
Cai et al. BMC Medical Research Methodology           (2024) 24:89  
https://doi.org/10.1186/s12874-024-02208-3

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Research
Methodology

Outlier detection in spatial error models 
using modified thresholding-based iterative 
procedure for outlier detection approach
Jiaxin Cai1, Weiwei Hu1, Yuhui Yang1, Hong Yan1,2* and Fangyao Chen1,2,3* 

Abstract 

Background Outliers, data points that significantly deviate from the norm, can have a substantial impact on statisti-
cal inference and provide valuable insights in data analysis. Multiple methods have been developed for outlier detec-
tion, however, almost all available approaches fail to consider the spatial dependence and heterogeneity in spatial 
data. Spatial data has diverse formats and semantics, requiring specialized outlier detection methodology to handle 
these unique properties. For now, there is limited research exists on robust spatial outlier detection methods designed 
specifically under the spatial error model (SEM) structure.

Method We propose the Spatial-Θ-Iterative Procedure for Outlier Detection (Spatial-Θ-IPOD), which utilizes 
a mean-shift vector to identify outliers within the SEM. Our method enables an effective detection of spatial outliers 
while also providing robust coefficient estimates. To assess the performance of our approach, we conducted exten-
sive simulations and applied it to a real-world empirical study using life expectancy data from multiple countries.

Results Simulation results showed that the masking and JD (Joint Detection) indicators of our Spatial-Θ-IPOD 
method outperformed several commonly used methods, even in high-dimensional scenarios, demonstrating stable 
performance. Conversely, the Θ-IPOD method proved to be ineffective in detecting outliers when spatial correla-
tion was present. Moreover, our model successfully provided reliable coefficient estimation alongside outlier detec-
tion. The proposed method consistently outperformed other models (both robust and non-robust) in most cases. In 
the empirical study, our proposed model successfully detected outliers and provided valuable insights in the mod-
eling process.

Conclusions Our proposed Spatial-Θ-IPOD offers an effective solution for detecting spatial outliers for SEM 
while providing robust coefficient estimates. Notably, our approach showcases its relative superiority even in the pres-
ence of high leverage points. By successfully identifying outliers, our method enhances the overall understanding 
of the data and provides valuable insights for further analysis.
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Background
In general, an outlier refers to a data point that signifi-
cantly deviates from the norm for a specific variable 
or population [1]. It is also characterized as an obser-
vation that is inconsistent with the remaining data 
[2]. Swersky et  al. (2016) further defined an outlier as 
an observation that diverges to the extent of arousing 
suspicions [3]. Outliers are inevitable [4] and some-
times carry special information. While in practice, 
some outliers may simply be considered as “noise” or 
“dirty data”, more often than not, they have the poten-
tial to influence statistical inference and provide valu-
able insights within the dataset [5]. For instance, in a 
published breast cancer detection system, inliers may 
represent healthy patients, while outliers may indicate 
a higher probability of breast cancer [6]. As a result, 
incorrect or crude treatment of outliers often results 
in loss of information, inaccurate statistical inferences 
and biased estimates. Accurately identifying outliers, 
especially in the field of public health, is of significant 
importance for further analysis of outliers to provide 
additional insights in certain aspects. Therefore, the 
methodology for detecting outliers is an essential and 
urgent need in data analysis [5].

A dataset may contain multiple outliers, posing chal-
lenges in detecting and addressing the masking and 
swamping effects [7]. Various methods have been 
employed for multiple outlier detection, including the 
fully efficient one-step procedure (GY) proposed by 
Gervini and Yohai (2002) [8], the least trimmed squares 
(LTS) [9], and the MM-estimators [10]. Moreover, other 
methods have also been developed to tackle different 
aspects of outlier detection. For instance, Kong et  al. 
(2018) proposed a method based on the squared loss 
of the mean-shift model with two penalty functions on 
the mean-shift vector and the parameter vector, achiev-
ing both high breakdown points and high efficiency [11]. 
Jiang et  al. (2020) introduced the penalized weighted 
LAD-LASSO (PWLAD-LASSO) estimator, which com-
bines robust estimation and outlier detection proper-
ties [12]. Among these methods, we noticed that the 
Θ-IPOD method proposed by She & Owen (2011) used 
a regression model with a mean shift parameter. They 
incorporated a soft-thresholding penalty and a hard-
thresholding penalty, which effectively counter the 
masking effects [13].

However, in recent years, the presence of spatial 
heterogeneity in data has become increasingly com-
mon in various fields such as survey studies, surveil-
lance efforts, and longitudinal studies, particularly 

in cancer-related research [14]. For instance, the Sur-
veillance, Epidemiology, and End Results (SEER) Pro-
gram, the China Health and Retirement Longitudinal 
Study (CHARLS), and the China Northwest Cohort 
(CNC) often involve the collection of data at small 
geographical levels (such as communities or counties), 
which are subsequently aggregated at larger levels. This 
introduces additional complexity to outlier detection 
tasks. The primary reason for this is that geographic 
data often exhibit spatial dependence [15]. Traditional 
methods for outlier detection fail to consider the spa-
tial relationships among input variables, while spatial 
patterns often demonstrate spatial continuity and auto-
correlation with neighboring samples. For instance, 
the Θ-IPOD method relies on a linear structure with 
a mean-shift vector. However, the existence of spatial 
dependence violates the assumptions of traditional 
ordinary least squares (OLS) estimation and can result 
in a decrease in the efficiency and increase in the bias 
of the OLS estimator for the regression model param-
eters [16]. There have been some approaches to spatial 
outlier exploration, however, due to the diverse formats 
and semantics of spatial data, there is still a urgent need 
for outlier detection methodology that can accommo-
date these unique properties especially spatial depend-
ence and heterogeneity [17].

In the area of spatial analysis, one commonly used 
method is the spatial error model (SEM), which consid-
ers the covariance structure between error terms [18]. 
The SEM model is adept at effectively addressing chal-
lenges related to spatial correlation and heterogeneity. 
SEM has been successfully applied in various applica-
tions, providing valuable insights when the spatially 
autocorrelated error structure is well-defined [19]. 
Some robust spatial regression approaches have been 
proposed in recent years. José- Montero et  al. (2012) 
introduced a model incorporating a global spatial trend 
within a Spatial Autoregressive (SAR) framework to 
address both large-scale spatial dependencies and local 
spatial autocorrelation. The utilization of penalized 
splines for model estimation was emphasized, leverag-
ing their representation as mixed models [20]. Boente 
et  al. (2012) presented a robust estimation framework 
encompassing parametric and nonparametric compo-
nents within the context of a generalized partly linear 
single-index model [21]. Additionally, Yildirim et  al. 
(2020) proposed a robust estimation approach utiliz-
ing robustified likelihood equations specifically tailored 
for SEM [22]. However, it is important to highlight that 
there is limited research available on robust spatial 
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outlier detection specifically tailored to the SEM struc-
ture. These spatial robust estimation methods do not 
yield explicit results identifying which observations are 
outliers, which is not conducive to our further analysis 
of outliers.

Therefore, in this study, we propose a novel outlier 
detection method Spatial-Θ-IPOD for SEM-structure 
data. Considering the outstanding performance of the 
Θ-IPOD method in detecting outliers under normal cir-
cumstances, we have decided to extend its application 
to the structure of the SEM model to address the task of 
spatial outlier detection.

The contributions of this paper are as follows:
(1) We proposed an extension of the IPOD method to 
incorporate the structure of the SEM model, calling 
Spatial-Θ-IPOD, enabling the detection of spatial outli-
ers while effectively addressing the challenges posed by 
masking and swamping effects.

(2) In addition to outlier detection, our approach also 
provided robust estimates for the coefficients.

(3) We evaluated the effectiveness of the proposed 
algorithms for spatial outlier detection by applying them 
to the analysis of Life Expectancy (LE) data from multiple 
countries. We conduct a comprehensive analysis of the 
detected outliers, providing valuable insights and robust 
estimated results.

Methods
The Θ‑IPOD method
The Θ-IPOD is based on the mean-shift model [13]:

where X = [x1 , ..., xn]T ∈ R
n×p,y = [y1, ..., yn]T ∈ R

n,β = [β1, ...,βp]T ∈ R
p

,ǫ ∈ R
n is a random error vector. γ = (γ1, ..., γn)

T ∈ R
n acts as a 

vector indicating the locations of outliers. If one γi does 
not equal 0, it means the corresponding observation is an 
outlier.

To deal with masking and swamping in the presence of 
multiple outliers mentioned before, λ is the regulariza-
tion parameters, a general threshold function Θ was been 
used.�(t; �) is an odd monotone unbounded shrinkage 
rule for t, at any λ, which satisfies:

(1) �(−t; �) = −�(t; �)
(2) �(t; �) ≤ �

(
t ′; �

)
for 0 ≤ t ≤ t ′

(1)y = Xβ + γ+ ǫ, ǫ ∼ N

(
0, σ 2I

)

(3) lim
t→∞

�(t; �) = ∞
(4) 0 ≤ �(t; �) ≤ t for 0 ≤ t < ∞

In their study, they considered two version of threshold 
function Θ, which are:

For any threshold function Θ(·; λ), a penalty function 
P�(·; �) with the smallest curvature corresponding can 
be found by following three-step construction,

(a) �−1(u; �) = sup{t : �(t; �) ≤ u}
(b) s(u; �) = �−1(u; �)− u

(c) P(θ; �) = P�(θ; �) =
∫ |θ |
0 s(u; �)du

The ultimate goal is to optimize the following for-
mula to obtain the robust estimate of (β̂ , γ̂ ) by iterative 
procedure.

The update of γ via γ(j+1) = �
(
Hγ (j) + (I−H)y; �

)
 

at each iteration, where �i = �
√
1− hi  , the HatMa-

trix H can be defined as H = H(X) = X(XTX)−1XT , hi 
donates the ith diagonal entry of H.

About the choice of the regularization parameter, the 
λ can be chosen via BIC (Bayesian information criterion) 
[23, 24]. To be more specific, it can be chosen by a slight 
modification BIC. Given � and the corresponding estimate 
γ (�) , let nz(�) = {i : γ̂i(�) �= 0},γ̂nz is an OLS estimate with 
one parameter per detected outlier, and the degrees of free-
dom are given by DF(�) = |nz(�)| . The slight modification 
of BIC is as BIC∗(�) = m log(RSS/m)+ k(log(m)+ 1)

,where ⌢
y = Aγ + ǫ′, ǫ′ ∼ N

(
0, σ 2I(n−p)×(n−p)

) , ⌢
y = UT

c y , 
A can be obtained by the spectral decomposi-
tion of HatMatrix H , H = ADA

T , m = n− p

,RSS = ||⌢y − Aγ̂||22 = (I−H)(y − γ̂)||22 , and k = degrees 
of freedom + 1.

The selection range of � is decreasing from 
||(I−H)y/

√
diag(I−H)||∞ to 0, and select the � with 

the minimum BIC∗(�).
The detail algorithm is as follows:

(2)�soft (x; �) =
{
0, if |x| ≤ �

x − sgn(x)�, if |x| > �

(3)�hard (x; �) =
{
0, if |x| ≤ �

x, if |x| > �

(4)fP(β , γ ) ≡
1

2
||y − Xβ − γ ||22 +

n∑

i=1

P(γi; �i)
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Algorithm 1 Θ-IPOD

Spatial error model
SEM has been extensively utilized in various fields such 
as econometrics, regional science, forest science, social 
science, and marketing research. More recently, it has 
also found applications in the field of public health [25]. 
SEM regression model involving the coefficient of spatial 
dependence or autocorrelation (μ) that captures the spatial 
dependence in the error terms, is presented as follows:

Normal SEM model can be described as

where y contains an n × 1 vector of dependent vari-
ables and X represents an n × p matrix of independ-
ent variables. β is a vector of p × 1 vector of regression 
parameter to be estimated of the model. μ is the spa-
tial autoregressive parameter needed to be estimated. 
W is the row-standardized weight matrix, which is 

(5)y = Xβ + ξ, ξ = µWξ + ǫ, ǫ ∼ N

(
0, σ 2I

)

calculated based on the distance matrix indicating 
how locations are spatially interconnected. The lag-
error term ξ = µWξ + ǫ, ǫ ∼ N

(
0, σ 2I

)
 effectively 

addresses spatial dependence within the error terms, 
thereby augmenting the conventional linear model. The 
Eq.  (4) shows that the observations have a Gaussian 
distribution with y ∼ N (Xβ , σ 2(In − µW)−1).

Spatial‑Θ‑IPOD
As mentioned earlier, while Θ-IPOD demonstrates excel-
lent performance under normal regression assumptions, it 
is observed that the error term deviates from the ordinary 
linear model. Consequently, Θ-IPOD may no longer be 
applicable in such cases.

To address this limitation, we propose a modified 
approach called Spatial-Θ-IPOD, which incorporates a 
mean shift vector γ into the SEM to identify outliers and 
obtain robust coefficient estimations. This modification 
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enables the method to be suitable for the SEM data struc-
ture. The model is described as follows:

Motivated by Yildirim (2020) [22], one possible approach 
for estimating the regression coefficients of the SEM is 
the generalized least squares (GLS) method. This method 
is applicable when the spatial autoregressive parameter μ 
is known or has been previously estimated. Therefore, we 
generalize Eq. (5) as follows:

where ỹ = (In − µ̂W)y, X̃ = (In − µ̂W)X, γ̃ = (In − µ̂W)γ.
Under this model setting, the optimization problem 

turns to

We utilize the iterative procedure to solve the opti-
mization problem. Before that, if μ is known, it can 

(6)
y = Xβ + γ+ ξ, ξ = µWξ + ǫ, ǫ ∼ N

(
0, σ 2I

)

(7)Ỹ =QXβ + γ̃ + τ , τ ∼ N

(
0, σ 2I

)

(8)fP(β, γ̃ ) ≡
1

2
||ỹ −QXβ − γ̃ ||22 +

n∑

i=1

P(γ̃i; �i)

directly be used for the optimization. If μ is unknown, it 
can be estimated previously by following method [22]:

(i) Choose ψ function
(ii) Choose initial values β , µ via OLS (Ordinary least 
square) or GMM (Generalized Moment Model)
(iii) Compute β(i+1) from equation β(i+1)

= β(i)+[
I
(
β(i)

)]−1

s
(i)
β .

(iv) Compute residuals with the estimated β(i+1).
(v) Compute µ(i+1) from equation µ(i+1) = µ(i) + [I(µ(i))]−1s(i)µ

.
(vi) Repeat steps iii-v until convergence for β and µ.

where r = �̂
−1/2
�

(y−Xβ)
σ̂

,�� = (In − �W)−1
(
In − �W′)−1

,K =
∫∞
−∞ ψ2(r)f (r)dr , ψ(·) is the influence function 

can be chosen, containing Cauchy function, Insha func-
tion, etc. The observed information matrix I(·) can  
be obtained as minus the expected value of the  
second derivatives of the robust log-likelihood func-
tions. The score functions are sβ = σ̂

σ 2X
′(In − µW)2(

In − µ̂W
)−1

ψ(r) = 0 and sµ = −K tr
(
(In − µW)−1

W
)
+

σ̂ 2

σ 2ψ(r)′
(
In − µ̂W

)−1
(In − µW)×W

(
In − µ̂W

)−1
ψ(r) = 0.

The Spatial-Θ-IPOD algorithm is listed as follows:

Algorithm 2 Spatial-Θ-IPOD
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Similar with IPOD, the regularization parameter of our 
proposed Spatial-Θ-IPOD is tuned in a data-dependent 
way by a slight modification of BIC, with decreasing � 
from ||(I− H̃)ỹ/

√
diag(I− H̃)||∞ to 0.

Simulation study
Simulation design
We carried out simulation experiments to test the per-
formance of the Spatial-Θ-IPOD. It is well known that 
the presence of leverage points can cause failure in out-
lier detection methods. To be more specific, a data point 
whose x-value (independent) is unusual, y-value follows 
the predicted regression line though. Thus, we consid-
ered different combinations of dimensions, outlier quan-
tities, and leverage values.

The observations were generated according to

(9)
y = Xβ + γ+ ξ, ξ = µWξ + ǫ, ǫ ∼ N

(
0, σ 2I

)

The predictor matrix X is constructed as follows. Firstly, 
let X = U�1/2 , where Uij

iid∼ U(−5, 5) and �ij = ρ1i �=j 
with ρ = 0.5. The dimension of X is set p ∈ {15, 50} , 
n = 500. Next, we modify the first O rows to repre-
sent leverage points, which are given by L · [1, ..., 1] . We 
consider six cases, involving variations of L ∈ {15, 20} 
and O ∈ {10, 20, 50} . Additionally, three more cases 
involve additive outliers at O points that are not lever-
age points, meaning that no rows of X are changed. The 
β vector is set as [1,…,1]p. The shift vector is generated by 
γ = ({8}O, {0}n−O) . In order to add spatial heterogeneity, 
we incorporate a spatial error term ξ into the model. The 
generation of the spatial error term ξ is constructed as fol-
lows, with λ set to 0.7.

The spatial contiguity matrix W = (Wij) can be generated  

based on wij =
{
r|i−j|, i �= j

0, i = j
 , where r = 0.5. Here, we assume  

that these observations are arranged in a linear 
sequence. Generally, it can be considered as a graph 

Table 1 Outlier identification results on simulated data with p = 15

Seven methods are compared: Our proposed hard-IPOD, our proposed hard-IPOD, hard-IPOD, soft-IPOD, MM-estimator, LTS and Gervini–Yohai’s fully efficient one-step 
procedure

Outlier = 50 Outlier = 20 Outliers = 10

M S JD M S JD M S JD

No leverage

 Spatial-hard-IPOD 0.0036 0.0533 87 0.0090 0.0484 88 0.0400 0.0459 76

 Spatial-soft-IPOD 0.0030 0.0518 86 0.0145 0.0195 74 0.0520 0.0129 52

 Hard-IPOD 0.1500 0.0038 65 0.2600 0.0054 54 0.2430 0.0132 50

 Soft-IPOD 0.3296 0.0072 65 0.3615 0.0016 55 0.3750 0.0004 56

 MM 0.4192 0.0110 40 0.4805 0.0188 37 0.4800 0.0335 37

 LTS 0.1914 0.0076 49 0.2970 0.0148 48 0.2680 0.0236 45

 GY 0.0714 0.0680 0 0.1490 0.1120 0 0.1210 0.1221 2

Leverage = 15

 Spatial-hard-IPOD 0.0027 0.0505 90 0.0095 0.0439 87 0.0410 0.0445 72

 Spatial-soft-IPOD 0.0016 0.0550 92 0.0090 0.0258 83 0.0500 0.0123 57

 Hard-IPOD 0.2714 0.0041 63 0.2235 0.0058 59 0.2050 0.0058 60

 Soft-IPOD 0.7059 0.0124 29 0.4365 0.0024 50 0.3650 0.0010 59

 MM 0.5137 0.0117 37 0.5010 0.0259 36 0.3960 0.0358 50

 LTS 0.2804 0.0108 59 0.2720 0.0162 56 0.2300 0.0220 64

 GY 0.1310 0.0740 0 0.1355 0.1057 0 0.1250 0.1234 1

Leverage = 20

 Spatial-hard-IPOD 0.0046 0.0487 85 0.0110 0.0437 87 0.0330 0.0457 79

 Spatial-soft-IPOD 0.0031 0.0542 85 0.0115 0.0238 80 0.0540 0.0127 57

 Hard-IPOD 0.2600 0.0044 69 0.2325 0.0074 62 0.3250 0.0021 56

 Soft-IPOD 0.6923 0.0207 31 0.4240 0.0032 51 0.5020 0.0008 48

 MM 0.3769 0.0166 46 0.4525 0.0215 40 0.4370 0.0384 47

 LTS 0.1831 0.0055 69 0.2340 0.0169 62 0.3810 0.0174 47

 GY 0.1015 0.0699 0 0.1060 0.1138 88 0.1930 0.1213 3
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structure. The 
∣∣i − j

∣∣ donates the graph distance between 
observation i and j. The σ2 is set 0.2.

Our simulation experiments mainly contain two aspects:
The first part of our simulation experiments focuses on 
comparing the outlier detection performance of seven dif-
ferent methods: Spatial-hard-IPOD, Spatial-soft-IPOD, 
hard-IPOD, soft-IPOD, MM-estimator, fully efficient one-
step procedure proposed by Gervini and Yohai (donoted 
by GY), and the least trimmed squares (LTS). These 
methods are implemented in the robust package (R ver-
sion 4.1.2) and available in the S–PLUS Robust library. To 
ensure a fair comparison with Θ-IPOD, we evaluate their 
performance based on three benchmark measures: the 
mean masking probability (M), the mean swamping prob-
ability (S), and the joint outlier detection rate (JD).

The mean masking probability (M) represents the 
fraction of true outliers that go undetected. The mean 
swamping probability (S) indicates the fraction of non-
outliers that are incorrectly labeled as outliers. The JD 
is the joint outlier detection rate, which measures the 

fraction of simulations with no masking (false negatives). 
In outlier detection, masking is considered more serious 
than swamping as it can lead to significant distortions. 
Swamping, on the other hand, typically results in a loss 
of efficiency. Ideally, we aim for M to be close to 0, S to 
be close to 0, and JD to be close to 100%. The joint out-
lier detection rate (JD) is particularly important for eas-
ier problems, while the mean masking probability (M) is 
more relevant for harder problems.

In the second part of our experiments, we compare the 
Mean Squared Error (MSE) of the estimated parameter 
β among 13 methods. These include the seven outlier 
detection methods mentioned earlier, as well as several 
robust methods for spatial estimation regression such 
as RoMLE (Robust estimation approach for spatial error 
model), including (RoMLE_Cauchy, RoMLE_Welsch, 
RoMLE_Insha, and RoMLE_Logistic). Because the 
RoMLE for SEM has smaller mean squared errors and 
exhibits more robust empirical influence function than 
the classical methods, when there are outliers in the data-
set, we also conclude in our comparison. The difference 

Table 2 Outlier identification results on simulated data with p = 50

Seven methods are compared: Our proposed hard-IPOD, our proposed soft-IPOD, hard-IPOD, soft-IPOD, MM-estimator, LTS and Gervini–Yohai’s fully efficient one-step 
procedure

Outlier = 50 Outlier = 20 Outliers = 10

M S JD M S JD M S JD

No leverage

 Spatial-hard-IPOD 0.0018 0.0564 91 0.0105 0.0518 85 0.0470 0.0420 70

 Spatial-soft-IPOD 0.0024 0.0502 89 0.0190 0.0189 67 0.0600 0.0130 51

 Hard-IPOD 0.2840 0.0097 47 0.2085 0.0034 51 0.2560 0.0060 57

 Soft-IPOD 0.5760 0.0060 38 0.3670 0.0025 56 0.4260 0.0009 53

 MM 0.3280 0.0976 35 0.2385 0.1201 55 0.2350 0.1421 57

 LTS 0.3264 0.0312 28 0.2205 0.0462 44 0.2410 0.0493 49

 GY 0.1632 0.1456 0 0.1050 0.1866 0 0.1390 0.2025 0

Leverage = 15

 Spatial-hard-IPOD 0.0018 0.0542 92 0.0135 0.0452 82 0.0380 0.0412 74

 Spatial-soft-IPOD 0.0015 0.0534 92 0.0135 0.0221 76 0.0530 0.0129 53

 Hard-IPOD 0.2572 0.0191 58 0.2085 0.0014 61 0.2020 0.0030 62

 Soft-IPOD 0.5077 0.0097 49 0.3600 0.0026 58 0.3470 0.0006 57

 MM 0.3877 0.0625 45 0.1820 0.1329 66 0.2030 0.1419 66

 LTS 0.3108 0.0305 52 0.2295 0.0416 58 0.2050 0.0493 62

 GY 0.1486 0.1431 0 0.1015 0.1853 0 0.0850 0.1992 0

Leverage = 20

 Spatial-hard-IPOD 0.0040 0.0513 85 0.0073 0.0438 90 0.0300 0.0440 79

 Spatial-soft-IPOD 0.0025 0.0518 90 0.0094 0.0281 81 0.0370 0.0133 65

 Hard-IPOD 0.2085 0.0026 60 0.2635 0.0067 52 0.1830 0.0028 69

 Soft-IPOD 0.6555 0.0071 33 0.4396 0.0040 50 0.3420 0.0011 63

 MM 0.2740 0.0860 55 0.2396 0.1254 58 0.1750 0.1426 72

 LTS 0.2490 0.0261 48 0.3021 0.0452 50 0.1860 0.0500 64

 GY 0.1050 0.1386 0 0.1469 0.1878 0 0.0840 0.1997 0
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between the four RoMLE method is that they choose 
different ψ function. The ψ function is introduced in 
Method section. Additionally, we consider non-robust 
methods, such as MLE (Maximum Likelihood Estima-
tion) and GMM (Generalized Moments Method).

All calculations were performed in R. The code and 
scripts reproducing the examples in this simulation study 
are publicly available online at GitHub (https:// github. 
com/ Justi n0607/ spati alout lierd etect ion).

Simulation results
Tables  1 and 2 present the outlier identification perfor-
mances of seven models in various simulation scenarios. 
Figs. 1 and 2 illustrate the results of Masking and JD for 
p = 15 and 50 respectively. While our main objective is to 
identify outliers, our proposed Spatial-Θ-IPOD model 
also provides a robust coefficient estimate β̂.

The MSE in β for p equals 15 and 50 can be found in 
Tables  3 and 4 respectively, with corresponding trends 
shown in Figs. 3 and 4. Because our model significantly 
outperforms other models, even by several orders of 
magnitude, we have applied a logarithmic transformation 
to the MSE for ease of visualization and to better illus-
trate the trend.

In terms of masking, our proposed model consistently 
outperforms the other models across all simulation sce-
narios when p equals 15. We also notice that both our 
Spatial-hard-IPOD and Spatial-soft-IPOD models exhibit 
similar performance (Tables 1 and  2, Figs. 1 and  2).

Additionally, we compare our models with three stand-
ard methods (MM, GY, and LTS) from the SPLUS Robust 
library. Among these, the GY-estimator ranks second 
in terms of performance. However, the MM-estimator, 
despite its popularity in robust analysis, and Spatial-
soft-IPOD show relatively weaker performance. When 

Fig. 1 Masking (M) and joint detection (JD) when p = 15

https://github.com/Justin0607/spatialoutlierdetection
https://github.com/Justin0607/spatialoutlierdetection
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p equals 50, the overall results remain largely consist-
ent, with a slight improvement in MM’s performance, 
although it still falls in the middle when compared to 
other models (Tables 1 and  2, Figs. 1 and  2).

In terms of the JD indicator, when p equals 15, our 
proposed model consistently outperforms the other 
models in most scenarios, except for one scenario with 
a small number of outliers and no leverage. In this 
particular scenario, the Spatial-soft-IPOD model falls 
slightly behind the soft-IPOD, but the Spatial-hard-
IPOD still remains the top-performing model among 
all. In contrast, the performance of the hard-IPOD, 
soft-IPOD, MM, and LTS models is not as satisfactory. 
Notably, the GY-estimator performs poorly across all 
cases, indicating limited effectiveness in outlier detec-
tion even with a large number of simulations. When 
p = 50, we find that the performance of our proposed 
method is not significantly affected, as the JD indicators 

continue to remain at a high level (Tables  1 and   2, 
Figs. 1 and  2).

Regarding swamping, it is worth mentioning that 
although our proposed Spatial-Θ-IPOD model excels in 
masking, it shows slightly weaker performance in terms 
of swamping. However, this trade-off is acceptable, as 
masking poses a greater risk and harm.

Overall, the soft-IPOD, hard-IPOD, MM, LTS, and 
GY models demonstrate high masking probabilities and 
low joint detection rates, particularly when the dimen-
sionality (p) is high. However, our proposed Spatial-Θ-
IPOD method surpasses all of these models in terms of 
both masking probability and joint detection rate.

We also present the MSE of β̂  . As depicted in Table 3, 
when p equals 15, it is evident that our method signifi-
cantly outperforms other methods in most cases. The 
hard-IPOD, soft-IPOD, MM, LTS, and GY models exhibit 
considerably poorer performance, with a magnitude 

Fig. 2 Masking (M) and joint detection (JD) when p = 50
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Table 3 MSE of beta (p = 15)

Thirteen methods are compared: Spatial-hard-IPOD, Spatial-soft-IPOD, hard-
IPOD, soft-IPOD, RoMLE_Cauchy, RoMLE_Welsch, RoMLE_Insha, RoMLE_Logistic, 
MM-estimator, LTS, Gervini–Yohai’s fully efficient one-step procedure, Maximum 
likelihood estimation (MLE) and Generalized moments method (GMM)

Outlier = 50 Outlier = 20 Outlier = 10

No leverage

 Spatial-hard-IPOD 5.17E-06 4.40E-06 4.81E-06

 Spatial-soft-IPOD 4.44E-06 3.94E-06 4.27E-06

 Hard-IPOD 2.57E-03 3.33E-03 3.79E-03

 Soft-IPOD 2.95E-03 3.46E-03 3.82E-03

 RoMLE_Cauchy 9.21E-06 5.17E-06 4.19E-06

 RoMLE_Welsch 8.85E-06 5.89E-06 6.66E-06

 RoMLE_Insha 8.61E-06 5.05E-06 4.19E-06

 RoMLE_Logistic 1.03E-05 5.66E-06 4.51E-06

 MM 8.09E-03 1.79E-02 2.57E-02

 LTS 3.59E-03 5.23E-03 6.15E-03

 GY 2.00E-02 4.18E-02 5.90E-02

 MLE 5.24E-05 5.91E-05 6.39E-05

 GMM 4.30E-05 4.27E-05 4.30E-05

Leverage = 15

 Spatial-hard-IPOD 5.21E-06 4.29E-06 4.42E-06

 Spatial-soft-IPOD 4.27E-06 3.77E-06 3.66E-06

 Hard-IPOD 2.57E-03 2.73E-03 2.60E-03

 Soft-IPOD 3.07E-03 2.82E-03 2.61E-03

 RoMLE_Cauchy 4.59E-06 4.24E-06 3.93E-06

 RoMLE_Welsch 4.51E-06 4.49E-06 3.93E-06

 RoMLE_Insha 4.25E-06 4.03E-06 3.81E-06

 RoMLE_Logistic 4.76E-06 4.40E-06 3.89E-06

 MM 8.61E-03 1.53E-02 1.47E-02

 LTS 3.78E-03 4.05E-03 4.11E-03

 GY 2.26E-02 3.37E-02 3.29E-02

 MLE 4.12E-05 3.99E-05 3.87E-05

 GMM 3.78E-05 2.10E-05 1.83E-05

Leverage = 20

 Spatial-hard-IPOD 4.74E-06 4.69E-06 4.52E-06

 Spatial-soft-IPOD 4.00E-06 3.83E-06 3.55E-06

 Hard-IPOD 1.81E-03 2.39E-03 3.49E-03

 Soft-IPOD 2.27E-03 2.46E-03 3.51E-03

 RoMLE_Cauchy 3.83E-06 4.05E-06 3.95E-06

 RoMLE_Welsch 3.82E-06 4.03E-06 3.91E-06

 RoMLE_Insha 3.99E-06 3.88E-06 3.86E-06

 RoMLE_Logistic 4.70E-06 4.06E-06 3.94E-06

 MM 1.38E-02 1.10E-02 2.40E-02

 LTS 2.54E-03 3.24E-03 5.12E-03

 GY 2.23E-02 2.80E-02 4.95E-02

 MLE 4.00E-05 4.00E-05 4.04E-05

 GM 7.96E-05 2.40E-05 1.73E-05

Table 4 MSE of beta (p = 50)

Thirteen methods are compared: Our proposed hard-IPOD, our proposed 
hard-IPOD, hard-IPOD, soft-IPOD, RoMLE_Cauchy, RoMLE_Welsch, RoMLE_Insha, 
RoMLE_Logistic, MM-estimator, LTS, Gervini–Yohai’s fully efficient one-step 
procedure, Maximum likelihood estimation (MLE) and Generalized moments 
method (GMM)

Outlier = 50 Outlier = 20 Outlier = 10

No leverage

 Spatial-hard-IPOD 6.19E-06 5.61E-06 5.28E-06

 Spatial-soft-IPOD 5.41E-06 4.93E-06 4.96E-06

 Hard-IPOD 5.25E-03 2.99E-03 3.18E-03

 Soft-IPOD 5.69E-03 3.27E-03 3.28E-03

 RoMLE_Cauchy 1.03E-05 6.29E-06 1.20E-05

 RoMLE_Welsch 9.74E-06 6.03E-06 1.09E-05

 RoMLE_Insha 1.01E-05 5.71E-06 1.06E-05

 RoMLE_Logistic 1.18E-05 6.92E-06 1.34E-05

 MM 2.64E-02 1.44E-02 2.14E-02

 LTS 9.10E-03 5.74E-03 6.14E-03

 GY 3.21E-02 2.10E-02 2.53E-02

 MLE 7.59E-05 6.60E-05 6.99E-05

 GMM 5.73E-05 5.47E-05 5.56E-05

Leverage = 15

 Spatial-hard-IPOD 6.10E-06 5.63E-06 5.09E-06

 Spatial-soft-IPOD 4.88E-06 4.50E-06 4.12E-06

 Hard-IPOD 3.76E-03 3.13E-03 3.05E-03

 Soft-IPOD 4.05E-03 3.15E-03 3.02E-03

 RoMLE_Cauchy 8.58E-06 7.49E-06 8.86E-06

 RoMLE_Welsch 8.17E-06 7.08E-06 8.43E-06

 RoMLE_Insha 8.08E-06 6.42E-06 7.41E-06

 RoMLE_Logistic 9.19E-06 7.68E-06 9.15E-06

 MM 1.67E-02 1.94E-02 1.71E-02

 LTS 5.78E-03 5.79E-03 5.47E-03

 GY 2.46E-02 2.36E-02 2.19E-02

 MLE 6.21E-05 5.23E-05 4.89E-05

 GMM 3.39E-05 2.73E-05 2.45E-05

Leverage = 20

 Spatial-hard-IPOD 6.29E-06 5.36E-06 5.13E-06

 Spatial-soft-IPOD 4.99E-06 4.32E-06 4.20E-06

 Hard-IPOD 3.15E-03 3.51E-03 2.86E-03

 Soft-IPOD 3.72E-03 3.56E-03 2.85E-03

 RoMLE_Cauchy 5.77E-06 6.53E-06 9.26E-06

 RoMLE_Welsch 7.52E-06 6.42E-06 8.78E-06

 RoMLE_Insha 5.29E-06 5.98E-06 7.82E-06

 RoMLE_Logistic 6.09E-06 6.66E-06 9.81E-06

 MM 1.60E-02 2.44E-02 1.95E-02

 LTS 4.88E-03 6.72E-03 5.53E-03

 GY 1.85E-02 2.72E-02 2.25E-02

 MLE 5.90E-05 5.39E-05 4.94E-05

 GMM 3.48E-05 2.71E-05 2.54E-05
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difference that is much larger compared to other models. 
The MLE and GMM models demonstrate better perfor-
mance than the aforementioned five methods but still 
have room for improvement. Among all the models, the 
four RoMLE models are the closest to our MSE, but gen-
erally, our method still yields lower MSE, except in two 
scenarios (Outliers = 10, no leverage and Outliers = 50, 
leverage = 20) where we slightly lag behind. In terms of 
our proposed Spatial-hard-IPOD and Spatial-soft-IPOD 
models, the Spatial-soft-IPOD consistently outperforms 
the Spatial-hard-IPOD in all situations, while the MSEs 
of both methods increase as the number of outliers 
increases (Tables 3 and  4, Figs. 3 and  4).

When p equals 50, the overall performance situation 
remains largely unchanged, with our proposed Spatial-Θ-
IPOD model still exhibiting the best MSE performance 
among all the models. The only difference is that the MSE 

of Spatial-Θ-IPOD is slightly larger compared to that of p 
equals 15 (Tables 3 and  4, Figs. 3 and  4).

Empirical study
In this section, we conducted a multi-country cross-
sectional study using public data from the World Bank 
(https:// data. world bank. org/) among 267 countries and 
regions to detect outliers in life expectancy (LE) measure-
ment for the year 2020. In order to ensure that missing 
values will not affect the results of our empirical study, 
we excluded data with missing values from some coun-
tries, resulting in a selection of 82 countries and regions. 
The adjacency matrix for these countries was obtained 
using GeoDa (Luc Anselin 1.22.0.2).

Following the variables chosen by Ranabhat (2018) 
[26], the dependent variable in our study is the life expec-
tancy of each country, while the independent variables 

Fig. 3 Coefficient estimation errors when p = 15

https://data.worldbank.org/
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include economic growth rate, child immunization rate, 
out-of-pocket expenditure percentage, domestic private 
health expenditure percentage, and access to improved 
sanitation percentage.

The fitting model is

W∗ is spatial contiguity matrix which contains the dis-
tance between each country. Because the performance 
of Spatial-soft-IPOD is slightly better than Spatial-hard-
IPOD in our simulation, we apply our proposed Spatial-
soft-IPOD to conduct this empirical study.

The results shows that the γ10 = 11.82855 , while other 
γi = 0 , it indicates that the 10th observation is an outlier 

(10)
y = Xβ + γ+ ξ, ξ = µW∗ξ+ ǫ, ǫ ∼ N

(
0, σ 2I82

)

in this situation, which is Suriname, a country in South 
America. The corresponding map of these countries with 
one outlier observation (red dot) is shown as Supplemen-
tary Fig. 1.

Accurately detecting outliers has many implications, 
including detecting outliers often provides valuable insights 
about the dataset. We furthermore conducted a thorough 
check of all variables for this country. Suriname’s life expec-
tancy ranks 42nd among the 82 countries, while its rank-
ings for the remaining five indicators all fall behind 43rd. 
Specifically, the rankings for the other indicators are as 
follows: economic growth rate (81st), child immunization 
rate (82nd), out-of-pocket expenditure percentage (55th), 
domestic private health expenditure percentage (47th), and 
access to improved sanitation percentage (65th).

Fig. 4 Coefficient estimation errors when p = 50
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Generally, these factors all have a positive correlation 
with life expectancy. Under this assumption, the Suri-
name’s life expectancy should not rank as high as 42nd. 
However, the life expectancy of Suriname does not seem 
to align with the general trend. Therefore, it has been 
identified as an outlier based on these five variables.

Subsequently, we endeavored to determine the reasons 
behind the occurrence of this outlier. We examined other 
predictors related with life expectancy but not included 
in the study. For instance, Suriname’s rankings in current 
health expenditure, enrollment, external health expendi-
ture, and population growth are 39th, 22nd, 41st, and 
42nd, respectively, which are higher than life expectancy 
ranks 42nd. Therefore, in the study, Suriname has been 
identified as an outlier, which may be associated with our 
choice of variables.

Discussion
In this study, we proposed Spatial-Θ-IPOD for detect-
ing spatial data outliers in SEM structures, while provid-
ing robust coefficient estimation results. We extended 
the IPOD method to incorporate spatial data structures, 
allowing for consideration of spatial error lag effects and 
inheriting the desirable properties of IPOD in combating 
masking.

In addition, due to the potential inadequacy of rely-
ing solely on raw residuals for effectively detecting outli-
ers occurring at leverage points. Therefore, we not only 
examined the impact of outliers but also investigated 
the influence of leverage points on outlier detection, an 
aspect that has been rarely addressed in previous spatial 
outlier detection studies. Our simulation results demon-
strated that the original IPOD method was not effective 
in detecting outliers in the presence of spatial correlation. 
Our masking and JD indicators outperformed several 
commonly used methods, both robust and non-robust, 
even in high-dimensional settings, with stable algorithm 
performance. While outlier detection was our primary 
objective, our model also provided stable coefficient esti-
mation. Simulation study showed that our algorithm per-
formed better than other models in the majority of cases, 
with only slight inferiority to the RoMLE model in a few 
instances. Furthermore, the MSE of our method slightly 
increased with increasing data contamination, which is 
consistent with general knowledge.

Accurately detecting outliers is important because it 
provides valuable insights about the dataset. The empiri-
cal study given is of Suriname being identified as an out-
lier observation in a study. The rankings of Suriname in 
various indicators, such as life expectancy and other 
variables, do not align with the general trend. This exem-
plifies one aspect of the significance of outlier detec-
tion, as analyzing outlier points can provide additional 

information. As demonstrated in this example, it indi-
cates that the selected variables cannot fully explain all 
observations. When other four relevant variables are 
included in the model, Suriname is no longer classified 
as an outlier. Outliers offer valuable insights for uncover-
ing hidden knowledge and enhancing healthcare services. 
Medical professionals can utilize these results to make 
informed predictions from extensive medical databases.

A limitation of this study is that in our simulation study, 
we have not considered the case of p > n. Currently, there 
are some issues with inadequate sample sizes in exist-
ing research, which will be the focus of our future stud-
ies. Another limitation of this study is that we tailored 
for cross-sectional data analysis rather than longitudinal 
data. The longitudinal data offers benefits such as captur-
ing temporal trends and changes over time. We intend to 
extend our model to longitudinal data in future research.

Conclusion
In conclusion, we proposed a Spatial-Θ-IPOD method 
that effectively detects spatial outliers in the context of 
SEM structure and provides robust estimates of coef-
ficients. Our method demonstrates relative superiority 
even in the presence of high leverage points. The detec-
tion of outliers offers valuable insights and enhances 
our understanding of the data.
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