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Abstract 

Background Overweight is a major risk factor for non-communicable diseases (NCDs) in Europe, affecting almost 
60% of all adults. Tackling obesity is therefore a key long-term health challenge and is vital to reduce premature mor-
tality from NCDs. Methodological challenges remain however, to provide actionable evidence on the potential health 
benefits of population weight reduction interventions. This study aims to use a g-computation approach to assess 
the impact of hypothetical weight reduction scenarios on NCDs in Belgium in a multi-exposure context.

Methods Belgian health interview survey data (2008/2013/2018, n = 27 536) were linked to environmental data 
at the residential address. A g-computation approach was used to evaluate the potential impact fraction (PIF) 
of population weight reduction scenarios on four NCDs: diabetes, hypertension, cardiovascular disease (CVD), 
and musculoskeletal (MSK) disease. Four scenarios were considered: 1) a distribution shift where, for each individual 
with overweight, a counterfactual weight was drawn from the distribution of individuals with a “normal” BMI 2) a one-
unit reduction of the BMI of individuals with overweight, 3) a modification of the BMI of individuals with overweight 
based on a weight loss of 10%, 4) a reduction of the waist circumference (WC) to half of the height among all people 
with a WC:height ratio greater than 0.5. Regression models were adjusted for socio-demographic, lifestyle, and envi-
ronmental factors.

Results The first scenario resulted in preventing a proportion of cases ranging from 32.3% for diabetes to 6% for MSK 
diseases. The second scenario prevented a proportion of cases ranging from 4.5% for diabetes to 0.8% for MSK dis-
eases. The third scenario prevented a proportion of cases, ranging from 13.6% for diabetes to 2.4% for MSK diseases 
and the fourth scenario prevented a proportion of cases ranging from 36.4% for diabetes to 7.1% for MSK diseases.

Conclusion Implementing weight reduction scenarios among individuals with excess weight could lead to a sub-
stantial and statistically significant decrease in the prevalence of diabetes, hypertension, cardiovascular disease (CVD), 
and musculoskeletal (MSK) diseases in Belgium. The g-computation approach to assess PIF of interventions represents 
a straightforward approach for drawing causal inferences from observational data while providing useful information 
for policy makers.
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Background
By affecting almost 60% of adults and nearly one in three 
children in the European Region, excess body weight is 
the fourth most common risk factor for NCDs, after 
high blood pressure, dietary risks, and tobacco use [1]. 
In Belgium, as in many high-income countries, aver-
age body mass index (BMI) has continuously increased 
over the past decades among both children and adults 
[2]. According to the most recent Belgian Health Inter-
view Survey (BHIS) conducted in 2018, 48% of the adult 
population suffered from overweight (BMI > 25) and 14% 
from obesity (BMI > 30), compared to respectively 41% 
and 11% in 1997 [3]. Tackling obesity is therefore one of 
the greatest long-term health challenges in Belgium, such 
as in other countries, and is vital to successfully achieve 
the Sustainable Development Goals with regards to the 
reduction of premature mortality from non-communica-
ble diseases [4].

Assessing the contribution of excess weight status 
as risk factor for NCDs and evaluating the potential 
health impact of policies for the prevention of over-
weight presents certain challenges and methodological 
issues, especially when using observational and cross-
sectional data. To capture the association between 
a risk factor exposure and a health outcome, typical 
approaches in epidemiological studies use linear or 
logistic regression models, which estimate the differ-
ences between outcomes associated with a change in 
the risk factor exposure. This approach, relying on 
stratum-specific estimates, is however limited because 
it is not informative on how the burden of disease 
might change by modifying the risk factor exposure 
in the population. Furthermore, in the case of logistic 
regression models, interpretation of the obtained odds 
ratio is subtle because of non-collapsibility: it tends 
to move further away from 1 when adjusting for more 
and more variables, even in the absence of confounding 
[5]. The population attributable fraction (PAF), a con-
cept introduced by Levin [6], is a measure widely used 
by epidemiologists to estimate the proportion of a dis-
ease attributable to a risk factor in a given population 
[7]. The PAF is typically calculated using the relative 
risk and the prevalence of the risk factor in the popula-
tion and is often interpreted as the proportion of cases 
in the population avoidable if a particular risk factor 
was eliminated. The PAF based on Levin’s formula [6] 
was originally unadjusted for co-existing (risk) factors 
but methods such as adjusted and average attributable 

fraction (AAF) or attribution methods have been devel-
oped since to account for multi-causal situations (i.e. 
when a given disease is caused by more than one causal 
mechanism) [8–11]. However, for the PAF/AAF to have 
a valid causal interpretation, strong assumptions are 
required. This is because the excess cases seen in peo-
ple with overweight need not all be “attributable” to 
overweight: they may not all be overweight-induced 
but rather the effect of other risk factors prevalent in 
those people [12, 13]. Unfortunately, those assumptions 
are often disregarded or misreported in articles [12]. 
In addition, the PAF assumes that there is an optimal 
intervention which completely eradicates the risk factor 
in the population which is often unrealistic because a 
part of the population will often continue to be exposed 
to the risk factor, even with the most effective interven-
tion. The potential impact fraction (PIF), also called the 
generalized impact fraction, is another measure that 
allows to estimate the fractional reduction of cases that 
would occur from changing the current level of expo-
sure in the population to some modified level [14]. The 
PAF and the PIF, both affected by the strength of the 
association between the disease and the risk factor as 
well as the prevalence of the risk factor, estimate the 
disease risk in the population in case of “complete with-
drawal” and “partial reduction” of the exposure [15, 16]. 
The application of the traditional PAF or PIF for policy-
making in this context is strongly limited by the rigors 
of complete elimination of the risk factor as well as the 
disadvantages of traditional methods based on standard 
regression models [7, 17].

To overcome those limitations, the use of causal 
inference methods has been suggested by several 
authors [18–23]. In particular, the g–computation 
approach (a model-based direct standardization) has 
the advantage that it can handle continuous risk factors 
and predict the causal impact of public health inter-
ventions on the population burden of disease, using 
cross-sectional data [18, 24, 25]. Unlike traditional 
regression models, the method allows the estimation 
of population parameters, where the population aver-
age causal effect is estimated as the difference in the 
health outcome that would have been observed in the 
population if there had been a specific intervention as 
opposed to no intervention (everything else remained 
equal). Those population intervention parameters allow 
determining which hypothetical intervention may 
have the greatest impact on the disease. The method 
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requires to clearly specify the causal effect of interest 
and to explain all assumptions needed to identify this 
effect from the available data. This can be achieved 
using a directed acyclic graph (DAG) which is a graphi-
cal representation used to illustrate the hypothesized 
causal structure of the processes under study [23, 26]. 
Compared to standard analytic techniques, the method 
also enables modelling the impact of dynamic inter-
ventions, where different subjects can receive differ-
ent levels of the exposure under study [27]. Although 
causal inference methods, and in particular the g-com-
putation approach, have already been well described in 
the literature as a useful tool for assessing intervention 
effects and producing policy-relevant findings [28–30], 
their application in public health remains however 
limited [31]. In particular, g-computation has not yet 
been extensively used for studying the health impact of 
excess weight [32–34].

Other common methodological issues in observational 
studies aiming to evaluate the potential health impact of 
exposure-reducing interventions are related to the valid-
ity of self-reported data. Although a large body of litera-
ture already exists on methods to obtain more accurate 
surveillance data by correcting for measurement error 
related to self-reported data in health interview surveys, 
few epidemiologic studies use them in practice [35, 36]. 
The measurement biases are however not without con-
sequence because when exposures are not valid, the PIF 
estimates may be severely biased.

This study aims to use a g-computation approach to 
quantify the effects of different population-based weight 
reduction interventions on important NCDs in Belgium 
in a multi-exposure context (taking into account lifestyle, 
metabolic, and environmental exposures). The research 
relies on cross-sectional data from the Belgian Health 
Interview Survey and Health Examination Surveys, 
addressing measurement bias due to self-reported health 
and anthropometric data through a random-forest multi-
ple imputation method [37]. Additionally, this paper aims 
to provide a didactic application of the g-computation 
approach to assess PIF from cross-sectional data.

Methods
Study area, study population and data
The study area is the entire Belgian territory with a popu-
lation of 11.6 million inhabitants in 2023. The study sam-
ple consists of 27  536 participants of different waves of 
the Belgian Health Interview Survey (BHIS 2008, 2013, 
and 2018) all aged 18  years and above. Additionally, it 
includes a subset of 1,184 participants who also took part 
in the Belgian Health Examination Survey in 2018 (BEL-
HES 2018). The information from BELHES 2018 was 

primarily used to address measurement errors in self-
reported health and anthropometric data.

The BHIS is a national cross-sectional population sur-
vey carried out every five years by Sciensano, the Bel-
gian institute for health, in partnership with Statbel, the 
Belgian statistical office [38]. Data are collected through 
a stratified multistage, clustered sampling design and 
weighting procedures are applied to obtain results which 
are as representative as possible of the Belgian popula-
tion [39]. In the BELHES, objective health information 
was collected among a random subsample of the BHIS 
participants. The  BELHES included a short additional 
questionnaire, a physical examination, and the collection 
and analysis of blood- and urine samples. Details on the 
data collection are available in the BELHES publication 
[40].

Based on the geographical coordinates of the residen-
tial address of participants and using Geographical Infor-
mation Systems (GIS), the dataset was further enriched 
with objective measures of the residential environment 
related to long-term exposure air pollution (Black car-
bon), green space (vegetation coverage in a 1 km buffer), 
and noise from road traffic (Lden, day–evening–night 
noise level).

Abdominal obesity and non‑communicable disease 
indicators
BMI and waist circumference were used as continuous 
variables, the latter to assess abdominal obesity. Four 
NCDs were considered: diabetes (type 1 & 2), hyperten-
sion, cardiovascular disease (CVD), and musculoskel-
etal (MSK) disease. The variables used to construct these 
indicators are displayed in Table 1.

Socio‑demographic and lifestyle indicators
The following variables were used to describe each par-
ticipant’s socio-demographic status:  age (years),  sex 
(male vs female), household composition (single, one par-
ent with child(ren), couple without child(ren), couple with 
child(ren), other or unknown), highest educational level in 
the household (No diploma/primary school, low second-
ary, high secondary, higher), reported household income 
(quintiles), birth country (Belgian, Non Belgian EU, non-
Belgian non EU), and civil status (single, married, widow, 
divorced). To describe the participant’s lifestyle, we used 
the variables:, smoking status (daily smoker, occasional 
smoker, former smoker or never smoked), indoor smok-
ing (yes vs no), alcohol consumption, and level of physical 
activity (≥ 4 h sport or intensive training per week, < 4 h 
sport or light activities per week or sedentary behavior). 
This last variable is based on the WHO indicator describ-
ing leisure time activity in the last 12 months [41], where 
sedentary behavior is defined as the complete absence 
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of physical leisure activities. To assess alcohol consump-
tion, we transformed the ordinal variable represent-
ing the average number of alcoholic beverages per week 
into a numeric variable. The numeric values assigned 
were as follows: 1 = Abstainers and occasional drink-
ers, 2 = 1 to 7 glasses, 3 = 8 to 14 glasses, 4 = 15 to 21 
glasses, 5 = 22 + glasses. One glass stands for a “standard 
unit” which varies according to the type of alcohol (for 
example, 0,33  l beer, 0,125  l wine, 4  cl spirits, etc.).The 
reported household income, defined by the quintile dis-
tribution was also converted into a numeric variable. 
The binary variable Indoor smoking describes household 
where at least one person smokes inside the dwelling on 
most days.

Environmental indicators
The selection of environmental factors in our study, 
including air pollution, green spaces, and noise, was 
guided by their well-established associations with NCDs. 
They represent a good proxy of the individual exposure 
since they were derived from the geographical coordi-
nates of the survey participants’ residential addresses.

Air pollution was assessed through the annual average 
of exposure to black carbon (BC). BC represents one of 
the most health-relevant components of particulate mat-
ter (PM) and is a valuable indicator to assess the health 
effects of air quality dominated by primary combustion 
particles [42]. BC exposure was obtained as a continu-
ous grid through the Belgian Interregional Environment 
Agency (IRCEL – CELINE) which supervises the national 
monitoring system assessing air pollutant concentrations 
through a dense network of stations, and estimates local 
exposure through interpolation, taking into account land 
cover data in combination with a dispersion model [43, 
44]. BHIS data of 2008, 2013, and 2018 were respectively 

linked to BC exposure data of 2010, 2013, and 2018. 
Exposure to green spaces was assessed based on CORINE 
Land Cover (CLC) data [45]. The vegetation coverage 
was obtained at the neighborhood level in a 1 km buffer 
around the respondent’s dwelling. This 1  km buffer of 
vegetation coverage is justified by the need to capture the 
immediate neighborhood environment that individuals 
are likely to interact with regularly and aligns with com-
mon practices in environmental epidemiology, where this 
scale is frequently used to assess the impact of neighbor-
hood characteristics on health. Lifestyle factors, includ-
ing physical activity and stress reduction, are influenced 
by the accessibility of these spaces in one’s daily life. BHIS 
data of 2008, 2013, and 2018 were respectively linked 
to green space data of 2006, 2012, and 2018. Noise pol-
lution, approached through the road traffic noise (Lden, 
day–evening–night noise level), was obtained from pub-
lished noise maps, as required by the European Noise 
Directive (2002/49/EC) [46–48]. Noise data are created 
at the regional level and downloaded from the regional 
portals for environmental data [49–51]. BHIS data of 
2008, 2013, and 2018 were respectively linked to noise 
data of 2016. Noise from the road traffic, is recognized as 
a significant environmental stressor associated with vari-
ous health issues, including cardio-vascular diseases and 
a lower quality of life. The Lden metric provides a com-
prehensive measure of overall noise exposure and the 
55 dB used cut-off aligns with the recommended WHO 
threshold, acknowledging the detrimental health impact 
above this threshold.

Statistical analyses
All variables were described with their 95% confidence 
interval and the missing data pattern was displayed for 

Table 1 Construction of abdominal obesity and non-communicable disease indicators

Indicator Variable description

BMI The measured imputed variable (using information 
from the BELHES and a randomforest multiple imputation 
method) was used instead of the self-reported variable

Based on the measured height (cm) and weight (kg)

Waist circumference Based on the measured waist circumference (cm)

Diabetes Based on fasted blood sugar (≥ 126 mg/dl), HbA1C (≥ 6.5%) 
or use of diabetes medication

Hypertension Systolic blood pressure ≥ 140 mmHg or diastolic blood pres-
sure > 90 mmHg or medication use for hypertension

Cardiovascular disease Self-reported variable: «Suffered from the indicated disease 
in the past 12 months” for at least one of the following vari-
ables

-Stroke (cerebral haemorrhage, cerebral thrombosis) -Myo-
cardial infarction
-Angina pectoris
-Other serious heart disease
-Peripheral vascular disease

Musculoskeletal disease -Low back pain
-Neck pain
-Osteoarthritis
-Rheumatoid arthritis
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the merged BHIS/BELHES dataset (additional file 1, 2, 3, 
4, 5).

Database compiling
In a first step, the measurement error related to self-
reported height, weight, diabetes, and hypertension in 
the BHIS database was corrected based on the objective 
information included in the BELHES and using a random 
forest multiple imputation method. A MICE algorithm 
[52] was used to multiply impute the missing values of 
the merged dataset. The imputation model included 
all the variables of the dataset, including variables used 
in the weighting procedure associated with the survey 
sample design (province, number of persons by house-
hold, age, and sex). All missing values of the covariates 
included in the imputation models were imputed in the 
same process. Details on the application of this correc-
tion method in the BHIS is found in a previous publica-
tion [37]. The number of iterations of the random-forest 
multiple was set to 500 and the defined number of trees 
was set to 100. The convergence of the algorithm was 
monitored by plotting the mean and standard deviation 
of the synthetic values against the iteration number for 
the imputed BHIS data (Additional file 2). The number 
of imputations was limited to 10, which was found satis-
factory: using infinitely many imputations instead of 10 
was estimated to reduce the variance of the estimators by 
at most 1%. 

Population impact fractions
In a second step, a g-computation approach was used 
in each of the 10 completed datasets to assess the PIF of 
four weight reduction scenarios:

1) a distribution shift where, for each person with over-
weight, a counterfactual weight was randomly drawn 

from the distribution of persons with a “normal” BMI 
(> = 18.5 and < 25)

2) a one-unit reduction of the BMI of people with over-
weight

3) a modification of the BMI of people with overweight 
based on a weight loss of 10%.

4) a reduction of the waist circumference (WC; cm) 
to half of the height (cm), among all people with a 
WC:height ratio greater than 0.5 [53].

The selection of these four scenarios aims to provide a 
comprehensive exploration of potential BMI reduction 
strategies and was guided by a combination of practical 
relevance and existing literature supporting their poten-
tial impact on health outcomes.

The impact of the first three scenarios on each 
NCD was evaluated for two target populations: peo-
ple with overweight (BMI > 25) and people with obesity 
(BMI > 30). The fourth scenario was applied to the speci-
fied population.

The mean reduction in BMI was calculated for the first 
three scenarios, and the mean reduction in waist cir-
cumference was calculated for the fourth scenario. This 
was determined by subtracting the counterfactual BMI 
(or WC) under the intervention from the actual BMI 
(or WC) of each individual and then averaging these 
differences.

In each of the ten imputed datasets, standard errors of 
the PIF were obtained using 1000 nonparametric boot-
strap samples. The imputation steps of the g-computa-
tion approach [28] are described in Fig. 1:

The association between excess weight and each NCD 
was modelled based on the “backdoor criterion” which 
is specific to the causal inference theory [54]. The DAG 
displayed in Fig. 2 illustrates the postulated causal struc-
ture of the association between excess weight and NCDs. 

Fig. 1 Steps of the g-computation approach
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Confounding factors such as socio-economic, environ-
mental, and lifestyle factors influence this association. 
Excess weight affects NCDs through metabolic risk fac-
tors. Models were not adjusted for the metabolic risk fac-
tors (hypercholesterolemia and hypertension) since they 
were colliders or lying on the causal pathway between 
excess weight and the disease. Two logistic regression 
models were performed for the four NCDs considered. 
The first model included BMI and the second model 
included WC to assess the excess weight status. Mod-
els were adjusted for socio-economic, lifestyle, environ-
mental factors, region, and year. Interactions were tested 
between BMI (and WC) and each of the covariates. The 
performance of the models was assessed by randomly 
splitting each of the ten imputed dataset into a training 
dataset (70%) and a test dataset (30%) and by evaluat-
ing the Area under the curve (AUC). The ten obtained 
AUC values were then averaged. In order to account for 
the potential indirect effect of BMI on chronic diseases 
through physical activity, sensitivity analyses were per-
formed by fitting models without adjustment for physical 
activity.

The PIF of each scenario was calculated in each of 
the ten imputed dataset and results of the multiple 
analysis were pooled using the standard Rubin rules 
[55]. Standard errors of the prevalence estimates were 

obtained as the square root of the total variance (tak-
ing into account the within and between imputation 
variance and a correction factor for using 10 impu-
tations). PIF were reported as percentage indicating 
the proportion of disease cases that would be avoided 
under the hypothetical weight reduction scenarios. 
The degree to which all the underlying assumptions 
required to draw a causal inference [56] (temporal 
ordering, exchangeability, no-interference, experimen-
tal treatment assignment, consistency, no model mis-
specification, no measurement error) is addressed in 
the Discussion section.

Statistical analyses were performed taking into 
account the survey sample design. The multistage sam-
pling method was accommodated by incorporating 
weights, calculated to reflect the likelihood of being 
selected in the sample, based on the geographical strat-
ification, the selection of clusters within each stratum, 
the choice of households within each cluster, and the 
selection of individuals within each household.

All analyses were fit and evaluated using the statis-
tical software R, version 4.2.1 (R Development Core 
Team, 2006) and the “mice” package [57]. The R code 
used for the implementation of the G-computation to 
assess the PIF (for the diabetes example) is available in 
Additional file 6.

Chronic disease

Socio-economic status

Excess weight

Lifestyle

Physical activity
Alcohol

Tobacco

Environmental
exposure

Air pollution, green 
space, noise

Metabolic risk
factors

Hypercholesterolemia,
Hypertension

Fig. 2 Directed acyclic graph of the causal association between excess weight and each of the four non-communicable diseases (diabetes, 
hypertension, cardiovascular disease, and musculoskeletal disease)
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Results
Data description
A total of 27,536 participants from the 2008, 2013, and 
2018 Belgian Health Interview Surveys (BHIS), aged 
18  years and above, were included in the analysis, with 
1,184 of them participating in the 2018 Belgian Health 
Examination Survey (BELHES).The missing data pattern 
and summary statistics of all considered variables in the 
merged BHIS/BELHES dataset are displayed in Addi-
tional files 2–6. The impact of the four weight reduction 
scenarios on the BMI and WC distribution are visualized 
in Fig. 3.

Association between excess weight and diabetes, 
hypertension, CVD, and MSK disease
Results of the multivariable logistic regression models 
showed a significant association between both BMI and 
WC and each of the four NCDs that were considered 
(Table 2). A stronger association was found for diabetes 
and hypertension compared to CVD and MSK disease. 
The four models for diabetes, hypertension, CVD, and 
MSK demonstrated a good predictive performance with 
AUC of 77%, 80%, 80%, and 72%, respectively. Forest 
plots of the logistic regression models for each NCD are 
displayed in Additional files 7, 8, 9, 10. The results of the 

sensitivity analysis without adjustment for physical activ-
ity showed similar estimates (additional file 11).

Potential impact fractions of the four weight reduction 
scenarios
The PIFs of the four weight reduction scenarios on diabe-
tes, hypertension, CVD, and MSK disease in Belgium are 
visualized in Fig. 4. The average BMI reduction under the 
first three scenarios are respectively 4.2, 1 and 1.6 units 
and the average WC reduction under the last scenario is 
9.9 cm. These amount to less than 1 SD (the conditional 
SD of BMI, given all the covariates equals 5.3 units, and 
of WC equals 13.2 cm).

The fourth scenario, where the waist circumference 
was reduced to half of the height had the highest impact 
on the four diseases considered, with nearly one third of 
the diabetes cases and one fourth of the hypertension 
cases that could have been avoided in the Belgian popula-
tion. By contrast, the second scenario, where the BMI of 
people with excess weight was reduced by one unit had 
only a marginal impact on the four diseases considered. 
PIF were higher when the scenarios applied to people 
with overweight compared to people with obesity only 
(Table 2). The PIFs were all significantly different from 0, 
except for scenarios 3 related to CVD.

Fig. 3 BMI and waist circumference distribution under the four weight-reduction scenarios
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Discussion
Main findings
In this study, we presented a g-computation approach 
to evaluate the potential impact of hypothetical weight 
reduction scenarios on the burden of four NCDs in Bel-
gium. We examined what would be the risk of suffering 
from diabetes, hypertension, CVD, and MSK disease 
if we could manipulate the BMI or the WC of Belgian 
adults and set them to values determined by hypotheti-
cal scenarios. The predicted risk was then compared to 
the risk under the “status quo” scenario, where no inter-
vention would be implemented to the population. This is 
in contrast with the estimates we would have obtained 
using traditional regression models which produced stra-
tum-specific odds ratios.

Our findings suggest that implementing weight reduc-
tion scenarios among individuals with excess weight 
could lead to a substantial and statistically significant 
decrease in the prevalence of diabetes, hypertension, 
CVD, and MSK diseases in Belgium. A major benefit 
was found for the fourth scenario, where the WC was 
lowered to half of the height for all Belgians with a ratio 

WC:height ratio above 0.5. Under this scenario, the 
prevalence of diabetes and hypertension would be dras-
tically reduced, with respectively 36% and 25% of avoid-
able cases. The reduction was less pronounced for CVD 
and MSK diseases with a PIF of respectively 11% and 
7%. A recent guideline report from the National Insti-
tute for Health and Care Excellence (NICE)  mentioned 
that a waist measurement of more than half of a person’s 
height was a better indicator of increased fat in the abdo-
men compared to BMI and could better predict the risk 
of developing NCDs such as type 2 diabetes or CVD 
[53]. BMI remains however a useful practical measure to 
define overweight and obesity but should be interpreted 
with caution especially among older people and adults 
with high muscle mass, since it is less accurate to deter-
mine body fatness in these groups [58].

High PIFs were also observed under the first scenario, 
where the distribution of the BMI of all people with over-
weight would be shifted to the distribution of the BMI of 
people fallen in the “normal” BMI category. While this 
scenario may not be highly realistic, it is nonetheless 
valuable in defining the boundaries within which realist 

Table 2 Estimates of the logistic regression models (associations between waist circumference and BMI and diabetes, hypertension, 
cardiovascular disease, and musculoskeletal disease) and potential impact fractions for four scenarios; (1): distribution shift, (2): 1 point 
BMI reduction, (3): 10% reduction of weight, (4): waist circumference = height/2

RD Risk difference, PIF Potential impact fraction, BMI Body mass index, CI Confidence interval, IQR interquartile range

Diabetes Hypertension Cardiovascular 
disease

Musculoskeletal 
disease

Baseline prevalence
(%)
[95% CI]

5.3
[4.7;6.0]

29.0
[27.5;30.5]

6.8
[6.4;7.2]

35.5
[34.8;36.2]

OR (BMI)
[95% CI] (for 1 IQR increase)

1.6
[1.4;1.8]

1.9
[1.6;2.1]

1.1
[1.0;1.2]

1.2
[1.1;1.3]

OR (WC)
[95% CI]
(for 1 IQR increase)

1.9
[1.6;2.4]

2.0
[1.7;2.4]

1.2
[1.0;1.4]

1.2
[1.1;1.3]

Target pop BMI > 25 BMI > 30 BMI > 25 BMI > 30 BMI > 25 BMI > 30 BMI > 25 BMI > 30

(1) RD (%) [95% CI] -1.7
[-2.1;-1.3]

-1.2
[-1.5;-0.9]

-6.8
[-8.1;-5.6]

-4.4
[-5.2;-3.6]

-0.6
[-1.1;-0.2]

-0.4
[-0.7;-0.1]

-2.1
[-3.0;-1.3]

-1.3
[-1.9;-0.8]

PIF (%) [95% CI] 32.3
[25.2;39.3]

22.9
[17.4;28.4]

23.3
[9;27.6]

15
[12.1;17.9]

9
[2.4;15.5]

5.9
[1.5;10.4]

6
[3.6;8.5]

3.8
[2.2;5.3]

(2) RD (%) [95% CI] -0.3
[-0.5;-0.1]

-0.1
[-0.2;-0.1]

-0.8
[-1.3;-0.4]

-0.4
[-0.4;-0.3]

-0.1
[-0.2;-0.0]

-0.04
[-0.1;0.0]

-0.3
[-0.4;-0.2]

-0.1
[-0.2;-0.1]

PIF (%) [95% CI] 4.5
[3.4;5.7]

2.4
[1.7;3.1]

3.3
[2.2;4.3]

1.3
[0.8;1.8]

1.5
[0.9;3.8]

0.5
[0.1;0.9]

0.8
[0.5;1.1]

0.3
[0.2;0.4]

(3) RD (%) [95% CI] -0.7
[-0.9;-0.5]

-0.4
[-0.6;-0.3]

-2.7
[-3.2;-2.1]

-1.3
[-1.5;-1.0]

-0.2
[-0.4;-0.1]

-0.1
[-0.2;-0.0]

-0.8
[-1.2;-0.5]

-0.4
[-0.5;-0.2]

PIF (%) [95% CI] 13.6
[10.3;16.9]

8.0
[5.8;10.3]

9.2
[7.3;11]

4.4 [3.5; 5.3] 3.5
[-0.9;6.1]

1.8
[0.4;3.1]

2.4
[1.4;3.3]

1.1
[0.6;1.6]

Target pop WC:height ratio > 0.5

(4) RD (%) [95% CI] -2.1
[-3.1;-1]

-7.2
[-8.6;-6]

-0.7
[-1.3;-0.2]

-2.5
[-3.3;-1.7]

PIF (%) [95% CI] 36.4
[27.5;47.3]

24.7
[20.6;28.9]

10.8
[3.3;18.3]

7.1
[4.7;9.4]



Page 9 of 15Pelgrims et al. BMC Medical Research Methodology           (2024) 24:87  

policy interventions could have an impact. This very the-
oretical scenario has the advantage to estimate the global 
burden of excess weight on NCDs and is closest to tradi-
tional PAF which estimate the risk of disease with a com-
plete removal of the risk factor in the population. Under 
this first scenario, PIF for diabetes, hypertension, CVD, 
and MSK disease were 32%, 23%, 9%, and 6%, respec-
tively. Those estimates were however lower in compari-
son to the PAF estimates obtained from the last Global 
Burden of Disease (GBD) study where the PAFs attribut-
able to high BMI in Belgium were respectively of 50% for 
diabetes, 20% for ischemic heart diseases, 25% for stroke, 
7% for back pain, and 13% for osteoarthritis [59].

It must be noted that those estimates cannot directly be 
compared to the estimates presented in this article. The 
g-computation approach is tailored to our data by esti-
mating, for each individual, the conditional probability of 
developing a chronic disease given the variables included 
in the model, and subsequently averaging it at the popu-
lation level.

In contrast, the GBD study’s PAF estimates consider 
the overall contribution of high BMI to diseases across 
the entire population. They are not calculated directly 
from the specific population but often rely on relative 
risk estimates from external studies. These differences 
in data sources, methodologies, and the underlying 
framework for estimating population-level burden 

versus individual causal effects make direct compari-
sons between the two sets of estimates complex.

In addition, the variables for CVD and MSK used in 
this study were constructed based on a group of dis-
eases (Table  1), which is difficult to compare with the 
GBD estimates, where PAFs are calculated for each dis-
ease separately.

The second and third scenario, where the BMI was 
respectively reduced by one unit and modified based on 
a ten percent reduction of the person’s weight, repre-
sent more realistic scenarios but had a smaller impact 
on the prevalence of the four diseases. A weight loss 
of 5–10% is considered by guidelines from the UK and 
the USA a the minimum weight loss to be achieved to 
have a clinical impact on health outcomes [58, 60]. To 
achieve this goal, evidence-based interventions include 
dietary modifications, physical activity, psychological 
interventions, pharmacotherapy, and bariatric surgery, 
for individuals with severe obesity [61, 62]. There is 
substantial evidence demonstrating that these interven-
tions not only contribute to weight loss but also have 
a statistically significant impact on reducing the risk of 
obesity-related outcomes [63]. A one-unit reduction 
in BMI within the Belgian population would result in 
a reduction of 4.5% of the cases of diabetes, 3% of the 
cases of hypertension, 1.5% of the cases of CVD, and 
1% of the cases of MSK disorders.

Fig. 4 Bar plots illustrating the potential impact fraction (PIF) of the four weight reduction scenarios (1. distribution shift where, for each person 
with overweight, a counterfactual weight was drawn from the distribution of persons with a “normal” BMI, 2. One-unit reduction of the BMI 
of individuals with overweight, 3. modification of the BMI of individuals with overweight based on a weight loss of 10%, 4. reduction of the WC 
to the half of the height among all people with a WC/height ratio greater than 0.5) on A. diabetes, B. hypertension, C. cardiovascular disease, and D. 
musculoskeletal disease in Belgium. Error bars represent the 95% confidence intervals
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Strengths and limitations
An important strength of this study lies in the didac-
tic application of the g-computation approach and the 
description of the steps required to estimate the popula-
tion effect of a potential intervention in cross-sectional 
data. The methodological tool used in this present study, 
based on a g-computation approach and a random-forest 
multiple imputation method, allows the assessment of 
the potential effects of any well-defined intervention and 
targeting of any subgroup of interest, while also address-
ing the bias related to self-reported data and the missing 
data issue in health interview surveys. This paper con-
tributes to familiarizing a public health audience with 
the g-computation approach enabling them to estimate 
policy-relevant effects of hypothetical health interven-
tions. Compared to standard analytic techniques, the 
g-computation approach has the advantage to provide 
flexibility in simulating real world interventions. It ena-
bles modeling the impact of dynamic interventions, 
where different subjects can receive varying levels of 
the exposure under study, as well as joint interventions, 
where the values of multiple exposures can be modified 
simultaneously. Another additional benefit of the g-com-
putation approach, lies in its ability to handle time-vary-
ing confounders (i.e., confounders whose value changes 
over time), especially in  situations where there’s treat-
ment confounder feedback (i.e., when the confounder is 
affected by the exposure) [64]. However, the cross-sec-
tional nature of the data in this study did not allow us to 
take full advantage of this benefit.

This study also represents the first application of the 
random-forest multiple imputation method to address 
the bias related to self-reported health and anthropomet-
ric data in the BHIS. This method has been recently iden-
tified as a more adequate approach for valid measurement 
error correction in comparison to regression calibration 
[37]. Whenever feasible, self-reported information from 
health interview surveys should be combined with objec-
tive information from health examination surveys to 
address the bias related to self-reported anthropometric 
data and therefore provide more accurate PIF. A second 
important strength of the present study is the considera-
tion of the potential confounding role of the environmen-
tal factors in the association between excess weight and 
chronic diseases. In particular, the linkage of the BHIS 
data with objective environmental factors at the resi-
dential address of the participants provides a significant 
improvement on the state of the art, as most studies do 
not consider environmental factors in the link between 
BMI and chronic diseases. Also, environmental factors 
are often assessed on a broad scale, using exposure e.g. 
in administrative units. Our study used the residential 
address, thus considerably refining the spatial scale. The 

limits of this approach are discussed further in the sec-
tion measurement error.

Findings of this study must nevertheless be seen in the 
light of some limitations. If the g-computation approach 
allowed to evaluate the PIF of several weight reduction 
scenarios, the obtained estimates should however be 
treated with caution and several assumptions need to be 
met to interpret them causally. The first assumption is the 
“temporal ordering assumption” where we assume that 
the exposure precedes the outcome and the confound-
ing factors precede the exposure. Unfortunately, this 
required assumption is not met by the cross-sectional 
structure of the data and is undoubtedly the most ques-
tionable assumption in this present study. While we can 
reasonably assume that fixed variables such as age, sex 
or education are causes rather than effects of the excess 
weight risk factor, it is not that obvious that the excess 
weight risk factor precedes chronic disease or that life-
style factors precede the weight status. Making the dis-
tinction between unintentional weight loss, which may 
result from chronic disease, and intentional weight loss 
can be challenging [65]. People suffering from chronic 
disease could also be physically less active and therefore 
be at greater risk of gaining weight. For instance, individ-
uals with CVD, MSK disorders or diabetes may exhibit 
weight gain due to factors like reduced mobility (lead-
ing to a decrease in calorie expenditure), medications, 
or fluctuations in blood sugar levels. Another challenge 
with cross-sectional data is the inability to differentiate 
whether covariates function as mediators or confound-
ers. In this study, physical activity was considered as a 
confounding factor but it cannot be ruled out that excess 
weight may impact physical activity and indirectly the 
risk of chronic disease. One possible consequence could 
be underestimation of the true causal effect because the 
PAF would not incorporate all burden for the disease that 
is attributable to the excess weight risk factor. Physical 
activity could also function as a collider variable (a vari-
able that is a common effect of both the exposure and the 
outcome) and adjusting for it may have introduced col-
lider bias, potentially generating a spurious association 
between excess weight and chronic diseases.

The second assumption is the “exchangeability” 
assumption which assumes that there are no unmeas-
ured confounding factors in the exposure-outcome asso-
ciation. Indeed, the exposure may only be considered as 
randomized within each stratum of the confounders if all 
confounders are considered in the model. This assump-
tion is also very difficult to meet in the available cross-
sectional study. Although we included in our analyses 
all the confounders identified in the literature that were 
available in our data, there remain several potential 
unmeasured confounding factors, such as genetic factors 
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or nutritional habits which can both play an important 
role in the association between excess weight and chronic 
disease. Even though the variables related to nutritional 
habits were available in the BHIS, it was decided to not 
include them in the model because they were highly 
prone to a reverse causation effect.

The third assumption, known as the “no-interference 
assumption”, asserts that the outcome of each individual 
is not affected by the exposures and outcomes of the 
other individuals. We can reasonably expect that this 
assumption is fully met in our study for the reason that 
chronic diseases are not contagious. This, however, may 
vary depending on the intervention and study group. For 
instance, the implementation of a dietary intervention to 
reduce BMI of participants, such as changing the cooking 
style in the family, could potentially influence members 
of the same family similarly.

The fourth assumption, the “experimental treat-
ment assignment” assumption, also called the positivity 
assumption [66], assumes that the exposure to the risk 
factor is possible for all individuals in each stratum of 
the covariates. In the context of this study, it means that 
the BMI values generated under the considered scenarios 
must be attainable for all individuals in which the sce-
nario took place. This assumption is closely related the 
realism of the scenario and is therefore more likely vio-
lated for the first and fourth scenarios, which requires 
changes in the BMI or in the WC that are rarely observed 
in the population (e.g. a drop in the BMI from 35 to 25). 
In concrete terms, this means that each stratum of the 
covariates that contains overweight individuals should 
also contain individuals with a normal BMI. To evaluate 
the positivity assumption, we compared the probability 
of individuals being overweight among the two popula-
tions groups under study (individuals with overweight 
and individuals with a “normal” BMI). We built a model 
for BMI based on all confounders, and predicted, for 
each individual with overweight, the probability of being 
overweight. This process was repeated for individuals 
with a normal BMI. The observed overlap between the 
two probability distributions suggests that this assump-
tion is plausible (Additional file 12).

The fifth assumption is the “consistency” assumption, 
which assumes that “an individual’s potential outcome 
under his observed exposure history is precisely his 
observed outcome” [19]. While consistency is plausible 
for medical treatments, because it is easy to manipulate 
hypothetically an individual’s treatment status, consist-
ency may however be problematic when the exposure is 
a biologic feature and the manipulation difficult to con-
ceive [67]. Violations of consistency assumption often 
occur when there is ambiguity in the definition of inter-
ventions to change exposure. In the context of this study, 

BMI interventions remain vague because they specify 
attributes rather than specific behaviors. The main limi-
tation of our approach lies in the highly theoretical 
nature of the hypothetical scenarios considered, which 
do not accurately mirror real-world interventions. Ambi-
guity arises from the fact that there are many competing 
approaches to decrease an individual’s BMI and each of 
these approaches may have a different causal effect on the 
outcome [68]. By presenting an estimate for the effect of 
a “BMI reduction”, we implicitly assume that all interven-
tions on BMI have the same effect on the risk of suffering 
from a chronic disease, which is unlikely to hold. Another 
difficulty arising from ill-defined interventions is the 
challenge of selecting the confounding factors required 
to achieve conditional exchangeability. Firstly, the set of 
confounding factors to be considered may vary for differ-
ent versions of the intervention. Secondly, because BMI is 
not an intervention in itself but rather a physiological risk 
factor, identifying all the confounders becomes a practi-
cally impossible task due to the necessity of also consid-
ering genetic factors. Even if we manage to account for all 
potential confounding factors including genetic factors, 
there is a high likelihood that the positivity assumption 
will be violated. Certain genetic traits could exert such 
a strong influence on body weight that all subjects pos-
sessing them automatically become obese [68]. Another 
issue with interventions on BMI is that the better we 
adjust for confounders that determine both excess weight 
and chronic diseases, the more we narrow our focus to 
the remaining factors that have a direct effect on BMI 
(such as genetic predispositions). Consequently we iso-
late a potential intervention that changes the remaining 
determinants of BMI. In this study, we compared the 
risk of suffering from a chronic disease of overweight vs 
non overweight individuals conditional on their physical 
activity level, smoking status, environmental and alcohol 
consumption. This means that our estimates correspond 
to the effect of other versions of the intervention “BMI 
reduction”, such as healthy diet or genes. However, other 
versions of the intervention may not be manipulable and 
not be of primary interest for policymakers. Successful 
interventions with evidence for effective weight reduc-
tion are multifactorial and it is unrealistic to assume that 
BMI in the population could be modified without consid-
erable changes to all other aspects of lifestyle. Our find-
ings may therefore be underestimated, since our analyses 
adjusted for possible confounding by physical activity 
or alcohol consumption and thereby do not entirely 
take into account the co-benefits of weight reduction 
intervention via changes in physical activity or alcohol 
consumption.

The sixth underlying assumption of g-computation 
approach is the “no model misspecification” assumption. 
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A necessary condition (but not sufficient) for the absence 
of model misspecification is that the model should be 
able to accurately predict the outcome under no inter-
vention. Variables from the model were selected based 
on their theoretical relevance and guided by a DAG that 
reflects the hypothesized causal structure. Non-linear 
relationships were assessed by testing the quadratic 
terms, while interactions were examined using the Ste-
pAIC algorithm (a variable selection method that itera-
tively adds or removes variables from a model based on 
their impact on the Akaike Information Criterion, aim-
ing to find the most parsimonious model with a good fit). 
The AUC demonstrated a good predictive performance 
for the four NCDs models.

Lastly, like other studies based on observational data, 
the validity of our results relies on the key assumption 
of no measurement error. It can however be challenging 
to accurately assess the exposure to risk factors of NCDs 
through observational studies, such as abdominal obe-
sity or environment. Although we applied a correction 
method to address the bias of self-reported anthropo-
metric data and used both BMI and waist circumference 
separately to approximate abdominal obesity, another 
measure that could have been used is the Body Shape 
Index (ABSI), a comprehensive indicator of body shape 
integrating both waist circumference and BMI [69]. For 
the environment also, it is important to keep in mind 
that air pollution exposure is extrapolated from the mean 
annual concentration of a given area to individual expo-
sure, and does not take into account the time spent in this 
area. Personal mobility could be integrated in dynamic 
exposure assessments, but determining individual buffer 
values to delimit a person’s neighborhood is still an active 
field of research. Other methods to determine environ-
mental exposure are human biomonitoring or deploying 
wearable sensors, but this is unfortunately impossible 
to apply for large samples, over long time periods or for 
past studies. There was also a time lag between health 
data collection and environmental data. However, as 
environmental change is slow, we do not expect a strong 
impact on our results. A certain degree of measurement 
error also applies for the diseases. While the bias related 
to self-reported diabetes and hypertension could be 
addressed based on clinical information from the BEL-
HES, the same correction could not be applied for self-
reported CVD and MSK diseases, as the relevant clinical 
information was not available in the BELHES.

Furthermore, our estimates apply to the Belgian popu-
lation and may not be generalizable to other populations 
characterized by different NCDs risk factor distributions. 
For example, we estimated the risk of diabetes in the Bel-
gian population for a distribution shift of the BMI of indi-
viduals with overweight to the distribution of individuals 

with a normal BMI, but the BMI distribution may be very 
different in other populations. Our PIF estimates may 
also vary a lot for different diseases within the same CVD 
or MSK group, limiting the possibility of comparing our 
results with the GBD estimates.

A final limitation of our study lies the lack of detailed 
analysis regarding the differential effects of BMI on dif-
ferent types of diabetes. While our findings demonstrate 
a significant association between BMI and diabetes, it 
must be recognized that the impact of BMI may vary 
between type 1 and type 2 diabetes. While the link 
between obesity and type 2 diabetes is well-established, 
emerging evidence suggests a link between obesity and 
type 1 diabetes as well [70]. Future research could explore 
this aspect further to elucidate whether BMI affects both 
types of diabetes similarly.

Whilst obesity is widely considered as a major modifi-
able risk factor for many chronic diseases, nevertheless, 
a rigorous examination of the mentioned assumptions 
underscores the challenge in determining its causes and 
consequences. Addressing this is however important, as 
the prevention of any disease requires that interventions 
focus on causal risk factors. Although all the required 
assumptions of the g-computation approach may not be 
fully met, based on the literature knowledge regarding 
the relationship between excess weight and NCDs, the 
evidence from literature supports the direction of causal-
ity investigated in this study.

Conclusions
This study gives a demonstration of the use of a g-com-
putation approach to assess the benefits of hypotheti-
cal weight reduction scenarios on NCDs in Belgium in 
a multi-exposure context. Results suggest that imple-
menting weight reduction scenarios among individu-
als with excess weight could lead to a substantial and 
statistically significant decrease in the prevalence of 
diabetes, hypertension, cardiovascular disease (CVD), 
and musculoskeletal (MSK) diseases in Belgium. The 
g-computation based approach to assess PIF of inter-
ventions represents a straightforward approach in 
epidemiology for making causal inference from obser-
vational data while providing also useful informa-
tion for policy makers. Future epidemiological and 
health impact assessment studies should be conducted 
in ways that are more informative for policymakers 
and should consider all the underlying assumptions 
explicitly in order to better evaluate the possibility 
of a causal effect. In particular, we acknowledge the 
importance of the consistency assumption in ensur-
ing the validity of the study’s findings, especially within 
the field of obesity epidemiology. Ideally, longitudinal 
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studies including time-varying data should be used in 
the future to address the “temporal ordering assump-
tion” in the association between excess weight and 
chronic diseases.
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