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Abstract 

Background Multimorbidity is typically associated with deficient health-related quality of life in mid-life, and the like-
lihood of developing multimorbidity in women is elevated. We address the issue of data sparsity in non-prevalent 
features by clustering the binary data of various rare medical conditions in a cohort of middle-aged women. This 
study aims to enhance understanding of how multimorbidity affects COVID-19 severity by clustering rare medi-
cal conditions and combining them with prevalent features for predictive modeling. The insights gained can guide 
the development of targeted interventions and improved management strategies for individuals with multiple health 
conditions.

Methods The study focuses on a cohort of 4477 female patients, (aged 45-60) in Piedmont, Italy, and utilizes their 
multimorbidity data prior to the COVID-19 pandemic from their medical history from 2015 to 2019. The COVID-19 
severity is determined by the hospitalization status of the patients from February to May 2020. Each patient profile 
in the dataset is depicted as a binary vector, where each feature denotes the presence or absence of a specific multi-
morbidity condition. By clustering the sparse medical data, newly engineered features are generated as a bin of fea-
tures, and they are combined with the prevalent features for COVID-19 severity predictive modeling.

Results From sparse data consisting of 174 input features, we have created a low-dimensional feature matrix of 17 
features. Machine Learning algorithms are applied to the reduced sparsity-free data to predict the Covid-19 hospital 
admission outcome. The performance obtained for the corresponding models are as follows: Logistic Regression 
(accuracy 0.72, AUC 0.77, F1-score 0.69), Linear Discriminant Analysis (accuracy 0.7, AUC 0.77, F1-score 0.67), and Ada 
Boost (accuracy 0.7, AUC 0.77, F1-score 0.68).

Conclusion Mapping higher-dimensional data to a low-dimensional space can result in information loss, but reduc-
ing sparsity can be beneficial for Machine Learning modeling due to improved predictive ability. In this study, we 
addressed the issue of data sparsity in electronic health records and created a model that incorporates both prevalent 
and rare medical conditions, leading to more accurate and effective predictive modeling. The identification of com-
plex associations between multimorbidity and the severity of COVID-19 highlights potential areas of focus for future 
research, including long COVID and intervention efforts.
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Background
Multimorbidity, which refers to the presence of multi-
ple diseases and medical conditions in one individual, is 
consistently linked to a lower health-related quality of life 
in mid-life [1, 2]. Additionally, there is evidence suggest-
ing that women have a higher likelihood of developing 
multimorbidity compared to their male counterparts [3]. 
Moreover, having multiple health problems at the same 
time has been found to make healthcare more expensive 
and create difficulties for healthcare systems in terms of 
resource allocation and providing appropriate care [4].

Moreover, multimorbidity can worsen the effects of 
long COVID in several ways [5, 6], when multimorbid-
ity is present, additional symptoms related to other 
chronic conditions can compound the overall symptom 
burden, making it more challenging for individuals with 
long COVID to manage and recover from their illness. 
Research studies have indicated that individuals with 
multimorbidity have been adopting various precaution-
ary behaviors during the pandemic [7, 8]. This is reflected 
in the restrictive guidelines recommended by authorities 
to control transmission [9]. Furthermore, studies have 
found that females are more likely to adopt protective 
measures compared to males [8]. The difference in pre-
cautionary behaviors based on gender underlines the 
importance of considering various demographic factors 
in the development of public health interventions during 
a pandemic.

This study specifically focuses on clustering binary 
data related to various medical conditions in middle-
aged women. Cluster analysis is a valuable statistical 
technique for grouping objects based on their similar-
ity in terms of indicator variables or features, and can 
be applied to identify clinically significant multimorbid 
groupings of medical conditions [10]. By using clus-
ter analysis, researchers can learn important informa-
tion about how different medical conditions are related 
and occur together. This helps them understand the 
complex connections between diseases and to develop 
personalized ways of treatment. It is also evident from 
the existing studies that clustering methodology can be 
applied to identify patient subgroups with similar dis-
ease profiles or symptom patterns [11]. Furthermore, 
it also can be utilized for identifying patient subgroups 
with distinct healthcare utilization trends and identifying 
risk factors associated with adverse outcomes [12]. In a 
multimorbidity study [13], the authors utilized K-means 
non-hierarchical cluster analysis to identify patterns of 

multimorbidity. Similarly, another study [14] focused on 
stratifying a population of high-risk multimorbid patients 
by using cluster analysis for risk stratification and identi-
fying distinct characteristics of each cluster. These find-
ings emphasize the significance of healthcare reform in 
addressing the unique needs of different patient clusters. 
By tailoring interventions and care strategies based on 
these identified clusters, healthcare providers can effec-
tively address the diverse challenges associated with 
multimorbidity. Self-Organizing Feature Maps (SOFMs) 
have been widely employed in various clustering applica-
tions, including tasks like handwritten digit recognition 
[15]. In another study [16], the authors employed SOFMs 
to identify clusters of patients based on their healthcare 
data. However, SOFMs are not commonly used for clus-
tering multimorbidity patterns, as these patterns typi-
cally involve clinical and demographic data rather than 
image data. Instead, other clustering approaches such as 
k-means, hierarchical clustering, and latent class analy-
sis are more commonly employed for multimorbidity 
clustering.

However, in our study, we focus solely on clustering 
rare features, which are medical conditions that are not 
commonly observed in patient data. The methodology 
section explains the procedure employed in this study, 
detailing the process of grouping multimorbidity features 
into bins using a matrix based on cluster structures. This 
process involves two levels of clustering: the feature level 
and the data level, without making assumptions about the 
number of feature clusters. Once the features associated 
with each cluster are identified, they are mapped to cor-
responding bins. The unsupervised bins are then merged 
with prevalent features to create a new engineered fea-
ture matrix. The performance of models using clustered 
data is compared to models without clustered data, and 
the importance of the features is investigated, leading to 
the interpretation of the models.

Methods
The study focuses on a cohort of females in Piedmont, 
Italy. The study examines their medical history to ana-
lyze their multiple health conditions prior to the Covid-
19 infection. The multiple health conditions are derived 
from the data of prescribed medications and diagnosed 
diseases. Prescribed medications are considered mul-
timorbidity features in this study. Moreover, polyphar-
macy often goes hand in hand with multimorbidity, as 
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individuals with multiple chronic conditions may require 
a complex medication regimen to manage their health. 
The severity of Covid-19 in these patients is determined 
based on whether they were hospitalized due to Covid-19 
or not. Each patient’s information in the dataset is rep-
resented as a binary vector, indicating the presence or 
absence of various health conditions. Since many health 
conditions are very rare and present in some patients 
only, the data is sparse. By grouping and analyzing this 
sparse medical data, new composite features are created 
from rare features and combined with the existing com-
mon multimorbidity features including age to develop a 
predictive model for Covid-19 severity.

Study design and study population
This study is designed as a retrospective cohort study as 
it involves the retrospective analysis of data to examine 
the association between multimorbidity and COVID-19 
outcomes over time. The historical data on prescriptions 
and hospital history from 2015 to 2019, which can be 
considered as exposure variables (multimorbidity) over a 
period of time. This study is evaluating the outcome of 
interest, which is the COVID-19 hospitalization status, 
during the period from February 2020 to May 2020.

Out of the 1,918,549 individuals in Piedmont, aged 
between 45 and 74 years, 85,348 underwent at least one 
swab during the observation period from February 2020 
to May 2020 [17]. Of the 12,793 individuals who tested 
positive, 6832 females were there.

The study focused on a specific subset of the popu-
lation, namely female patients aged 45-59 residing in 
Piedmont, Northern Italy. Inclusion criteria comprised 
individuals who tested positive for COVID-19 during 
the observation period from February 2020 to May 2020. 
Exclusion criteria included males, individuals outside the 
age range of 45-59, those residing outside Piedmont, and 
individuals who did not test positive for COVID-19 dur-
ing the specified time frame. The corresponding exclu-
sion and inclusion criteria resulted in 4,477 observations 
of female patients, and only 13.8% of them were hospital-
ized due to COVID-19 during the observation period.

Dataset and features
The data used in this study were collected from the Pied-
mont Longitudinal Study (PLS), utilizing administrative 
databases that involve linking anonymous records at the 
individual level [17]. This study investigates the mul-
timorbidity profile of 4,477 female patients aged 45 to 
59 years. We classify individuals aged 45 to 59 years as 
belonging to the middle-age category, aligning with prior 
research in this context [17].

In the dataset. there are 195 input features and 1 out-
come variable where data comprises of 4,477 patient 

records (4477,196) where 3,861 individuals are not hos-
pitalized and 616 individuals are hospitalized due to 
COVID-19. Since this is unbalanced data, the data is 
randomly undersampled. The under sampled dataset 
comprised of 1,232 patients’ records (4477,196). After 
resampling, zero columns are eliminated, which cor-
responded to records where all variables had a value of 
0 in the resampled dataset. Subsequently, a comparison 
is conducted on all remaining fields in the resampled 
data with the original data to assess the similarity of 
proportions.

It is crucial to examine whether the resampling has 
been correctly accomplished as it is an important step 
in training this data using Machine Learning. So, the 
exclusion of features with significant differences is per-
formed for retaining only those features for which there 
is no statistical evidence of a significant difference in 
proportions between the original and resampled data-
sets. The statistical procedure used to compare the pro-
portion of each feature in the resampled data with that 
in the original data is based on a one-proportion z-test. 
By performing this method on each feature individually 
and eliminating the features in the resampled data that 
exhibit a significant difference in proportion compared 
to the original data, a new resampled dataset is created 
(1232,175) that is statistically similar to the original data. 
The resulting statistically similar dataset comprised of 
1,232 patients records with 175 variables including the 
outcome variable.

The features used in this study are the prescriptions and 
diseases diagnosed for each patient in the cohort, along 
with the age variable. The age variable is represented as a 
binary variable, where 1 represents patients aged over 53 
and 0 represents patients aged 53 or under. Specifically, 
the threshold of 53 was chosen to reflect the median 
within the age range, providing a meaningful criterion 
for distinguishing between patients above and below this 
central value in our analysis. All features are represented 
as binary variables, where 1 indicates the presence of the 
condition and 0 indicates the absence of the condition in 
the patient’s medical history from 2015 to 2019, prior to 
the COVID-19 pandemic. The data used in this study is 
labeled and belongs to the binary class of non-hospital-
ized and hospitalized patients (0 and 1, respectively).

Unsupervised feature binning
To group the multimorbidity features into various bins, a 
matrix is reconstructed based on the cluster structures. 
The clustering process involves two levels: feature level 
and data level, as shown in Fig. 1.

Binary Matrix Decomposition (BMD) offers a power-
ful approach for unsupervised feature reduction in binary 
data settings [18]. BMD seeks to factorize given binary 
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data matrix into a reduced feature space that represent 
data points (U) and another reduced feature space that 
represent features (V). By projecting the original data 
points onto the reduced space determined by U, BMD 
achieves dimensionality reduction [19]. The latent factors 
in U capture underlying patterns or hidden structure in 
the data, providing a compressed representation suitable 
for various tasks like clustering. Thus, by decomposing 
the data into lower-dimensional binary matrices, BMD 
identifies latent features and reduces dimensionality 
while retaining essential information.

At the feature level clustering, a general model for clus-
tering binary data that use the Binary Matrix Decom-
position algorithm [20] is used to assign features into 
different clusters without bootstrapping on labeled train 
data. This method uses a Binary Matrix representation 
where rows represent the patients’s records, and col-
umns represent features. BMD algorithm decompose the 
binary matrix to yield a probability matrix indicating the 
likelihood of features being part of specific clusters. Fea-
tures are assigned to clusters iteratively based on whether 
the corresponding probability exceeds a threshold, refin-
ing the clustering model through repeated optimization 
until convergence, providing a systematic way to organ-
ize and interpret binary data features into meaningful 
clusters.

The clustering method does not make any assumptions 
about the number of feature clusters. After identifying 
the features associated with each cluster, each feature is 

mapped to its corresponding bin. Features that are not 
considered rare (i.e., present in at least 20% of the data) 
are not mapped to any bin and are used as they are. Only 
the rare features are mapped to their corresponding clus-
ter, forming the Cluster Map.

Using the Cluster Map, the features within each clus-
ter are represented as a Feature Bin Matrix (FBM). The 
training FBM consists of the features in the correspond-
ing cluster, along with the feature values for all patients 
in the training dataset (without the class label). The 
unsupervised learning [21] is performed on the training 
FBM using the same BMD algorithm, iteratively for each 
cluster in the Cluster Map. The resulting values for each 
cluster are obtained. The trained model is then used to 
predict the cluster labels for the test FBM.

The unsupervised bins engineered from the FBMs are 
merged with the prevalent features (with the features 
excluded from the Cluster Map) to form a new engi-
neered Feature Matrix (FM). This process is carried out 
separately for the training and test sets, resulting in the 
train FM and test FM, respectively. During the data level 
clustering, both datasets are handled separately without 
the class label to prevent data leaks.

In the data-level clustering step, we categorize patients’ 
records into two distinct clusters based on the features 
within each bin. Each patient’s record is assigned to one 
of the two clusters, ensuring a comprehensive grouping 
based on the relevant features within the given bin. For 
instance, consider a scenario where a cluster comprises 

Fig. 1 Feature level is performed to assign features into different clusters which are the Bins and data level clustering is performed where patients’ 
records are grouped into clusters based on the features within each Bin before predictive modeling
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n features in a bin. During data-level clustering, each 
patient’s record (row) in that bin is assigned a specific 
value. Consequently, this assigned value represents the 
contribution of that patient to the n features in that bin. 
After completing the data-level clustering for all patients, 
each bin accumulates values for every patient. Then that 
bin act as a new engineered feature where the data level 
clustering provided values for that feature. The entire 
procedure is illustrated in Fig. 2.

Predictive modeling
To assess the performance of different Machine Learn-
ing algorithms in predicting hospital admission due 
to Covid-19, we utilized the train and test FM data-
sets. Since the data is labeled, we employed a super-
vised learning approach on this engineered dataset. The 
trained binary classification model was then applied 
to the holdout data to classify patients into one of two 
classes: whether or not hospital admission is required, 
taking into account their multimorbidity history.

Following the creation of the train and test FM 
datasets with the newly engineered features, we ana-
lyzed the variance of each feature. We trained the 
train FM using various Machine Learning algorithms 

available in the Pycaret package [22], employing 5-fold 
cross-validation.

Due to the sparsity of the data and the skewed dis-
tribution of value levels (0 or 1), certain levels may 
dominate others, resulting in insufficient variation to 
generate informative features. Therefore, during the 
Machine Learning-based predictive modeling, such 
non-informative features can be disregarded. The cri-
teria for ignoring low-variance features [23] are as 
follows:

and

The best-performing model is selected by examin-
ing the mean area under the curve (AUC) score of each 
Machine Learning model. Later, the best model is eval-
uated using the test FM and the performance scores are 
reported.

number of unique values in a feature

sample size
< 10%

number of most prevalent value

number of second most prevalent value
> 20

Fig. 2 Unsupervised feature binning of rare features and generation of the Feature Matrix using new engineered features and other features: 
First of all data pertaining to prevalent features are sliced out. On the remaining data which contain the non-prevalent features, the clustering 
is applied. The process involves both feature-level clustering, where features are grouped into clusters using the BMD algorithm, and data-level 
clustering, where patients’ records are grouped into clusters. These tasks are interconnected as features within each cluster are used to create 
FBMs. Subsequently, data-level clustering is performed on these FBMs to assign patients’ records into clusters. Thus value obtained from data level 
clustering act as new features to replace original sparse data. The ultimate objective is to construct an engineered FM by combining these new bins 
with prevalent features, ensuring that both prevalent and combinations of non-prevalent features are considered for predictive modeling
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Results
Clustering
After applying feature-level clustering to the training 
data, a Cluster Map is generated. In this Cluster Map, 
rare features are clustered and assigned to their respec-
tive bins, resulting in 13 feature clusters. The bin values 
for each observation are calculated by determining the 
cluster label of the corresponding features in that bin. 
Table  1 illustrates the resulting 11 bins after excluding 
features with low variance.

Consequently, from an initial set of 174 input features, 
we have created a low-dimensional feature matrix con-
sisting of 17 features. Even though mapping data with 
a higher dimension to a space of low dimension leads 
to some information loss [24], the predictive ability of 
the new data without sparsity can be an advantage for 
Machine Learning modeling.

Model selection
To select the best model from various Machine Learn-
ing algorithms, we compared the AUC score of each 
Machine Learning model after executing a 5-fold 
cross-validation.

Using all features
During cross-validation using the train data with all 
174 features, the best performance was obtained by 
LR (accuracy 0.72, AUC 0.76, F1-score 0.69), CatBoost 
Classifier (accuracy 0.72, AUC 0.76, F1-score 0.68), and 
Gradient Boosting Classifier (accuracy 0.72, AUC 0.76, 
F1-score 0.67).

Using the features which are reduced by clustering technique 
and ignoring the features with low variance
During cross-validation using the train data with only 17 
features, the best performance was obtained by LR (accu-
racy 0.7, AUC 0.74, F1-score 0.68), LDA (accuracy 0.7, AUC 
0.74, F1-score 0.66) and Ada Boost Classifier (accuracy 0.7, 
AUC 0.73, F1-score 0.67). The 5-fold cross-validation scores 
of each Machine Learning model are tabulated in Table 2.

Model performance evaluation
After analyzing the cross-validation results, the top three 
models are selected based on their performance. To assess 
the predictive ability of these Machine Learning algo-
rithms on the reduced data without sparsity, we applied 
them to predict the outcome of Covid-19 hospital admis-
sion using the test Feature Matrix (FM).

The performance metrics of the selected models on the 
test FM (holdout data) are as follows: LR (accuracy 0.72, 
AUC 0.77, F1-score 0.69), LDA (accuracy 0.7, AUC 0.77, 
F1-score 0.67) and Ada Boost (accuracy 0.7, AUC 0.77, 
F1-score 0.68). For a comprehensive overview, please 
refer to Table 3 for the complete set of results.

Feature importance
Feature importance refers to the scores assigned to 
input features, which indicate their relative significance 
in making predictions. These scores provide insights 
into the importance of each feature in the data and the 
model. Feature importance helps not only in explaining 
the influential features but also in understanding the data 
and model better.

Table 1 Cluster Map: Rare features are clustered and mapped to their corresponding cluster (Bins) after feature level clustering

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9 Bin 10 Bin 11

ATC ATC ATC ICD ATC ATC ICD ATC ICD ATC ICD ATC ATC ATC ATC 
A10BA A07EC A03FA 338 G03AA C01BC 041 550 A07EA 038 B01AA 278 A02BX A02AD JO1DD J01CA

A12AX B02AA A05AA 574 G03CA C01BD 162 560 A10AB 174 B05BB 295 B03BB A07AA J01XX

B01AB C03EA A12AA 727 G03DB C01DA 211 562 A10BB 218 C09BX 427 C03CA B03AA N06AB

B01AC C09BA A12BA V58 J05AB C02AC 241 571 C03AA 296 M05BA 455 C08CA C07AB R03BA

C09DA J01AA B03BA S01EE 250 585 C03DA 301 N04AA 553 C09AA H03AA

M01AX J01DC C02CA ICD 298 599 C07AG 454 N05AA 618 C09CA J02AC

R03AC J01EE C03BA 621 354 722 C07BB 473 N05AD 626 C10AA M01AH

R06AE M04AA C07AA 410 780 C10BA 518 N05AH 717 N02AA N02AX

N06AA C09BB 428 786 L01BA 592 S01EC 726 N02CC N02BE

P01AB C10AB 434 813 N01BB 735 812 N03AX

R03AL C10AX 437 820 N02AJ V54 996 N06AX

D05AX 438 V43 N03AF 998 R03AK

N02AB 440 V53 P01BA V64 R06AX

N02BA 470 V56 R03BB

N03AE 482 V57 R03DA

N03AG 486 S01ED
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 Feature importance score from the model coefficients
In linear algorithms such as LR and LDA, the predictions 
are calculated as a weighted sum of the observations, 
with the coefficients determined by the algorithm. In this 
context, negative coefficients indicate that as the value of 
a feature increases, the severity due to Covid-19 is pre-
dicted to decrease, suggesting no hospital admission. The 
features with negative coefficients in both LR and LDA 
algorithms are bin 2, bin 3, bin 4, bin 7, bin 10, J01CR, 
J01FA, and Age >53. On the other hand, features with 
positive coefficients have a positive association with the 
severity outcome. A higher negative coefficient indicates 
a stronger negative association between the input fea-
ture and the severity outcome. For example, if the value 
of a cluster or feature is 1, it suggests that most patients 
belonging to that cluster or feature category have a lower 
chance of severe Covid-19 outcomes, and vice versa. 
Conversely, in the case of a positive coefficient, if the 
cluster or feature value is 1, it indicates an increased like-
lihood of severe Covid-19 outcomes, and vice versa.

The impurity‑based feature importance
In the Ada Boost algorithm, the feature scores are deter-
mined using the Gini importance [25]. This score is calcu-
lated for each decision tree based on how much a single 
feature split improves the model’s performance, and it is 
normalized by the number of observations accounted for 
by that feature.

To analyze the feature importance of all three mod-
els (LR, LDA, and Ada Boost), we aggregated them and 

Table 2 Score of the Machine Learning models obtained during 5-fold Cross Validation using reduced features

a Acc Accuracy Score obtained by the corresponding Machine Learning model
b AUC  Area under the ROC Curve
c Prec Precision score
d TT  Time taken in seconds

Model Acca AUC b Recall Prec.c F1 TTd

LR Logistic Regression 0.7015 0.7376 0.6186 0.7436 0.6752 2.410

LDA Linear Discriminant Analysis 0.7025 0.7370 0.5781 0.7712 0.6605 0.008

Ada Boost Ada Boost Classifier 0.6964 0.7347 0.6248 0.7315 0.6737 0.030

NB Naive Bayes 0.6843 0.7305 0.5823 0.7345 0.6492 0.006

RF Random Forest Classifier 0.6772 0.7301 0.6267 0.6980 0.6601 0.196

CatBoost CatBoost Classifier 0.6853 0.7272 0.5800 0.7398 0.6490 0.674

XGBoost Extreme Gradient Boosting 0.6761 0.7184 0.5900 0.7159 0.6451 0.402

QDA Quadratic Discriminant Analysis 0.6772 0.7171 0.5701 0.7267 0.6387 0.008

ET Extra Trees Classifier 0.6690 0.7155 0.6064 0.6947 0.6469 0.178

GBC Gradient Boosting Classifier 0.6914 0.7147 0.5761 0.7507 0.6516 0.028

LightGBM Light Gradient Boosting Machine 0.6843 0.7146 0.5962 0.7260 0.6541 0.258

KNN K Neighbors Classifier 0.6569 0.7058 0.5537 0.7001 0.6162 0.422

DT Decision Tree Classifier 0.6548 0.6522 0.5618 0.6956 0.6201 0.006

Dummy Dummy Classifier 0.4975 0.5000 0.4000 0.1990 0.2658 0.006

SVM SVM - Linear Kernel 0.5513 0.0000 0.9091 0.5393 0.6700 0.010

Ridge Ridge Classifier 0.7025 0.0000 0.5781 0.7712 0.6605 0.006

Table 3 Performance Evaluation of the selected Machine 
Learning models using Holdout data

Model Acc AUC Recall Prec. F1

LR 0.72 0.77 0.63 0.76 0.69

LDA 0.70 0.77 0.59 0.76 0.67

AdaBoost 0.70 0.77 0.65 0.72 0.68
Fig. 3 Feature importance scores from LR, LDA, and Ada Boost 
Models
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visualized the results in Fig. 3. In the case of linear mod-
els (LR and LDA), the feature importance is represented 
by the absolute values of the coefficients. For the Ada 
Boost Classifier, the feature importance values are scaled 
and presented in the visualization.

Interpretation of the model
We used SHAP (SHapley Additive exPlanations) [26] 
to interpret the most impactful features that our mod-
els utilize in determining the status of the hospitaliza-
tion. The SHAP heatmap for the linear models depicted 
in Fig.  4 is based on the 20% test samples (X-axis). 
The sorted global feature importance is represented 
by the Y-axis and the bar plot (right-hand side). The 
magnitude of SHAP values of each observation (each 
patient) is represented by colors. The blue color for a 
feature denotes, in that patient profile, that particular 
feature has a value of 0 and this feature contributed to 
or impacted the prediction of the severity either posi-
tively or negatively. The topmost graph, f(x) represents 
the model predictions of each patient’s multimorbidity 
profile.

In the LR heatmap of SHAP values, while examining 
the f(x), the 0th patient observation number possesses a 
higher prediction. So, it is predicted that the patient is 
admitted to the hospital, and the features in cluster “bin 
10” contribute more positively to the Covid-19 sever-
ity of that particular patient. Similarly, we can interpret 
the results of other patients for all the features using this 
visualization.

Discussion
According to literature, women appear to be relatively 
less susceptible to SARS-CoV-2 infection than men [27]. 
But epidemiological data reveals no visible sex-based dis-
crepancy in disease severity, suggesting that the progres-
sion of the virus is comparably favorable in both women 

and men, and there is a similarity in the age at which 
the rate of SARS-CoV-2 infection peaks for both male 
and female [28, 29]. However, the specific comorbidi-
ties that increase the risk of severe COVID-19 outcomes 
can differ significantly between men and women [30]. 
This underscores the need for a refined understanding of 
gender-specific factors influencing susceptibility and out-
comes in the context of the COVID-19 pandemic. While 
existing literature provides valuable insights, there is a 
distinct lack of in-depth investigation specifically focus-
ing on women [28]. To comprehensively address this gap 
in knowledge, it is imperative to advocate for targeted 
research works dedicated to understanding the unique 
aspects of women’s vulnerability or protection against 
COVID-19.

In our study, we utilized a combination of clustering 
and Machine Learning approaches to assess the severity 
of COVID-19 in women in midlife. Clustering less prev-
alent features into various Bins enhanced the interpret-
ability of our data. By strategically grouping less common 
features into Bins and integrating them with prevalent 
ones, we aimed to capture a comprehensive picture of 
multimorbidity among women in midlife. Construct-
ing clusters of multimorbidity and interpreting the out-
comes at the patient level also allows us to identify, for 
future patients, which cluster value of a Bin contribute 
to whether a group of patients will be hospitalized or not 
due to COVID-19. Furthermore, in this study, identify-
ing the most predictive feature or a Bin that includes less 
prevalent features helps in revealing the underlying com-
bination of multimorbidity that predicts the severity of 
COVID-19 among women in midlife.

Examining Fig.  3 for the top-performing Machine 
Learning models in this study reveals that the age vari-
able (age > 53) and the feature as a Anatomical Thera-
peutic Chemical (ATC) code, ATC A11C (Vitamin D and 
analogues) play crucial roles as predictors for COVID-
19 hospitalization outcomes in middle-aged women. 

Fig. 4 Heatmap matrix and global importance of features
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Existing literature provides support for the notion that 
individuals with a vitamin D deficiency are more suscep-
tible to developing severe or critical cases of COVID-19 
compared to those with sufficient vitamin D levels [31]. 
The other important features are the engineered features 
Bin 10 and Bin 3.

We found that Bin 10, which includes only one ATC 
code, ATC J01DD, consistently stands out as important 
across all major Machine Learning models. A retrospec-
tive drug-utilization study in Campania, southwestern 
Italy, found a higher prevalence of this third-generation 
cephalosporins (ATC J01DD) in COVID-19 positive 
adults under 40 and above 80, compared to the general 
population [32]. Additionally, a Hungarian study on 
hospital antibiotic consumption revealed a noteworthy 
63.7% increase in the utilization of ATC J01DD from 
2010 to 2019, with a substantial 70.46% surge during the 
pandemic years from 2019 to 2020 [33].

In Bin 3, under International Classification of Diseases, 
Ninth Revision (ICD-9), code ICD 574 corresponds to 
Cholelithiasis, a condition characterized by gallstone for-
mation in the gallbladder. Research indicates a significant 
link between obesity and symptomatic gallstones, sug-
gesting that even moderate overweight increases the risk 
in middle-aged women [34]. Individuals with gallstones 
often exhibit impaired gallbladder motility, potentially 
associated with additional gastrointestinal abnormali-
ties [35]. Bin 3 also includes ATC A03FA (Propulsives) 
for stimulating gastrointestinal motility, ATC A05AA for 
medications related to bile acids and derivatives for man-
aging certain liver diseases, ATC B03BA (Vitamin B12), 
ATC A12BA (Potassium), and ATC A12AA (Calcium). 
Calcium supplements for preventing mineral and bone 
disorders in chronic kidney disease (CKD) have been 
both praised and criticized [36].

Acute cholecystitis (AC) is a prevalent gastrointestinal 
ailment. The primary cause of AC is gallstone-related, 
but it may also be linked to diabetes, immunosuppres-
sion, CKD, and viral illnesses [37]. CKD significantly 
increases the risk of experiencing severe complica-
tions from COVID-19 [38]. A UK Biobank Community 
Cohort study revealed that in women both CKD and 
asthma posed a substantial risk for COVID-19 hospitali-
zation, whereas in men, these conditions did not carry a 
similarly significant risk [30]. Additionally, females with 
asthma had a higher adjusted risk of hospitalization and 
death from COVID-19 compared to males with asthma, 
even after considering other factors [39]. Bin 3 also 
includes ATC D05AX (Corticosteroids in combination 
with vitamin D analogues for psoriasis treatment). Pso-
riasis may be associated with an increased risk of asthma, 
and childhood asthma is linked to a significantly higher 
risk of psoriasis [40].

Other features in Bin 3 include ICD 727 (Other dis-
orders of synovium, tendon, and bursa) and ICD 338 
(Pain, not elsewhere classified), encompassing chronic 
postoperative pain. A study on pain management during 
COVID-19 indicates that pain prevalence is 1.5-2 times 
more common in women than in men, with a higher ratio 
for specific conditions like fibromyalgia, which predomi-
nantly affects middle-aged women [41].

Research on the COVID-19 pandemic and cholecystitis 
suggests that the pandemic influenced healthcare-seek-
ing behaviors for individuals with less severe health con-
ditions [42]. A population-based cross-sectional study 
found that healthcare avoidance during the pandemic 
exhibited a robust correlation with being female, perceiv-
ing one’s health as fragile, and experiencing elevated lev-
els of depression and anxiety [43].

Other medications in Bin 3 include Analgesics, Antie-
pileptics, and those related to the Cardiovascular system 
(C03, C07, C09, C10). In a study analyzing prescription 
data from June 2016 to March 2021, women exhibited a 
greater prevalence of antiseizure medication prescrip-
tions compared to men, totaling around 1.3 million pre-
scriptions [44]. Additionally, ATC C10AB, referring 
to fibrates, a type of medication used to lower choles-
terol and triglycerides, may contribute to mitigating the 
inflammatory and thrombotic outcomes associated with 
SARSCoV-2 infection [45].

Strengths and limitations
Training Machine Learning models in a reduced fea-
ture space would be beneficial, can be supported by our 
current results. Our intention in applying unsupervised 
methodology for feature reduction was rooted in the 
belief that a simplified feature space could lead to more 
interpretable models and potentially improved gener-
alization performance. However, we recognize that the 
results obtained for Machine Learning models, which 
demonstrated superior performance with the complete 
set of features, appear slightly lower when trained on the 
reduced feature set.

Despite a slightly lower AUC, achieving competitive 
predictive performance with less number of features 
raises the question of the computational cost-effective-
ness of using a reduced feature set. If computational 
resources are a critical consideration, our findings sug-
gest that the reduced feature set could offer a pragmatic 
solution, providing a reasonable trade-off between pre-
dictive accuracy and computational requirements.

In the context of model interpretation, it is notewor-
thy to mention that, while writing this manuscript, 
SHAP support for AdaBoostClassifier is in the pro-
cess of being integrated into the official SHAP library. 
A relevant pull request is under review on the SHAP 
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GitHub repository [46]. We are closely monitoring the 
progress, and once integrated, we plan to incorporate 
SHAP plots for AdaBoost into our future analyses.

Conclusion
The process of the unsupervised binning of the rare 
features can be divided into three phases: (1) extract-
ing more prevalent features, (2) feature level cluster-
ing of the rare features to create bins, and (3) data level 
clustering of the features in a bin. The dimensionally 
reduced data with newly engineered features are used 
for the predictive modeling. The removal of data spar-
sity by this unsupervised binning of the rare features 
offered a low dimensional feature matrix for the predic-
tive modeling. We have compared the predictive ability 
of the new sparsity-free feature matrix and the original 
sparse data and found that with a very low number of 
features itself, the model achieves nearly equal predic-
tion performance. We have also checked the predictive 
utility of the new feature matrix by interpreting the fea-
ture importance and impact of the new features in the 
Machine Learning model.

The use of the method to address data sparsity in 
medical data and improve the understanding of the 
factors associated with the impact of infectious dis-
eases on health outcomes in a population with multi-
morbidity is significant. By clustering sparse medical 
data and creating new features, the method could pro-
vide a more detailed understanding of multimorbid-
ity patterns and the associations between different 
diseases. Improving the understanding of the factors 
associated with the severity of COVID-19 in this pop-
ulation could have important implications for public 
health policies, as middle-aged women with multi-
morbidity may be particularly vulnerable to the dis-
ease. The method has the potential to lead to better 
healthcare outcomes and inform public health policies 
related to COVID-19.

In our future works, we aim to enhance our work by 
integrating patient stratification based on their health-
care requirements, which entails the clustering of 
patient data to identify groups with similar healthcare 
utilization patterns. This approach will aid in identi-
fying patient subgroups with distinct clinical profiles, 
which can help in designing targeted interventions and 
personalized care. Also, more research is needed to 
understand the direct impact of COVID-19 on midlife 
women’s help-seeking behaviors related to menopause 
specifically [47]. As a future work we are also planning 
to use Machine Learning to identify patterns in health-
care seeking behaviors before and after COVID-19 
diagnosis in midlife women.
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