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Abstract 

Prostate cancer is the most common cancer after non-melanoma skin cancer and the second leading cause of can-
cer deaths in US men. Its incidence and mortality rates vary substantially across geographical regions and over time, 
with large disparities by race, geographic regions (i.e., Appalachia), among others. The widely used Cox proportional 
hazards model is usually not applicable in such scenarios owing to the violation of the proportional hazards assump-
tion. In this paper, we fit Bayesian accelerated failure time models for the analysis of prostate cancer survival and take 
dependent spatial structures and temporal information into account by incorporating random effects with multivari-
ate conditional autoregressive priors. In particular, we relax the proportional hazards assumption, consider flexible 
frailty structures in space and time, and also explore strategies for handling the temporal variable. The parameter esti-
mation and inference are based on a Monte Carlo Markov chain technique under a Bayesian framework. The deviance 
information criterion is used to check goodness of fit and to select the best candidate model. Extensive simulations 
are performed to examine and compare the performances of models in different contexts. Finally, we illustrate our 
approach by using the 2004-2014 Pennsylvania Prostate Cancer Registry data to explore spatial-temporal heterogene-
ity in overall survival and identify significant risk factors.

Keywords Accelerated failure times, Bayesian inference, Monte Carlo Markov chain, Multivariate conditional 
autoregressive priors, Prostate cancer, Spatial-temporal modeling

Introduction
Prostate cancer (PC) is the most common cancer after 
non-melanoma skin cancer and the second leading cause 
of cancer deaths in US men, with 31,620 deaths esti-
mated in 2019, a 7% increase compared with 2018 [1]. In 
recent years, PC care and outcomes have substantially 
improved, with a 5-year survival rate of up to 100% if 
the cancer is diagnosed at an early stage; however, these 
improvements are not equally shared across geographic 
regions, and elevated mortality has been observed among 
patients in some specific areas (i.e., rural or Appalachian 
regions) [2]. One important potential factor driving this 
geographic disparity is access to high-quality cancer 
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care. Other disparities have also been explored, includ-
ing black race, older age, and family history of PC [2]. 
Despite the high 5-year survival rate with early diagno-
sis, the diagnosis of PC is likely to be delayed owing to 
the aforementioned factors. Thus, improving PC survival 
outcomes is still crucial and challenging, and there is a 
need to better understand the spatial-temporal heteroge-
neity of PC and identify high-risk populations to enable 
more effective implementation of screening policies and 
intervention strategies.

To achieve these goals, existing population-based 
cancer registry data provide fruitful resources and plat-
forms for analysis; however, there are several specific 
data issues: 1) substantially multi-modal risk factors with 
various data types; 2) spatial-temporal variation in can-
cer mortality, with adjacent neighborhoods or temporal 
cohorts more alike than those from distant regions or 
years owing to similar environmental and social factors 
[3–6]; and 3) the availability of individual-level data for 
analysis. In this article, we used population-based Penn-
sylvania (PA) cancer registry data (PCR) from the PA 
Department of Health to examine the spatial-temporal 
pattern of survival in patients with a primary clinical 
diagnosis of PC in PA between 2004 and 2014 [5–8]. The 
PCR is annually collected, including demographic (e.g., 
age at diagnosis, race, insurance) and clinical informa-
tion (e.g., serum prostate-specific antigen [PSA], Glea-
son score, tumor stage, first-course treatment) from 

hospitals, clinics, and other medical facilities, as well as 
geo-spatial information [4–8]. Note that in PA, there are 
around 78,000 newly diagnosed cancer cases each year, 
with a mortality rate of 169.1 per 100,000 men in 2004–
2014 (age-adjusted to the 2000 US standard population) 
according to a PA Department of Health report on the 
burden of cancer in PA in 2019; however, there have been 
limited studies on PA survival on prostate cancer taking 
spatial heterogeneity and temporal trend into account.

To analyze such registry data more efficiently for 
valid inference, advanced statistical methods for can-
cer survival analysis are needed. There are two widely 
used methods for time-to-event analysis: the Cox pro-
portional hazards (PH) model and the accelerated fail-
ure time (AFT) model, both with extensive extensions 
[9–12]. The PH assumption is highly likely to be violated 
in cancer registry data owing to the multi-modality (i.e., 
demographic and clinical information) and hierarchi-
cal structure (i.e., individual-level, county-level) of risk 
factors [3, 8]. We performed a preliminary check of 
PCR data and realized that the plots of the Schoenfeld 
residuals indicated that the PH assumption was vio-
lated for race in several counties, as shown in Fig.  1. 
Owing to these specific data features and issues, Cox 
PH regression may lead to biased estimates and invalid 
inference. Additionally, failing to account for spatial-
temporal heterogeneity could lead to biased inference; 
although substantial work has been done to address this 

Fig. 1 The plots of the Schoenfeld residuals for the PH assumption test on race
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issue, it has mostly focused on aggregate data analysis 
[13, 14]; individual-level spatial-temporal analysis is 
yet to be explored. Therefore, to overcome these barri-
ers, advanced statistical models are needed for rigorous 
exploration. Here, we propose advanced spatial-tem-
poral models under the AFT framework to fill this gap. 
Among the existing literature on cancer registry sur-
vival analysis, there has been some work performed in 
the realm of spatial or spatio-temporal survival analy-
sis. Carlin and Banerjee (2003) [15] considered hierar-
chical spatial process models for multivariate survival 
datasets that are spatio-temporally arranged and used 
Cox PH modeling approaches with spatial and temporal 
effects; Banerjee and Carlin (2003) [16] later proposed 
a semi-parametric (i.e., Cox PH) hierarchical Bayesian 
frailty model to capture spatio-temporal heterogeneity 
for discrete survival times; Zhang and Lawson (2011) 
[3] proposed a spatial AFT model (with only spatial 
random effects considered); Zhou et al. (2017) [17] pro-
posed a generalized AFT model with spatial frailty and 
considered informative censoring data; Onicescu et  al. 
(2017) [18] developed a geographically augmented sur-
vival model with a complex spatio-temporal structure; 
however, their spatial and temporal components were 
not easily separated for interpretation; and Carroll et al. 
(2017) [19] proposed Bayesian AFT models with only 
spatial frailty terms to investigate spatial differences in 
breast cancer mortality following cancer diagnosis using 
the 2000–2013 Louisiana SEER data. Later, Wang et al. 
(2020) [8] used this approach to investigate the effects 
of risk factors on overall survival in newly diagnosed PC 
patients, and Carroll et al. (2019) [20] extended Bayes-
ian AFT models to explore spatial and temporal options 
for structuring frailties that follow a random walk pro-
cess, but they considered the AFT models with a stand-
ard logistic distribution for the error term and did not 
clearly mention how to better handle the variable of 
diagnosis year in regression analysis. Some other work 
includes Wang et  al. (2012) [21], Hurtado et  al. (2016) 
[22], Sharmin and Khan (2017) [23], Carroll and Zhao 
(2019) [24], among others. Comparing to the previous 
work, our proposed model has the following advan-
tages. First, Bayesian AFT models are employed instead 
of Cox PH models and relax the PH assumption, and 
also our program possess different choices of distri-
butions (e.g., Weibull, log-logistic); Second, the fixed 
effects including linear predictors of interest and the 
random effects with flexible frailty structures in space 
and time are incorporated. In particular, we explore dif-
ferent ways to handle the time variable (e.g., the year of 
diagnosis) which are under-studied in the literature, and 
evaluate their empirical performance of effectiveness 
on survival inference under a variety of settings; Third, 

we implement our estimation procedures and model 
diagnosis in R with callable C functions for computing 
efficiency, which are available in the GitHub for public 
use by cancer researchers and other research purposes 
(refer to https:// github. com/ zli141/ sptime).

The rest of the paper is organized as follows. In the 
“Methods” section, we provide notation and describe our 
proposed spatial-temporal AFT models, as well as the 
Bayesian algorithm for parameter estimation and infer-
ence. The “Simulation study”  section details the exten-
sive simulations conducted to evaluate our proposal. The 
results from the motivating example of the PCR of PC are 
presented in the “Data application”  section. Finally, the 
“Discussion”  section offers discussion with concluding 
remarks and potential future work.

Methods
Accelerated failure time model
For the kth ( k = 1, . . . ,Kij ) subject from the ith 
( i = 1, . . . , I ) county in the jth ( j = 1, . . . , J  ) temporal 
cohort, let Tijk denote the time to death after diagnosis 
of PC, and let Cijk represent the corresponding censoring 
time. Thus, Yijk = min(Tijk ,Cijk) is the observed follow-
up time, with δijk = I(Tijk ≤ Cijk) as the death indicator. 
In addition, xijk is a p× 1 vector of covariates for survival 
regression, which could include time-dependent or time-
varying factors of interest.

The AFT model can be expressed in a linear form with 
the log link function of Tijk,

where µ is the population-level mean and σ is a shape 
parameter that controls the shape of the survival curve; β 
is a p× 1 vector of regression coefficients associated with 
the covariates xijk ; and ǫijk is the residual, which follows a 
distribution function Fǫ(·) . For instance, we can consider 
an ǫijk that follows a standard extreme value distribu-
tion; thus, fǫ(ε) = exp(ε − eε) and Fǫ(ε) = 1− exp(−eε) , 
where ǫ follows a standard extreme value distribution and 
so Tijk follows a Weibull distribution. Other choices for 
ǫijk include a standard normal distribution and a standard 
logistic distribution.

The conditional autoregressive (CAR) prior
In order to account for the county level spatial hetero-
geneity, we include a spatial random effect in the AFT 
model, which is given by

Borrowing an idea from linear mixed-effect models, 
we could assume that the random effect ωi follows a nor-
mal distribution N (0, τ−2). However, unlike traditional 

(1)log(Tijk) = µ+ x
T
ijkβ + σǫijk ,

(2)log(Tijk) = µ+ x
T
ijkβ + ωi + σǫijk .

https://github.com/zli141/sptime
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mixed-effect models, the ωi(i = 1, . . . , I) are not indepen-
dently distributed; this is because the adjacent counties 
tend to be correlated owing to the potential of sharing 
similar environmental or social factors [25]. Besag (1974) 
[26] proposed a conditional autoregressive (CAR) distri-
bution for ωi and assumed

where ω−i={ω1, . . . ,ωi−1,ωi+1, . . . ,ωI } . Note that mii′ is 
defined as 1 if county i and county i′ are adjacent; oth-
erwise mii′ = 0. This can be interpreted as the arithmetic 
mean of ωi being the arithmetic mean of the ωi values of 
those counties adjacent to it. The joint density function of 
ω = (ω1, . . . ,ωI )

T can be expressed by

where Dω = diag
{

∑

i′ �=1m1i′ , . . . ,
∑

i′ �=I mIi′

}

 is a diago-
nal matrix, with the ith diagonal element as the total 
number of the counties adjacent to county i. C = (mii′)I×I 
is the adjacent matrix of all the counties in the study.

Given the observed data D = {(Yijk , δijk), i = 1, . . . , I ,

j = 1, . . . , J , k = 1, . . . ,Kij} and spatial random effects 
ω , the conditional likelihood function can be derived  
as

where f (tijk |ωi) and S(tijk |ωi) are the conditional density 
function and survival function, respectively, for the kth 
subject from the ith county in the jth temporal cohort. 
Denoting µ(xijk) = µ+ x

T
ijkβ + ωi , we have

and

The multivariate conditional autoregressive (MCAR) prior
The CAR prior only accounts for the correlations 
between different counties; however, the PCR for PC 
also includes patients enrolled in different years (i.e., 

(3)ωi|ω−i ∼ N

(

∑

i′ �=i mii′ωi′
∑

i′ �=i ωii′
,

1
∑

i′ �=i mii′
τ−2

)

,

(4)Pr(ω) ∝ τ−n exp

(

−
1

2τ 2
ωT(Dω − C)ω

)

,

(5)

L(D|w) =

I
∏

i=1

J
∏

j=1

Kij
∏

k=1

[

f (tijk |ωi)
]δijk

[

S(tijk |ωi)
]1−δijk ,

(6)
S(tijk |ωi) = Sǫ

(

log(tijk)− µ(xijk)

σ

)

= exp

[

− exp

(

log(tijk)− µ(xijk)

σ

)]

,

(7)f (tijk |ωi) = 1/(σ tijk)fǫ

(

log(tijk)− µ(xijk)

σ

)

.

temporal cohorts). It is natural to anticipate that there 
might be some degree of correlation between either 
temporal cohorts or counties. Banerjee and Carlin 
(2003) [16] proposed a Cox PH model with the MCAR 
prior to address the spatial-temporal dependency. 
Owing to the violation of the PH assumption (Fig.  1), 
we extended the application of the MCAR prior to the 
AFT model for further survival analysis [27, 28].

Here, we induce another random effect vector regard-
ing temporal cohorts of the ith county, γ i = (γi1, . . . , γiJ )

T , 
into the AFT model. The spatial-temporal model can be 
expressed as

where zik = (zi1k , . . . , ziJk)
T is a J × 1 with zijk as a 

dichotomous temporal cohort indicator (1=yes, 0=no) 
for the kth patient from the ith county; ξ = (ξ1, ..., ξJ )

T is 
the fixed temporal effect; ηi = (ηi1, . . . , ηiJ )

T with ηij as 
a binary indicator covariate associated with the jth year-
specific random effect γij.

Let �i = (ωi, γ
T
i )

T  , and we assume

where � represents the hyper-parameters in the MCAR 
prior. Thus, the joint density function of � = vec{�1, . . . ,�I } 
is

Note that the MCAR prior may be improper, 
because the variance-covariance matrix of the nor-

mal distribution could be singular. Similarly, 
the conditional likelihood of the observed data 
D = {(Yijk , δijk), i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . ,Kij} is

where f (tijk |�i) and S(tijk |�i) are the conditional density 
function and survival function, respectively, for the kth 

(8)
log(Tijk) = µ+ x

T
ijkβ + z

T
ikξ + ηTi γ i + ωi + σǫijk ,

�i ∼ N (0,�−1)

�i|�−i ∼ MVN
i �=i′

mii′�i′

i �=i′
mii′

,
1

i �=i′
mii′

�−1
,

Pr(�) ∝ |�|
1
2 exp

(

−
1

2
�T[(Dω − C)⊗�]�

)

.

(9)

L(D|�) =

I
∏

i=1

J
∏

j=1

Kij
∏

k=1

[

f (tijk |�i)
]δijk

[

S(tijk |�i)
]1−δijk ,
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subject from the ith county in the jth temporal cohort. 
Denote µ′(xijk) = µ+ x

T
ijkβ + z

T
ikξ + ηTi γ i + ωi , we have

and

Bayesian inference with the MCAR prior
When Dω − C is a non-singular matrix, the density 
function of � is proper, and we can find a unique solu-
tion based on the likelihood approach. However, when 
Dω − C is a singular matrix, the density function is 
not proper; thus, Bayesian methods are preferred for 
parameter estimation and inference. Here, we consider 
the non-informative priors for β , ξ , µ , and σ 2 , where

Also, with regard to random effects �i , we select 
a conjugated prior for � with � ∼ Wishart(p,R). In 
order to let the prior be vague, p could be the dimen-
sion of �, and R could be arbitrarily set as a diagonal 
matrix Diag{100, ..., 100}I×I . Let  X = {xijk} , Z = {zijk} ; 
i = 1, . . . , I  ; j = 1, . . . , J  ; k = 1, . . . ,Kij . Then, we can 
derive the posterior distribution of � as follows:

where the element in the ith row and jth column of V  is 
Vij = �∗T

i (Dw − C)�∗
j  , with �∗

i = (�1i, . . . ,�Ii)
T and 

�∗
j = (�1j , . . . ,�Ij)

T . The Gibbs sampler algorithm is 
used to generate the posterior samples of β , ξ , µ , σ , and 
� [29]. In particular, for the tth iteration, t = 1, . . . ,M 
(where M is the total number of samples we will draw 
from the posterior distribution), we have the following: 

Step 1: Sample β(t) from Pr(β(t)|D,X ,Z, ξ (t−1)
,�(t−1) , σ (t−1) ,�(t−1));

Step 2: Sample ξ (t) from Pr(ξ (t)|D,X ,Z,β(t)
,�(t−1) , σ (t−1) ,�(t−1));

Step 3: Sample ω(t)
i  from Pr(�(t)

i
|D,X ,Z,β(t)

,ω
(t−1)
(−i) , σ (t−1) ,�t−1) , 

for i = 1, . . . , I;
Step 4: Sample σ (t) from Pr(σ (t)|D,X ,Z,β(t)

, ξ (t) ,�(t) ,�(t−1));
Step 5: Sample �(t) from Pr(�(t)|D,X ,Z,β(t)

, ξ (t),�(t), σ (t)).

Of note, there is no closed form for the full condi-
tional posterior distribution except in step 5, which is 
a Wishart distribution, Wishart(p+ I , (R−1 + V

−1)−1) . 
The Metropolis–Hastings algorithm was used to sample 
the parameters from their full conditional distribution 

(10)
S(tijk |�i) = Sǫ

(

log(tijk )− µ′(xijk )

σ

)

= exp

[

− exp

(

log(tijk )− µ′(xijk )

σ

)]

,

(11)f (tijk |�i) = 1/(σ tijk)fǫ

(

log(tijk)− µ′(xijk)

σ

)

.

Pr(β) ∝ 1, Pr(ξ) ∝ 1, µ ∝ 1, σ 2 ∼ inverse-Gamma(0.001, 0.001).

�|D,β ,�, σ ∼ Wishart(p+ I , (R−1 + V )−1),

[30]. Taking Pr(β(t)|D,X ,Z, ξ (t−1),�(t−1), σ (t−1),�(t−1)) 
as an example, we have the following procedures: 

1 Generate U ∼ Unif (0, 1) and W ∼ N (0, 1);
2 Generate βNew from βNew = β(t−1) + sW  , where s is 

the step size of a random walk process;
3 Calculate 

4 If LR > U , β(t) = βNew , otherwise β(t) = β(t−1).

 Here, s is chosen to ensure the rejection rate is not 
extremely high, given that an optimal acceptance rate 
would be between 10% and 60%. In our simulation, our 
rejection rate is around 44%; we repeatedly sample β , ξ ,µ , 
σ and � from step 1 to step 5 until we have enough pos-
terior samples. Suppose we have a total of M posterior 
samples; then, we can estimate the parameter by calcu-
lating their posterior means and also perform subsequent 
inference. To ensure the parameters in the model identi-
fiable, �ij will be centralized such that 

∑

ij �ij = 0.

Model selection and goodness‑of‑fit check
With respect to model selection, we used the deviance 
information criteria (DIC), a Bayesian analog of the AIC, 
to choose the best candidate model that achieves the 
optimal balance between model fit and model complex-
ity [31]. Let θ denote the whole parameter space of the 
model. Spiegelhalter et  al. (2002) [31] proposed the fol-
lowing DIC under the Bayesian framework, which com-
bines the likelihood and the posterior distributions:

where θ̄ is the posterior mean of θ . Noting that 
ζ(θ̄) = −2 log L(θ̄)+ C is the deviance of the model 
under our posterior estimates, where C is a constant on 
the DIC; and pD = ζ̄ − ζ(θ̄) is the difference of the mean 
of the deviance under the posterior distribution and the 
deviance under the posterior mean, reflecting the effec-
tive number of parameters to indicate the model com-
plexity or degrees of freedom. Notably, DIC serves as a 
decent approximation of AIC when working with neg-
ligible prior information. Additionally, graphical and 
secondary assessments such as Cox-Snell or martingale 
residuals are valuable tools for gaining further insights 
into the goodness-of-fit.

Motivated by the analysis using the PCR of PC, we con-
sider the following three candidate models:

LR =
L(D|βNew ,�)Pr(βNew)

L(D|β(t−1),�)Pr(β(t−1))
;

(12)DIC = 2pD + ζ(θ̄),
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• Model 1 (M1): log(Tijk ) = µ+ x
T
ijkβ + ξzijk + ωi + σǫijk;

• Model 2 (M2): log(Tijk ) = µ+ x
T
ijkβ + ξzijk + γizijk + ωi + σǫijk;

• Model 3 (M3): log(Tijk ) = µ+ x
T
ijkβ + z

T
ikξ + ηTi γ i + ωi + σǫijk .

 In M1 and M2, zijk is the year when the patient was 
enrolled in the study. These models treat the year as a 
continuous variable. In M3, zik is the vector of the year 
indicators for the year when the patient was enrolled in 
the study, treating year as a categorical variable. M1 is 
a spatial model that does not account for the temporal 
cohort effect variation. In M2, a random slope is added to 
account for the temporal effect, where �i = {ωi, γi} . For 
M3, we have a spatial-temporal intercept for each cohort 
and each county �i = {ωi, γij , i = 1, . . . , I; j = 1, . . . , J }. 
We chose the optimal model for survival analysis of the 
PCR of PC depending on the DIC, where the smaller the 
DIC, the better the model. The procedures for parameter 
estimation and inference and for model diagnosis were 
programmed in R and invoke C functions; these are avail-
able upon request from the authors.

Simulation study
Simulation set‑ups
In order to evaluate the performance of our proposed 
method and the selection accuracy of the DIC, we mim-
icked the PCR data structure and conducted extensive 
simulation studies under different scenarios. The data 
were generated using the following AFT models:

• Scenario 1 (S1): log Tijk = µ+ x1,ijk + 0.5x2,ijk + ωi + 0.5(j − 1)+ ǫijk;
• Scenario 2 (S2): log Tijk = µ+ x1,ijk + 0.5x2,ijk + ωi + 0.5(j − 1)0.5 + ǫijk;
• Scenario 3 (S3): log Tijk = µ+ x1,ijk + 0.5x2,ijk + ωi + γij + ǫijk;
• Scenario 4 (S4): log Tijk = µ+ x1,ijk + 0.5x2,ijk + ωi + z

T
ik ξ + ǫijk , 

where ξ = (0, 0.5,−0.5, 0.6,−0.8).

 Here, x1,ijk is a continuous variable generated from a 
standard normal distribution N(0, 1); x2,ijk is a binary var-
iable following the Bernoulli distribution, Bernoulli(0.5); 
x1,ijk and x2,ijk vary between different subjects, cohorts, 
and counties; zik = (zi1k , . . . , ziJk) with zijk as the indi-
cator for the jth temporal cohort. In S3, ωij = ωi + γij 
is generated iteratively considering the dependency 
between adjacent cohorts with ωij = 2ωi,j−1 + ζ , where 
ζ is generated by a standard normal distribution N(0, 1). 
We assume that the error term ǫijk follows a standard 
extreme value distribution.

To evaluate the influence of the censoring rate on the 
performance of our proposed candidate models, the 
censoring time was generated from a uniform distribu-
tion, Unif(0, 1) for a rough average censoring rate of 20% 
across Monte Carlo data, and Unif(0,  80) for a censor-
ing rate of around 80%. Additionally, to mimic the PCR 
and generate similar data, we also considered the case 

with x1,ijk as a county-level risk factor to evaluate our 
methods; in other words, x1,ijk varies only across coun-
ties but not across subjects and temporal cohorts, thus 
x1,ijk = x1,i.

As there are 67 counties in PA, we considered the same 
number of counties in our set-up, thus i = 1, . . . , 67 . 
In addition, in order to reduce the computing burden, 
we assumed there were five temporal cohorts for each 
county (J = 5) . In each county and temporal cohort, the 
number of patients, Kij , was determined by the percent-
age of cancer cases in the real PC data from the PCR. 
Thus, we ensured that there were at least five patients in 
every county each year. For results summary, we gener-
ated 1,000 Monte Carlo data for each scenario, and for 
each data simulation, we fitted the following Weibull AFT 
models (M1, M2, and M3) under the Bayesian framework:

• M1: log(Tijk ) = µ+ β1x1,ijk + β2x2,ijk + ωi + σǫijk;
• M2: log(Tijk ) = µ+ β1x1,ijk + β2x2,ijk + ξzijk + γizijk + ωi + σǫijk;
• M3: log(Tijk ) = µ+ β1x1,ijk + β2x2,ijk + z

T
ik ξ + ηTi γ i + ωi + σǫijk .

 Note that ηi and γ i are defined the same as in “Model 
selection and goodness-of-fit check”  section, and the 
matrices Dω and C (the adjacency matrix) in the MCAR 
and CAR priors are generated for the PA counties. For 
parameter estimation, the posterior mean was calculated 
for each parameter using 1,000 MCMC samples, generat-
ing a total of 2,000 posterior samples with the first 1,000 
samples discarded during the burn-in period. It should 
be noted that more MCMC samples might be necessary 
depending on model convergence diagnosis; however, in 
our numerical studies, satisfactory results were achieved 
under these settings (see results below). In summary, for 
the Monte Carlo replications, the bias (Bias) and stand-
ard deviation (SD) of parameter estimates, mean squared 
error (MSE), and the selection probabilities of different 
models based on the DIC are reported.

Simulation results
The summary statistics for the estimates of primary 
parameters β̂1 and β̂2 under different scenarios are pre-
sented here. The results for all scenarios with a censor-
ing rate of 20% are shown in Table 1. The bias values β̂1 
and β̂2 under M2 were the smallest among all candidate 
models, whereas M1 had the worst performance with the 
largest bias, especially for S3, followed by S1. With regard 
to MSE, M2 still showed the best performance, having 
the smallest value across different scenarios. Notably, the 
performance of M3 was comparable with that of M2 in 
terms of having negligible bias and variability under the 
S4 scenario.

Figures 2 and 3 show that in this algorithm, β1 and β2 
quickly converge to the true value. The posterior samples 
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Table 1 Summary of the estimation results for the scenarios with the censoring rate is 20%. Par: parameters; Bias: the bias of Monte 
Carlo average of parameter estimates; SD: Monte Carlo standard deviation of parameter estimates; MSE: mean squared error

S1 S2 S3 S4

Par Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

M1 β1 = 1 -0.032 0.017 0.001 -0.016 0.015 0.000 -0.125 0.140 0.035 -0.013 0.015 0.000

β2 = 0.5 -0.015 0.031 0.001 -0.008 0.026 0.001 -0.062 0.082 0.010 -0.007 0.027 0.001

M2 β1 = 1 0.000 0.011 0.000 0.000 0.010 0.000 -0.017 0.029 0.001 -0.004 0.012 0.000

β2 = 0.5 0.000 0.020 0.000 0.000 0.019 0.000 -0.009 0.029 0.001 -0.001 0.022 0.000

M3 β1 = 1 -0.023 0.014 0.001 -0.009 0.012 0.000 -0.097 0.112 0.022 -0.003 0.012 0.000

β2 = 0.5 -0.011 0.024 0.001 -0.004 0.021 0.000 -0.047 0.062 0.006 -0.002 0.022 0.001

Fig. 2 The ACF plot for model parameters of β1 (left panel) and β2 (right panel)

Fig. 3 The trace plot for model parameters of β1 (left panel) and β2 (right panel)
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are not quite correlated in the autocorrelation function 
(ACF) plot. Also, in the trace plot, the posterior samples 
vibrate around the true value of β1 and β2.

Furthermore, when the censoring rate increased to 
80% (results shown in Table 2), the majority of bias and 
MSE values across different scenarios increased com-
pared with those in Table  1; however, M2 still showed 
satisfactory results in terms of having the smallest bias 
and MSE among all candidate models, except in the case 
of S4, under which the bias values ( β̂1 and β̂2 ) were rela-
tively large, although the MSEs remained satisfactory 
(0.002 and 0.005 for M2; 0.003 and 0.005 for M3). In 
addition, we checked the model fitting for the scenarios 

with x1 as the only risk factor varying across counties; 
the results are presented in Table 3. Compared with the 
results shown in Table 1, the bias of β̂1 in M2 tended to 
be much larger; under S4 in particular, a substantial bias 
was detected compared with the M3 case, although the 
MSEs seemed to be comparable. With regard to model 
selection under different scenarios, the selection prob-
abilities based on the DIC criterion are provided in 
Table 4. Model M2 was predominantly selected regard-
less of the censoring rate; however, when underlying 
risk factors were hierarchical under scenario S4, which 
has spatial and temporal heterogeneity but the same lin-
ear temporal trend within-county, M3 had the highest 

Table 3 Summary of the estimation results for the scenarios with the censoring rate is 20% and the county-level risk factor x1,i . Par: 
parameters; Bias: the bias of Monte Carlo average of parameter estimates; SD: Monte Carlo standard deviation of parameter estimates; 
MSE: mean squared error

S1 S2 S3 S4

Par Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

M1 β1 = 1 -0.032 0.133 0.019 -0.017 0.134 0.018 -0.114 0.184 0.047 -0.015 0.134 0.018

β2 = 0.5 -0.016 0.028 0.001 -0.008 0.024 0.001 -0.057 0.085 0.011 -0.007 0.027 0.001

M2 β1 = 1 -0.022 0.089 0.008 -0.025 0.090 0.009 -0.084 0.131 0.024 -0.020 0.080 0.007

β2 = 0.5 0.000 0.020 0.000 0.001 0.020 0.000 -0.006 0.030 0.001 -0.002 0.023 0.001

M3 β1 = 1 -0.030 0.101 0.011 -0.016 0.101 0.010 -0.092 0.148 0.030 -0.009 0.101 0.010

β2 = 0.5 -0.012 0.022 0.001 -0.004 0.021 0.000 -0.045 0.063 0.006 -0.002 0.023 0.001

Table 4 Summary results of the selection probabilities for different models under different scenarios. CR: censoring rate. x1,ijk is a 
subject-level risk factor varied across counties and temporal years; x1,i is a county-level risk factor

20% CR, x1,ijk 80% CR, x1,ijk 20% CR, x1,i

M1 M2 M3 M1 M2 M3 M1 M2 M3

S1 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

S2 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

S3 0.00 0.97 0.03 0.00 0.99 0.01 0.00 0.95 0.05

S4 0.00 0.10 0.90 0.00 1.00 0.00 0.00 0.12 0.88

Table 2 Summary of the estimation results for the scenarios with the censoring rate is 80%. Par: parameters; Bias: the bias of Monte 
Carlo average of parameter estimates; SD: Monte Carlo standard deviation of parameter estimates; MSE: mean squared error

S1 S2 S3 S4

Par Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

M1 β1 = 1 -0.026 0.069 0.005 -0.020 0.061 0.004 -0.019 0.092 0.009 -0.031 0.046 0.003

β2 = 0.5 -0.006 0.103 0.011 -0.002 0.093 0.009 -0.011 0.113 0.013 -0.014 0.070 0.005

M2 β1 = 1 0.004 0.064 0.004 0.004 0.057 0.003 0.025 0.076 0.006 -0.007 0.041 0.002

β2 = 0.5 0.008 0.102 0.010 0.009 0.092 0.009 0.011 0.095 0.009 -0.002 0.069 0.005

M3 β1 = 1 -0.054 0.068 0.008 -0.020 0.063 0.004 -0.051 0.125 0.018 -0.003 0.055 0.003

β2 = 0.5 -0.021 0.100 0.010 -0.002 0.093 0.009 -0.026 0.106 0.012 0.000 0.073 0.005
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selection rate. Noting that we also performed post-hoc 
analysis by adopting log-logistic AFT for model fitting 
and comparing the performance to the other existing 
approaches, and the results of these additional analyses 
are presented in the Supplementary Material.

Data application
We applied our proposed models to the PCR PC data for 
the years 2004–2014, with men aged ≥ 40 years with a 
primary diagnosis of PC and Gleason score (GS) of ≥ 6 
included for analysis. PC cases with unknown GS were 
also considered if the tumor stage was ≥ T3. The survival 
outcome of interest was the time to all-cause mortality 
(months). Several important risk factors were consid-
ered: 1) serum PSA; 2) age at diagnosis with a threshold 
of 65 years old (1 if age < 65 , 0 otherwise); 3) insurance 
status (0=yes; 1=no); 4) Appalachian region, a geopoliti-
cal designation defined by the Appalachia Regional Com-
mission that roughly follows the spine of the Appalachian 
mountains (https:// www. arc. gov/ appal achian_ region); 5) 
disease aggressiveness: less aggressive PC (GS 6 or GS 7 
[3+ 4] , tumor stage T1-T2, and no distant metastasis), 
or more aggressive PC (GS ≥ 7 [4 + 3] , tumor stage ≥T3, 
or distant metastasis); 6) treatment at diagnosis: primary 
site surgery only, radiation only, primary site surgery and 
radiation, or other/unknown; 7) race: white, black, or 
other/unknown; and 8) year of diagnosis. Regarding the 
age variable, we dichotomized age using a threshold of 
65 years due to clinical interest and significance [32–35], 
and also the violation of the PH assumption (Table S.3 
in the Supplementary Material). The PA Department of 
Health and the Institutional Review Board of the PA State 
University College of Medicine approved the protected 
data and the study. Based on the empirical performance 
of the candidate models in the simulation studies, we 
only fitted two models, M2 and M3, for data analysis and 
comparison of results.

Of the 143,499 PC cases reported with a primary diag-
nosis in the 2004–2014 PCR, 94,274 eligible men, aged 
40 to 105 years, were identified for the final analysis. 
These data were analyzed in our previous work, where 
more details of the summary statistics for demographic 
and clinical characteristics can be found [6, 8]; however, 
these previous studies did not consider temporal hetero-
geneity together with spatial information in the mod-
eling, nor were any model diagnoses or comparisons 
conducted. Here, we performed a secondary analysis of 
the PCR to further explore the distribution of newly diag-
nosed PC cases and their associated risk factors in PA by 
using advanced statistical methods via AFT regression 
models. As shown in Fig. 4, there were significant differ-
ences in the survival curves stratified by several risk fac-
tors ( p < 0.001 ). For example, patients who were black, 

had more aggressive disease, were aged 65+ , or did not 
receive either surgery or radiation had higher risk of 
mortality. Based on an empirical check of the different 
candidate models in the simulations, we considered spa-
tial-temporal AFT models M2 and M3 with adjustment 
of both spatial and temporal heterogeneity for this PCR 
data application; two different distribution assumptions, 
the Weibull and log-logistic distributions, were also con-
sidered. For each model, 2000 samples were drawn in the 
burn-in period and another 20000 samples were drawn 
from the posterior distribution.

The results for fixed-effect parameters are summarized 
in Table 5. Note that the estimates were directly associ-
ated with the natural logarithm of time, with a negative 
value indicating a decrease in survival time and a posi-
tive value indicating an increase in survival time. There 
were some differences in the magnitude of parameter 
estimates and the associated significance among differ-
ent candidate models. Based on the DIC criterion, M3 
with the log-logistic distribution assumption was the 
best candidate model. In addition, per reviewers’ sugges-
tion, we conducted sensitivity analysis with varied values 
of hyperparameters for M3. Specifically, several com-
binations of priors for σ 2 and R were considered (with 
more details in the Supplementary Material). Based on 
the DIC, we added the best candidate model M3 with 
the priors σ 2 ∼ IG(0.001, 0.001) and R = Diag10, . . . , 10 , 
denoted by M3 into Table  5. Overall, a significantly 
lower PC-specific survival time was observed for 
patients who were black, aged 65 and above, not insured, 
and had higher serum PSA or more aggressive PC at the 
time of diagnosis. A longer PC-specific survival time 
was observed for patients with any definitive PC treat-
ment compared with those without either primary site 
surgery or radiation treatment. For instance, according 
to M3∗ (the best candidate), the average survival time of 
PC cases who received both surgery and radiation was 
3.773=exp(1.328) (95% CI 3.695-4.536) times higher 
than that of those who did not receive either. When 
comparing models M3∗ to M3 under the log-logistic dis-
tribution assumption, one major difference is observed 
in the effect of the county-level risk factor, Appalachia. 
Notably, along with relatively informative priors, Appa-
lachian regions exhibit longer survival times compared 
to non-Appalachian regions, which aligns with some 
evidence from our prior work (i.e., men residing in rural 
Appalachia demonstrated the lowest rates of aggressive 
prostate cancer and mortality) [8]. Nevertheless, this 
finding remains contentious and necessitates further 
exploration. Additionally, we conducted further good-
ness-of-fit checks using Cox-Snell residuals, with more 
detailed information available in the Supplementary 
Material (Fig. S.2). This analysis demonstrates superior 

https://www.arc.gov/appalachian_region
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performance after adjustment for spatial-temporal 
dependency, although we acknowledge some deviations 
that merit further investigation.

Discussion
In this work, we utilized PC data from the PCR to iden-
tify the best candidate model for inference. Owing to the 
unique features of individual-level cancer registry data, 
with spatial and temporal dependency and a hierarchical 
structure of risk factors, advanced statistical approaches 
via spatial-temporal hierarchical modeling were neces-
sary. Although spatial and temporal models for survival 
analysis are described in the literature, they have limita-
tions or were not directly applicable or accurate in this 
context: for instance, some approaches can only be used 
for aggregate data analysis such as county-level or any 
other administrative unit-level data; some only consider 
spatial correlations but ignore temporal information; and 
some use Cox PH regression regardless of the violation 

of the PH assumption. Based on our extensive simulation 
studies, mimicking the PCR and considering different 
candidate models to incorporate spatial and/or temporal 
heterogeneity, we identified an optimal model for cancer 
registry survival analysis with individual-level data under 
different scenarios. We found that in most cases, model 
M2 with spatial and temporal random effects and year of 
diagnosis as a continuous variable can achieve satisfac-
tory performance, with the smallest bias and variability 
in parameter estimates. However, when there was sub-
stantial variation in space-time and also a hierarchical 
structure of risk factors across individuals and geograph-
ical clusters (i.e., county), model M3 was preferred. For 
goodness-of-fit check and model selection, the DIC 
is the most prevalent metric for evaluation. However, 
incorporating more graphical assessments like Cox-Snell 
residuals could provide additional insights. Moreover, 
based on sensitivity analysis, we anticipate that more 
informative priors might lead to further improvements. 

Fig. 4 The Kaplan-Meier Curves stratified by stage of aggressiveness, first-course treatment (S: surgery; R: radiation), age and race. The p-values 
are obtained based on log-rank tests, where the category of unknown or unknown/others are not considered. Note: all p-values < 0.001 based 
on log-rank tests
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However, further exploration is required to ensure the 
justification of these priors.

These proposed models and the associated recommen-
dation guidelines for model fitting under this context will 
benefit not only PC research but also studies of other 

cancers or diseases in other population-based registry data 
with similar data structures, including the SEER data, and 
the National Program of Cancer Registries. Furthermore, 
the Bayesian framework adopted here can be easily imple-
mented in statistical software, and more interpretable 

Table 5 Results summary for the data application of the PCR under M2 and M3 with Weibull and log-logistic AFT models. Note 
that the priors with σ 2 ∼ IG(0.001, 0.001) and R = Diag{100, . . . , 100} are used except that for M3∗ with σ 2 ∼ IG(0.001, 0.001) and 
R = Diag{10, . . . , 10} . EST: parameter estimate; CL: credible limit; IG: inverse gamma

Weibull AFT Log‑logistic AFT

M2 M3 M2 M3 M3∗

Covariate EST (95%CL) EST (95%CL) EST (95%CL) EST (95%CL) EST (95%CL)

Serum PSA -0.167(-0.180, -0.152) -0.155(-0.177, -0.121) -0.202(-0.218, -0.179) -0.203(-0.236, -0.167) -0.229 (-0.232, -0.190)

Age at diagnosis
 >=65 REF REF REF REF REF

 <65 0.386(0.352, 0.414) 0.395(0.359, 0.428) 0.460(0.403, 0.494) 0.450(0.401, 0.489) 0.474 (0.472, 0.543)

Insurance
 Yes REF REF REF REF REF

 No 0.057(0.009, 0.097) -0.092(-0.155, -0.013) 0.036(-0.026, 0.088) -0.167(-0.235, -0.069) -0.151 (-0.142, -0.030)

Appalachian
 No REF REF REF REF REF

 Yes 0.106(-0.068, 0.418) -0.031(-0.153, 0.073) 0.061(-0.092, 0.547) -0.107(-0.165, -0.081) 3.671 (4.003, 6.009)

Treatment at diagnosis
 Neither Surgery or Radia-
tion

REF REF REF REF REF

 Surgery only 0.974(0.909, 1.039) 0.978(0.917, 1.043) 1.097(1.049, 1.175) 1.106(1.054, 1.168) 1.152 (1.129, 1.237)

 Radiation only 0.446(0.408, 0.483) 0.453(0.412, 0.493) 0.588(0.558, 0.616) 0.571(0.542, 0.614) 0.607 (0.610, 0.687)

 Surgery and Radiation 1.071(0.963, 1.205) 1.015(0.911, 1.158) 1.279(1.077, 1.471) 1.240(1.081, 1.399) 1.328 (1.307, 1.512)

 Others/Unknown -0.246(-0.352, -0.125) -0.102(-0.188, 0.054) -0.312(-0.457, -0.101) -0.224(-0.448, -0.057) -0.294 (-0.281, -0.129)

Race
 White REF REF REF REF REF

 Black -0.109(-0.150, -0.068) -0.217(-0.285, -0.123) -0.116(-0.170, -0.044) -0.184(-0.234, -0.114) -0.150 (-0.140, -0.061)

 Others/Unknown 0.601(0.497, 0.696) 0.537(0.322, 0.724) 0.644(0.459, 0.809) 0.665(0.563, 0.784) 0.712 (0.710, 0.868)

Stage of Aggressiveness
 Less Aggressive REF REF REF REF REF

 More Aggressive -0.435(-0.469, -0.408) -0.453(-0.516, -0.409) -0.528(-0.554, -0.499) -0.525(-0.553, -0.486) -0.593 (-0.594, -0.544)

 Unknown -0.117(-0.161, -0.071) -0.129(-0.231, -0.057) -0.117(-0.202, -0.068) -0.072(-0.136, -0.017) -0.155 (-0.138, -0.071)

Year(Cont) 0.044(0.039, 0.052) - 0.075(0.068, 0.086) - -

 Year=2004 - REF - REF REF

 Year=2005 - -0.661(-1.413, -0.056) - -0.036(-0.107, 0.078) -1.034 (-1.076, -0.099)

 Year=2006 - 0.106(-0.084, 0.224) - -0.114(-0.157, 0.022) -0.374 (-0.419, -0.090)

 Year=2007 - -0.192(-0.495, 0.131) - -0.112(-0.165, 0.037) -1.091 (-1.155, -0.361)

 Year=2008 - -0.529(-0.900, -0.221) - -0.103(-0.165, 0.050) -1.706 (-1.782, -0.620)

 Year=2009 - 0.095(-0.570, 0.781) - -0.053(-0.159, 0.110) 0.453 (0.474, 0.776)

 Year=2010 - 0.416(-0.026, 0.741) - 0.052(-0.030, 0.191) 0.977 (0.993, 1.244)

 Year=2011 - 1.526(0.761, 1.891) - 0.277(0.193, 0.407) 2.028 (1.653, 3.679)

 Year=2012 - 1.495(0.754, 1.901) - 0.267(0.193, 0.403) 1.997 (1.653, 3.633)

 Year=2013 - 2.214(1.514, 2.996) - 0.619(0.536, 0.765) 2.470 (2.242, 3.888)

 Year=2014 - 5.375(2.499, 7.816) - 1.271(1.018, 1.553) 5.167 (5.337, 7.368)

Model Diagnosis
 DIC 80202.51 89965.28 35360.85 34867.03 16397.44



Page 12 of 13Wang et al. BMC Medical Research Methodology           (2024) 24:86 

results can be obtained from posterior summaries. Not-
ing that if the model and data generating mechanism is 
unknown, the MCMC algorithm might take longer to 
converge depending on the model complexity and the 
data. Thus, it is important to perform convergence diag-
nosis and choose appropriate numbers of MCMC and 
burn-in samples. Nonetheless, there are several limita-
tions to the proposed approach. Currently, we primarily 
focus on the CAR distribution, which incorporates spa-
tial dependencies based on county contiguity. However, 
alternative weighting schemes such as distance-based 
or graphic-based weights could potentially offer greater 
insight. Additionally, enhancing the predictive accuracy 
of our approach could involve selecting more informative 
priors or other distribution assumptions tailored to spe-
cific data applications. Moreover, our current model only 
incorporates baseline risk factors except the diagnosis year. 
However, if additional (time-varying) risk factors are avail-
able for analysis, our modeling framework should be capa-
ble of accommodating them, albeit with additional effort 
required for algorithm extension and model diagnosis.

There are several topics for future work. Here, we mainly 
focused on parametric AFT models; however, the distribu-
tion assumption could be violated in practice, and thus more 
robust models such as the semi-parametric AFT model (i.e., 
rank-based estimation) would be of research interest. Besides, 
here we mainly analyzed overall survival; however, if there 
is clinical interest in cancer-specific survival, the compet-
ing risks due to other causes need to be taken into account 
to obtain unbiased estimates. Models extended from the Fine 
and Gray model or based on a joint approach with shared 
random effects modeling could be developed in future stud-
ies. In addition, with regard to parameter estimation and 
inference based on the Bayesian technique, advanced algo-
rithms (i.e., blocked Gibbs sampling, slice sampling) could be 
adopted to further reduce the computing burden.

Conclusion
This study presents several advanced spatial-temporal 
models for identifying risk factors for all-cause mortality 
in newly diagnosed PC patients from the PCR 2004-2014, 
where heterogeneity between subjects and the structure of 
dependency in geographic regions (county) and time (data 
collection year) are simultaneously considered. Simulation 
data indicated that under such context, the model with 
spatial and temporal random effects and the year of diag-
nosis as a continuous variable performs the best among 
candidate models, with model diagnosis and assessment 
based on the DIC. Additionally, the application of the 
model on our motivation data on PC was also evaluated, 
leading to more valid inference on risk factors’ effects and 
identifying substantial spatial-temporal variation.
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