher than for the other two designs, and the type 
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I error can get quite inflated when ignoring the futil-
ity rule in the interim analysis. Therefore, one should 
select another design when the expected sample size 
under the null hypothesis is not the most important 
characteristic. The costs of Kim’s modified minimax 
design and the introduced optimized design in terms 
of expected and maximum sample sizes are very simi-
lar as seen in the Performance comparison section. 
The probability of wrongly stopping at the interim 
analysis is also quite close for both designs, with some-
times one, sometimes the other performing slightly 
better. The probability of correctly stopping for futility 
shows a slight tendency toward the introduced opti-
mized design as it is often higher for this design. The 
power also doesn’t ground a clear decision. So when 
deciding between those two designs, the primary con-
sideration is having the option for non-binding futility 
rules. This has a major impact on the trial. The exten-
sion of the CONSORT statement for adaptive designs 
[26] emphasizes the importance of stating whether 
binding or non-binding futility rules are used, as 
ignoring binding futility rules can substantially inflate 
the type I error rate. In the pharmaceutical industry, 
non-binding futility rules are typically used because 
the decision to continue or not is often based on more 
than just the number of responses. The additional flex-
ibility of non-binding rules allows for quick adaptation 
to unforeseen trends and is therefore important for 
industry [17]. The Center for Biologics Evaluation and 
Research (CBER) at the FDA reported multiple cases 
in which supposedly binding futility boundaries were 
ignored. Sponsors should therefore also investigate the 
type I error without accounting for any futility analyses 
[27]. The FDA guidance document on adaptive designs 
notes that non-binding futility rules are often appro-
priate and preferred by some data monitoring commit-
tees [28]. Therefore, the introduced optimized design 
is recommended in this case, because it adds flexibility 
to futility rules for binary endpoints.

The provided R-program enables investigators to per-
sonalize the design for desired scenarios with varying 
values for the power loss and the probability of wrongly 
stopping for futility to find the most suitable param-
eters for the planned study. The design implications 
are thus easy to calculate and communicate which is a 
requirement of the regulatory guidance provided by the 
FDA [28] and EMA [29] for confirmatory trials.

Conclusions
The choice of futility boundaries and the timing of the 
interim analysis can significantly impact performance 
characteristics. Therefore, they should be thoroughly 

investigated. While Simon’s designs are well-known, 
they may not always produce desirable operating char-
acteristics. They may have a high proportion of incor-
rect interim decisions or patients evaluated at the 
interim analysis. Other designs incorporating futil-
ity stopping for binary endpoints should thus be pre-
ferred. For instance, Kim’s modified Simon’s designs 
offer a good alternative and can be recommended in 
case binding stopping rules are sufficient for the appli-
cation. The concept introduced here that selects an 
optimized futility boundary also addresses these issues 
of Simon’s designs. It allows controlling the power loss 
and the probability of wrongly stopping for futility 
while maximizing the probability of correctly stopping 
for futility. Additionally, it provides greater flexibility 
by allowing for non-binding futility stopping rules. The 
costs of the introduced design compared to the mini-
max designs of Simon and Kim are minimal. So we sug-
gest selecting the introduced optimized design offering 
higher flexibility when deciding between the three. If 
the expected sample size under the null hypothesis is of 
the highest importance for the design and binding stop-
ping rules are acceptable Kim’s optimal design should 
be preferred. When selecting the introduced optimized 
design, we recommend additionally investigating the 
optimized futility boundaries over a range of possible 
parameters and comparing the corresponding perfor-
mance characteristics in order to select the best set-
tings for the specific use case.
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