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Abstract 

Background Laboratory data can provide great value to support research aimed at reducing the incidence, prolong-
ing survival and enhancing outcomes of cancer. Data is characterized by the information it carries and the format it 
holds. Data captured in Alberta’s biomarker laboratory repository is free text, cluttered and rouge. Such data format 
limits its utility and prohibits broader adoption and research development. Text analysis for information extraction 
of unstructured data can change this and lead to more complete analyses. Previous work on extracting relevant 
information from free text, unstructured data employed Natural Language Processing (NLP), Machine Learning (ML), 
rule-based Information Extraction (IE) methods, or a hybrid combination between them.

Methods In our study, text analysis was performed on Alberta Precision Laboratories data which consisted of 95,854 
entries from the Southern Alberta Dataset (SAD) and 6944 entries from the Northern Alberta Dataset (NAD). The 
data covers all of Alberta and is completely population-based. Our proposed framework is built around rule-based 
IE methods. It incorporates topics such as Syntax and Lexical analyses to achieve deterministic extraction of data 
from biomarker laboratory data (i.e., Epidermal Growth Factor Receptor (EGFR) test results). Lexical analysis compro-
mises of data cleaning and pre-processing, Rich Text Format text conversion into readable plain text format, and nor-
malization and tokenization of text. The framework then passes the text into the Syntax analysis stage which includes 
the rule-based method of extracting relevant data. Rule-based patterns of the test result are identified, and a Context 
Free Grammar then generates the rules of information extraction. Finally, the results are linked with the Alberta Cancer 
Registry to support real-world cancer research studies.

Results Of the original 5512 entries in the SAD dataset and 5017 entries in the NAD dataset which were filtered 
for EGFR, the framework yielded 5129 and 3388 extracted EGFR test results from the SAD and NAD datasets, respec-
tively. An accuracy of 97.5% was achieved on a random sample of 362 tests.

Conclusions We presented a text analysis framework to extract specific information from unstructured clinical data. 
Our proposed framework has shown that it can successfully extract relevant information from EGFR test results.
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Introduction
Real world studies leveraging data from electronic health 
records and administrative data can have a considerable 
impact on clinical practice [1, 2]. However, these studies 
are often limited by a lack of laboratory data, which are 
becoming increasingly important with the rise in targeted 
therapies and biomarkers of treatment response. One of 
the reasons for the lack of this data in real-world stud-
ies is that the data is typically stored in an unstructured 
manner as free text or notes. Information Extraction (IE) 
of unstructured clinical and laboratory data can augment 
real-world datasets and can lead to more complete analy-
ses. One of the most prevalent methods for IE is Natu-
ral Language Processing (NLP), as initially explored in 
the context of medical study by Spyns in 1996 [3]. Since 
these early studies, several applications have evaluated 
NLP using various rule-based approaches to extract clini-
cal patient data from mammography reports and hospital 
records of diabetic patients [4].

In this study, we applied a formalized method of 
extracting Epidermal Growth Factor Receptor (EGFR) 
test results from free text, structured data. Among Non-
Small Cell Lung Cancer (NSCLC) patients a notable 
proportion of patients will have a mutation in the EGFR 
gene. Molecular therapies known as tyrosine kinase 
inhibitors (TKI) have been developed to target these 
mutations within the cancer cells. These treatments have 
been shown to have a meaningful impact on cancer out-
comes in these patients. In many health data settings, 
the results from the tests come from non-standardized 
reports and free-text results from disperse laboratory 
reports. We aimed to harmonize these EGFR data and 
develop a systematic approach to extract a large volume 
of these free-text testing data. The original data were pro-
vided by the Alberta Precision Laboratories. The main 
goal was to extract the EGFR test result which is the iden-
tification or detection of a gene mutation from advanced 
NSCLC.

A rule-based method for IE can start with Lexical Anal-
ysis. Lexical Analysis in computer science is the first pro-
cess in a compiler which takes the input text file, groups 
characters into lexemes and converts the lexemes into a 
sequence of tokens [5]. Lexemes are a sequence of char-
acters that match the pattern of a token while a token 
is a symbol representing a lexical unit. For example, the 
string of characters “integer” is a lexeme that matches the 
integer token represented by the symbol“INT”. The role 
of the Lexical Analysis stage also includes cleaning the 
text input and removing white space for the next stage. 
That text is then normalized and key words are grouped 
into lexemes and converted into tokens. Key words are 
an important set of words in the input data which will 
dictate the data representation of the original input. 

These key words in the context of our study can include 
mutation locations, test results, and conjunctions. The 
tokenized input data is then passed into the next stage 
which is the Syntax Analysis stage.

The Syntax Analysis stage determines the syntax struc-
ture of the text based on a grammar. This stage is also 
referred to as the parsing stage, where the tokenized 
input is parsed based on our generated grammar. Context 
Free Grammars were first introduced by Noam Chomsky 
[6] as a formal way to describe the composition of sen-
tences and words in natural language. For example, the 
English language constitutes of verbs, nouns, adjectives, 
and prepositions and grammar would determine the 
relationship and structure between them. In the field of 
computer science, Context Free Grammars are used to 
describe the structure of programming languages [7] for 
parsing and compilation. Context Free Grammars can be 
described as a set of production rules, variables, and ter-
minals. Production rules consist of a variable, an arrow, 
and a combination of variables and terminals on the left-
hand side. They are often called substitution rules as they 
dictate what the variables are replaced with. Variables are 
considered a set of symbols which can be replaced by the 
set of rules. Terminals are non-variable characters which 
cannot be replaced. Formally, a Context Free Grammar 
can be described as follows [7]:

A context free grammar G is a 4-tuple G = (V,Σ,R,S) in 
which:

1. V is the finite set of variables where they represent the 
phrases of the language.

2. Σ is a finite set of terminals disjoint from V. They 
make up the actual characters of the language.

3. R is the finite set of production/substitution rules. It 
a relation of the form V × (V ∪ Σ)*.

4. S is the start symbol/variable where S ∈ V

Herein, we review approaches and applications of NLP 
to augment the laboratory data via IE. Following our 
review, we include a detailed description of our methods, 
results, limitations, and possible future applications.

Related work
In the context of IE, the information to be extracted 
is mostly made of free text data [8, 9]. The methods 
employed to perform IE consist of rule-based methods 
and NLP/Machine Learning (ML) based methods. Rule-
based methods use patterns to extract the information 
like the Context Free Grammar mentioned previously or 
regular expressions. We will discuss these processes and 
how they tie into our study.

Mykowiecka et  al. [4] discuss the IE of Polish mam-
mography reports and hospital records of diabetic 



Page 3 of 10Yusuf et al. BMC Medical Research Methodology           (2024) 24:63  

patients. Even though the field of biomedical data extrac-
tion contains many ML and statistical methods to extract 
data, this group used a rule-based system for the initial IE 
due to the complex nature of the medical records and the 
observation that there is no adequate annotated medi-
cal corpora in Polish for ML methods. As for their rule-
based method, the first step was the pre-processing step 
needed for raw data which includes spell-checking and 
converting to a proper format for analysis. A morpho-
logical analyzer was then used to bring the words to their 
roots for the following grammar. The grammar extracted 
the data and then the templates were inserted into a rela-
tional database. Due to the complexity of most Electronic 
Health Records (EHRs), the application of the grammar 
was not done until the post-processing phase. The evalu-
ation was done based on precision and recall of a sam-
ple of EHRs, of which above 80% was achieved for both 
measures. Precision and recall were defined as follows:

Shivade et al. [10] conducted a review of the different 
approaches used to identify and extract patient pheno-
type cohorts using EHRs and these included rule-based 
systems, NLP systems, statistical analyses, data mining, 
machine learning, as well as hybrid systems. The review 
consisted of papers published from 2010–2012 in 4 spe-
cific journals: Journal of American Medical Informatics 
Association, Journal of Biomedical Informatics, Proceed-
ings of the Annual American Medical Informatics Asso-
ciation Symposium, and Proceedings of Clinical Research 
Informatics Conference. Of the 97 papers, 46 used NLP, 
41 used statistical analysis /data mining/machine learn-
ing, 24 used rule-based and 22 were hybrid. The analysis 
of the rule-based systems mentioned that some studies 
modified their rules manually after analysis to account 
for errors while others attempted to automatically gen-
erating these set of rules. The paper then concluded that 
“rule-based systems are easy to interpret, fast to imple-
ment, and give good results on limited datasets”.

Meystre and Haug [11] proposed an NLP approach 
to extract potential problem list entries from free-text 
EHRs. The problem list was defined as a collection of 
all patient medical problems. The authors combined 
the UMLS MetaMap Transfer (MMTx) [12] and a nega-
tion detection algorithm called NegEx [13] as the NLP 
system. The pre-processing step of their methodology 
goes over section detection, sentence detection, and 
disambiguation.

Precision =

(

phrases correctly recognized

all phrases recognized

)

Recall =
phrases correctly recognized representing the feature

all phrases representing the feature

Liu et  al. [14] proposed an IE framework for cohort 
identification that is knowledge-driven and developed 
under Unstructured Information Management Archi-
tecture (UIMA). The paper discusses section detection 
as well as contextual information which are proper-
ties that pertain to a certain condition such as negation, 
temporality, and experiencer. In this paper, UIMA was 
used to implement systems for processing unstructured 
content. The UIMA pipeline starts with accessing the 
documents and converting them to the UIMA object, a 
Common Analysis Structure (CAS). The CAS object is 
then brought through the processing pipeline by add-
ing important annotations and final processing for later 
analyses.

Methods
Software used
The software used for this study was version 3.6.3 of the 
R language [15]. All methods were performed in accord-
ance with the relevant guidelines and regulations or dec-
laration of Helsinki.

Data preparation
The data used in this study were provided by the Alberta 
Precision Laboratories and consisted of two main data-
sets: Northern Alberta Dataset (NAD) and Southern 
Alberta Dataset (SAD). The prepared data covers all 
of Alberta and is completely population-based. As the 
data were collected through different processes within 
the province of Alberta, there were some differences 
between the two datasets. Data preparation was per-
formed before the text analysis to filter relevant medi-
cal records. Both the NAD and SAD datasets contained 
patient information as well as a unique test result iden-
tification for each row. Only Alberta patients as well as 
patients without missing identifying information were 
included in the initial screening. What differed between 
the NAD and SAD data was how the results were stored. 
The SAD data stored the test results in 4 different col-
umns: “TEST_NAME”, “TEST_TASK”, “RTF_RESULT”, 
and “RESULT_SHORT”. The “TEST_NAME” column 
contained the “EGFR Result” and the “TEST_TASK” con-
tained “EGFR (Interpretation)” or “EGFR (Qualitative)”. 
The “RTF_RESULT” column included the test result in 
Rich Text Format, while the “RESULT_SHORT” col-
umn included an immediate result of the test, but was 
lacking in specificity (identified an EGFR mutation, but 
not the exact location). Since the focus of this study was 
only on patients who had EGFR testing, SAD test results 
that contained EGFR or EGFR Mutation Assessment/
Assay in either the “TEST_NAME”, “TEST_TASK”, or 
“RTF_RESULT” column were extracted. Due to the lack 
of specificity in the “RESULT_SHORT” column we opted 
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out of using it as a data extraction method as it would not 
generalize to extracting data from the NAD data. Unlike 
the SAD data, NAD only had one column containing the 
test result under the “RESULTS” column. The same cri-
teria used in the SAD filter were used in the NAD data. 
Figure  1 depicts a summary of our process taken to 
determine EGFR mutation results using data from both 
the NAD and SAD datasets.

As mentioned previously, the stored free text data of 
the EGFR test result had a structure to it. Figure S1 in 
the Supplementary Material shows an example of “Not 
Detected” free text test result from the SAD dataset. The 
free text data had identifiable section headers, relevant 
paragraphs, and most importantly a test result section, 
which is demonstrated in Fig. S2 in the Supplementary 

Material, where the Rich Text Format data is viewed 
through a Microsoft Word document. NLP and ML 
methods were therefore not required to extract the main 
relevant data (i.e., the test result).

Lexical analysis
The lexical analysis stage of the method turned the free 
text EGFR test result data into tokenized results. In the 
case of the SAD data, the Rich Text Format (RTF) input 
was first converted into readable plain text format by 
using the “striprtf” R package [16]. This made further 
analysis more manageable as the program did not need to 
account for unnecessary RTF syntax. The transition can 
be observed in Fig. 2.

Fig. 1 The process for Syntax and Lexical analysis to achieve deterministic extraction of data from Epidermal Growth Factor Receptor (EGFR) test 
results

Fig. 2 A transformation applying the striprtf function on the raw, free text EGFR data to readable text
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Normalization of the input was then required to sim-
plify the variations in the free text. The bare minimum 
of the normalization, such as removing trailing and 
leading white space and bringing text to lowercase, was 
applied for our purposes.

Observing the result in Fig. 2 as well as Fig. S2 in the 
supplementary section, it was evident that the main 
sections of an EGFR test for the SAD dataset could be 
identified. The test results had explicit section heading 
that need to be split in order to identify the EGFR test 
result. An exact matching rule was employed by our 
algorithm to identify the different sections in the EGFR 
document. The sections identified were “Interpretation 
and Comments:”, “EGFR Mutation Assay:”, “Note:”, and 
“Comment:”.

The final step of the Lexical Analysis stage was to 
tokenize string key words into tokens. From analyz-
ing a sample of data, we observed that the EGFR test 
result remained in the “Interpretation and Comments:” 
and “EGFR Mutation Assay:” section of the input data. 
The “Note” and “Comment” section of the test did not 
have much differentiation between individual tests and 
were not analyzed further. As such the “EGFR Muta-
tion Assay” section, which was apparent in the SAD 
data, was used as the main source of analysis. For the 
NAD data, the same process was applied in identify-
ing the sections and the result of the test was in a sec-
tion labeled “Result:”. From this step we observed the 
following general test result from both NAD and SAD 
data:

• The EGFR mutation was “Not Detected”.
• The EGFR mutation was “Identified” in one location.
• The EGFR mutation was “Identified” in two or more 

locations.
• There was insufficient DNA for the test.

Locations in this context correspond to one of the 
following: Exon 19, Exon 20, T790M, L858R, L861Q, 
G719X, S78I. A result of “Not Detected” in the EGFR test 
means that none of the hotspot mutations listed above 
were identified, whereas a result of “Identified” means 
the specific mutation was detected. Our study does not 
need to consider the level of contextual information as 
discussed by Meystre and Haug [11] as the EGFR medical 
data presented is not as complex. The negation aspect of 
an EGFR test condition varies from just “negative” to “not 
detected”. Some results included “negative” and “positive” 
instead of “Not Detected” and “Identified”. These result 
key words were converted in the tokenization stage. 
There were also specific results attached to certain muta-
tions such as the “Deletions” in Exon 19 and the “Inser-
tions” in Exon 20.

After identifying the language used for the gen-
eral test results, a reduced dictionary was made for 
the purpose of tokenizing key words. This dictionary 
included key words from the different genomic loca-
tions screened for in the test, the result of the test, and 
whether there was insufficient DNA. The tokeniza-
tion step was then applied on the normalized result. 
This step converted key words such as “Exon 19” into 
“exon_19_location”, “Deletion” into “deletion_specific_
result”, and “Identified” into “identified_result”. Con-
junctions such as “and” as well as the comma “,” were 
also tokenized to account for multiple mutation loca-
tions in the result. Other intermediary English words 
were ignored in the tokenization process.

Syntax analysis
The second step of our method involves syntax analy-
sis and using the tokenized result from the first step to 
extract a result. Since the EGFR test result was consistent 
and simple between all entries, a Context Free Grammar 
(CFG) was generated to match the result. The simplified 
structure of the test result makes it a good application 
for rule-based methods such as the CFG. This method 
reduces the total number of derivations one can get from 
the test result. The following is a simplified CFG of the 
rules used in the actual extraction.

The context free grammar G = (V,Σ,R,S) where:

1. V the finite set of variables V = {S, Location, Result, 
Conjunction, Specific_Result}.

2. Σ the finite set of terminals Σ = {Exon 19,Exon 20,T79
0M,L858R,L861Q,G719X,S768I}.

3. R the finite set of production\/substitution rules:

S → Location Result | Location Conjunction S | S 
Conjunction Location
Location → Location Specific_Result | Specific_Result 
Location
Conjunction → and | ,
Result → Identified | Not Detected
Specific_Result →(.^*) | Deletion | Insertion | ε

4. S is the start symbol/variable.

Figure  3 demonstrates an example of the proposed 
grammar where the original EGFR test result “The dele-
tions in Exon 19 was identified” was tokenized and con-
verted. The grammar then matched the tokenized words 
to generate the parse tree on the right. The terminals on 
the leaves of the parse tree are the result of the EGFR test. 
This grammar was then applied to every tokenized test 
result to extract the relevant data.
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Algorithm accuracy
As for evaluating the proposed algorithm accuracy, we 
use a sample comparison between correctly and incor-
rectly extracted data. A sample of EGFR tests is ran-
domly selected, reviewed, and checked whether the 
relevant data is extracted or not. The random sample 
was identified given a set mean and standard deviation 
(i.e., μ = 0 and σ = 1) such that X ∼ N (µ, σ 2).

The following is the criteria being used to measure if 
the algorithm correctly extracts the data:

• If the sample detected an EGFR mutation, then the 
algorithm would correctly identify which location 
was detected.

• If the sample did not detect an EGFR mutation, 
then the algorithm would extract “Not Detected” 
from the result.

Linkage with cancer registry
Finally, we link the results with the Alberta Cancer Reg-
istry (ACR). The ACR captures information on all indi-
viduals diagnosed with cancer within the province of 
Alberta, Canada.

Results
The SAD original data set contained a total of 95,854 
row entries collected over 2013 to 2019. Each row was 
a test result that can be identified by one unique ID 
called the result ID. Patients were then filtered by their 
Unique Lifetime Identifier (ULI) and restricted to only 
have lung cancer patients for this analysis, which came 
to a total of 16,934 row entries remained.

Initially, empty ULIs were included in the result 
as there was the possibility that test results could be 
linked to existing patients.

The key word “EGFR” was used to filter row entries by 
checking the “RTF_RESULT” and “RESULT_SHORT” 
columns. This resulted in 6933 rows left in the result. 
Upon further analysis of the “RESULT_SHORT” column, 
it was apparent that the intersection of row entries with 
“EGFR” did not yield a relevant result. As such, “EGFR” 
on the “SPECIMEN_ACCN”, “SPECIMEN_SOURCE”, 
“TEST_NAME”, “TEST_TASK”, and “RTF_RESULT” 
columns were then used to filter the result further as we 
were interested in the result of the test which came after 
“EGFR Mutation Assay: …”, which brought the pool of 
entries to 5197. We then utilized the algorithm outlined 
in the methods section and applied it on the data set. 
The “RTF_RESULT” was used as the original input and 
the relevant data was extracted from it. A diagram of the 
breakdown of the SAD results can be observed in Fig. 4. 
Our methodology yielded 5129 unique EGFR test results 
from the final 5512 row entries as some test results had 
more than one identified mutation location. Out of the 
5512 row entries 4083 test results did not detect an EGFR 
mutation, 1316 identified EGFR mutations, and 57 insuf-
ficient DNA test results. As for the 1316 identified muta-
tions 536 detected deletions in Exon 19, 354 test results 
had L858R mutation, 170 test results had G719S/G719A/
G719C (QIAGEN® EGFR PCR Kit (QIAGEN Manchester 
Ltd., UK) assay detects the presence of G719S, G719A, 
or G719C, but does not distinguish between them), 149 
with T790M, 37 with S768I, 27 with L861Q, and 19 with 
identified insertions in Exon 20. There was a total of 310 
test results with identified mutations in more than one 
location with 257 in two locations, 33 in three locations, 

Fig. 3 An example of applying the Context Free Grammar on a sentence from a tokenized EGFR test result to produce a parse tree
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and 20 in 4 locations. Of those 310 test results with iden-
tified mutations in more than one location of the gene, 
there were 21 unique permutations and combinations of 
the locations. The majority included 80 test results with 
deletions in Exon 19 and mutations in T790M, 53 test 

results with concurrent L858R and T790M mutations, 
and 18 test results with G719X and S768I.

As for the NAD dataset, it originally contained 6944 
row entries. Unlike the SAD patient data, the NAD row 
entries were all unique patients. The same filtering of 
lung cancer patients was conducted and resulted in 5017 

Fig. 4 A breakdown of SAD data (left) and NAD data (right) from the original data entries to the final EGFR results
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unique patients. A figure of these results can be observed 
in Fig. 4. Out of that cohort, the same 5017 patients had 
mentioned the term “EGFR” in the “RESULTS” column 
of the dataset. After applying our methodology on the 
NAD data, a total of 3388 row entries were obtained 
with 3314 unique EGFR tests. Out of the total 3388 test 
results, 2428 test results did not detect an EGFR muta-
tion, 469 did identify a mutation, and 481 test results had 
insufficient DNA (this result was labeled slightly different 
than the SAD “insufficient DNA” as these were denoted 
as “test cancelled due to insufficient DNA”). From the 
469 identified mutations there were 196 identifications of 
deletions in Exon 19, 154 test results had L858R, 51 had 
T790M, 27 had G719X, 14 had L861Q, 13 had S768I, and 
13 results had deletions in Exon 20. Of the 72 EGFR test 
results that included more than one mutation, location 
32 of the tests had identified deletions in Exon 19 and 
T790M mutation, 19 tests identified T790M and L858R 
mutations, and less than 10 tests identified mutations in 
G719X and S768I.

Next, a total of 8900 EGFR tests were used in the study. 
Due to resource constraints, we were able to conduct 
comprehensive chart reviews on a total of 362 patients. 
We therefore took a simple random sample of 362 
patients (i.e., 4.06%) from the total population of 8900 
patients. The test results of the 362 patients were then 
manually reviewed and verified. As shown in Table 1, our 
proposed algorithm managed to correctly extract data 
from 353 out of the 362 samples with 97.5% accuracy. 
However, all the samples that detected an EGFR muta-
tion were correctly extracted. This amounted to a total 
of 35 samples, 4 of which detected an EGFR mutation at 
2 locations. Among those who underwent EGFR testing 
and got an EGFR mutation detected, the algorithm had 
an AUC of 100% with 100% sensitivity and 100% specific-
ity. For the 9 samples which did not have their data cor-
rectly extracted, they were all cancelled tests which the 
algorithm extracted “Not Detected” as the result of the 
test. A total of 10 samples out of the 362 had an extra 
comment added to the sample which was not a definitive 
test result. There were 9 comments that mentioned low 
tumor cellularity for a “Not Detected” test result. One of 
the comments made by the clinician mentioned that the 

result of a “Detected” EGFR test was at the cut off at iden-
tifying a T790M mutation. Although these comments did 
add context and insight to the test result, they were out of 
the scope of the data to be extracted.

Finally, we found out that 5139 of 18,482 non-small 
cell lung cancer patients in Alberta from 2010–2019 
had EGFR testing. As shown in Fig.  5, 716 out of 5139 
patients had EGFR mutations. A total of 348 had the 
Exon 19 mutation, 252 had the Exon 20 mutation (Exon 
20, T790M, S768I), and 282 had the Exon 21 mutation 
(L858R, L861Q).

Discussion
Overall, our extraction process proved highly effective in 
retrieving “Detected” test results by amalgamating data 
from various sources. This success can be attributed to 
the generally organized format in which the test results 
were documented, resulting in a grammar that was easily 
discernible and manageable. As show in Table 2, our pro-
posed model outperformed other approaches that used 
machine learning analysis for electronic health records.

When comparing the accuracy of our model to the 
other Even among the 362 samples, where 9 test results 
were not initially extracted accurately, our process could 
rectify these discrepancies. The missed results exhibited 
a consistent structural pattern, which could be seam-
lessly integrated into the original Context-Free Grammar 
(CFG). However, it’s worth noting that manually aug-
menting the CFG could become laborious as the com-
plexity of input data increases.

For optimal results using our proposed method, one 
must grasp how the test results or medical text are stored 
in the source data. Specifically, the SAD data required 
conversion from RTF to plain text. Given our focus on 
EGFR test results, we had a solid understanding of the 
formatting structure for such tests. This comprehen-
sion of the structure serves as a prerequisite for generat-
ing the necessary rules and grammar to extract the data 
accurately. In the event of a new test result structure that 
deviates from the grammar rules established in the meth-
odology section, a manual addition of the new rule to the 
grammar would be imperative to capture the test result. 
This limitation is evidenced by the algorithm analysis, 

Table 1 Results of the model evaluation based on the random samples review

Predicted Results

EGFR Detected EGFR Not Detected Inconclusive Not Tested

Actual Results EGFR Detected 35 0 0 0

EGFR Not Detected 0 308 0 0

Inconclusive 0 10 0 0

Not Tested 0 9 0 0
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where 9 results out of 362 were identified as “Test Can-
celled” due to the absence of a rule accounting for such 
outcomes in the original grammar.

Nevertheless, this limitation can be surmounted 
through the application of natural language processing or 
machine learning techniques, enabling the identification 
of patterns in the original data and the subsequent gen-
eration of appropriate grammar rules [11]. This approach 
affords greater flexibility in handling complex scenarios 
where a test result may encompass more than four poten-
tial outcomes. In our specific application, where the 
grammar was relatively compact and there was minimal 
deviation among normalized tests, the manually devised 
grammar rules sufficed for extracting the data.

This information extraction method can be extended to 
data with a similar organizational structure, necessitating 
a clearly discernible section housing the relevant infor-
mation for extraction. The syntax and grammar structure 

of the target information should remain consistent across 
different electronic records.

In terms of future developments, an additional rule 
must be integrated into the method proposed in this 
study to account for “Test Cancelled” results and offer 
a more precise representation of the data. Subsequent 
efforts could also explore the extraction and analysis of 
clinician notes pertaining to the tests. This would fur-
ther enhance the depth and comprehensiveness of the 
extracted information, contributing to a more compre-
hensive understanding of the underlying data.

Conclusion
With more electronic health records becoming avail-
able, effective information extraction methods can 
make analyzing the data contained within these records 
more manageable. In this paper we presented a method 
to extract specific information from EGFR test results. 
Although effective in the context of the EGFR tests and 
similarly structured EHRs, future applications can and 
should make use of NLP and ML techniques to account 
for rising complexity within these records. Many addi-
tional genomic test results are stored in a similar fashion 
in Alberta and other North American data repositories. 
These data can be extremely impactful for evaluating the 
effect of targeted therapies and related testing on out-
comes in cancer patients. Additional systematic efforts 
such as what we have developed are needed to increase 
data liberation and improve subsequent patient manage-
ment and evaluation.

Fig. 5 EGFR mutation results linked with the Alberta Cancer Registry data

Table 2 The performance of the proposed model in comparison 
with other approaches that used machine learning analysis for 
electronic health records

Method Accuracy

Proposed Model 97.5%

Ganesan and Subotin [17] 93.32%

Haug et al. [18] 90.90%

Apostolova et al. [19] 79%

Jancsary et al. [20] 96.48%
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