
Xiao et al. 
BMC Medical Research Methodology           (2024) 24:92  
https://doi.org/10.1186/s12874-024-02214-5

RESEARCH

Interpretable machine learning in predicting 
drug‑induced liver injury among tuberculosis 
patients: model development and validation 
study
Yue Xiao1, Yanfei Chen1, Ruijian Huang1, Feng Jiang1, Jifang Zhou1*† and Tianchi Yang2*† 

Abstract 

Background  The objective of this research was to create and validate an interpretable prediction model for drug-
induced liver injury (DILI) during tuberculosis (TB) treatment.

Methods  A dataset of TB patients from Ningbo City was used to develop models employing the eXtreme Gradi-
ent Boosting (XGBoost), random forest (RF), and the least absolute shrinkage and selection operator (LASSO) logistic 
algorithms. The model’s performance was evaluated through various metrics, including the area under the receiver 
operating characteristic curve (AUROC) and the area under the precision recall curve (AUPR) alongside the decision 
curve. The Shapley Additive exPlanations (SHAP) method was used to interpret the variable contributions of the supe-
rior model.

Results  A total of 7,071 TB patients were identified from the regional healthcare dataset. The study cohort consisted 
of individuals with a median age of 47 years, 68.0% of whom were male, and 16.3% developed DILI. We utilized part 
of the high dimensional propensity score (HDPS) method to identify relevant variables and obtained a total of 424 
variables. From these, 37 variables were selected for inclusion in a logistic model using LASSO. The dataset was then 
split into training and validation sets according to a 7:3 ratio. In the validation dataset, the XGBoost model displayed 
improved overall performance, with an AUROC of 0.89, an AUPR of 0.75, an F1 score of 0.57, and a Brier score of 0.07. 
Both SHAP analysis and XGBoost model highlighted the contribution of baseline liver-related ailments such as DILI, 
drug-induced hepatitis (DIH), and fatty liver disease (FLD). Age, alanine transaminase (ALT), and total bilirubin (Tbil) 
were also linked to DILI status.

Conclusion  XGBoost demonstrates improved predictive performance compared to RF and LASSO logistic in this 
study. Moreover, the introduction of the SHAP method enhances the clinical understanding and potential application 
of the model. For further research, external validation and more detailed feature integration are necessary.
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Background
Drug-induced liver injury (DILI) presents significant 
challenges in the context of tuberculosis (TB) treatment. 
Anti-TB drugs exhibit noteworthy involvement in the 
occurrence of DILI [1, 2], and the lack of certain early-
detection biomarkers [3] further poses challenges to the 
timely diagnosis and management of DILI. This absence 
of early detection may result in treatment interruptions 
and failures amongst TB patients [4, 5], impeding global 
TB eradication efforts [6]. In China, the elevated inci-
dence rates of DILI in comparison to western nations 
highlight the potential involvement of traditional Chinese 
medicines (TCM) and herbal medicines in the develop-
ment of DILI [7]. This requires addressing various chal-
lenges and complexities associated with DILI assessment 
in a comprehensive and objective manner. Therefore, the 
primary objective of this study is to develop an optimal 
predictive model for assessing DILI status, with a specific 
focus on TB patients within the Chinese context.

The emergence of machine learning (ML) algorithms 
presents an exciting opportunity to enhance DILI predic-
tion models [8]. Among these, eXtreme Gradient Boost-
ing (XGBoost) [9] and random forest (RF) [10] stand out 
as two widely-used ensemble learning techniques, each 
distinguished by its algorithmic approach and features. 
Selecting the most suitable option between them hinges 
on the particular characteristics of the data and the pre-
diction objective. Therefore, it is often advisable to con-
duct experiments with both models to compare their 
performance.

Nevertheless, one of the primary challenges in imple-
menting ML algorithms in clinical settings is interpret-
ing the outcomes of the models [11, 12]. The Shapley 
Additive exPlanations (SHAP) framework [13] provides 
insights into the influence of various features on model 
predictions and the effect of these features on the DILI 
status in individuals, thus bridging the interpretability 
gap.

This study focuses on the development and valida-
tion of a prediction model for DILI in the context of TB 
treatment by using advanced ML algorithms with SHAP 
interpretability. Through this endeavor, we aim to achieve 
a balance between accurate prediction and the inter-
pretability of the model, which is crucial for its clinical 
application.

Methods
Data source
The study participants comprised individuals diagnosed 
with TB at specified hospitals in Ningbo from 1st January 
2015 to 2nd January 2020, initially referred by the Chi-
nese Center for Disease Control and Prevention (CDC) 
[14]. Thereafter, they were connected to administrative 

records obtained from the electronic health records 
(EHR) system employed by the local government [15]. 
The merged dataset comprised demographic informa-
tion, hospitalization records (both inpatient and outpa-
tient), laboratory tests, and medication profiles.

Exclusion criteria
To ensure consistency in the identification of covariates, 
individuals with only one health care encounter during 
the study period were excluded. Furthermore, individuals 
without ethnicity information and those under 18  years 
old at diagnosis were not included in the study. The 
exclusion criteria also filtered out misdiagnosed cases of 
DILI and liver injuries attributed to known factors like 
alcohol-related liver disease, non-alcoholic fatty liver 
disease (NAFLD), and viral hepatitis unrelated to drug-
induced causes. The detailed flowchart is presented in 
Fig. 1.

Baseline laboratory result collection
For patients included in the study, we defined the base-
line period for collecting laboratory test results as from 
January 1, 2015, to the day before the index diagnosis of 
pulmonary tuberculosis, as shown in Supplemental Fig. 1. 
Additionally, liver function test indicators such as alanine 
transaminase (ALT) or alkaline phosphatase (ALP) were 
simultaneously examined.

To address the issue of varied baseline definitions 
in laboratory testing, we utilized two main strategies. 
Firstly, we employed a binary variable approach to cat-
egorize laboratory testing indicators as abnormal or nor-
mal, by comparing their values with predefined normal 
ranges. Secondly, we utilized ratio-based representation 
to quantify indicator abnormalities, such as calculating 
ALT multiples relative to the upper limit of the normal 
(ULN) range.

Factor identification
In our research, we followed the initial steps outlined in 
the high dimensional propensity score (HDPS) method-
ology by Schneeweiss et  al. [16]. First, we identified 24 
common factors, such as age and gender, to integrate 
into our models. We then categorized our data into four 
dimensions: outpatient records, inpatient records, labo-
ratory test records, and medication records. Following 
the approach of Chen et al. [17], we identified the top 500 
most prevalent codes within each dimension. Next, we 
evaluated code recurrence, classifying codes into three 
binary variables based on their frequency of occurrence 
over a 12-month baseline period. This yielded a total of 
4*500*3 binary factors. Using a multiplicative model con-
sidering binary factor and DILI status, we prioritized 
covariates and selected the top 400 for inclusion in our 
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final model based on an arbitrary cutoff recommendation 
[18, 19]. Finally, considering the previously specified 24 
variables, our model training ultimately involved incor-
porating a total of 424 factors.

DILI diagnostic process
The determination of DILI outcomes followed the revised 
criteria set forth by the Chinese Society of Hepatol-
ogy (CSH) DILI consensus, as outlined in Supplemental 
Table 1 [20].

Extraction of features used in prediction model
The LASSO regression method, aimed at reducing the 
number of variables and preventing overfitting [21], was 
applied to extract significant features for constructing 
the logistic model. Additionally, both the XGBoost and 
RF algorithms come equipped with their own feature 
selection techniques tailored to enhance their respective 
models.

Statistical analysis
The study reported the features of both the non-DILI and 
DILI groups by mean and standard deviation (SD) or as 
numbers and percentages whenever necessary. Labora-
tory variables were represented in median and quartiles 

[22]. The Kruskal–Wallis rank sum test was used for 
continuous variables, while the chi-square test was used 
for categorical variables. These analyses were conducted 
using the statistical software packages SAS 9.4 and R 
4.0.3. A statistically significant result was determined 
with a two-sided P-value below 0.05.

Data splitting
In order to create training and validation sets, a stratified 
random function in R randomly assigned records at a 7:3 
ratio, following conventional practices.

Parameter optimization
To optimize the parameters of the XGBoost and RF mod-
els, a ten-fold cross-validation process combined with 
grid search [23] was employed. This approach entailed 
identifying the hyperparameter set that yielded the maxi-
mum receiver operating characteristic (ROC). A detailed 
breakdown of the grid search particulars and optimal 
results can be found in Supplemental Table 2.

Model evaluation and interpretation
To assess the model’s capacity to differentiate between 
positive and negative cases, we computed both the 
area under the receiver operating characteristic curve 

Fig. 1  Study schema for subject selection. Abbreviations: EHR, Electronic healthcare record; CDC, Center for Disease Control and Prevention
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Table 1  Demographic and clinical characteristics of patients with and without DILI

None-DILI
(N = 5,920)

DILI
(n = 1,151)

P value SMD

n (%) n (%)

Age at TB diagnosis, years

  Mean (SD) 47 (19) 48 (18) 0.695 0.013

   < 30 1407 (23.8) 243 (21.1) 0.001 0.167

  30–49 1843 (31.1) 359 (31.2)

  50–69 1773 (29.9) 414 (35.9)

  70 +  897 (15.1) 135 (11.8)

Gender 0.105 0.053

  Male 4051 (68.4) 759 (65.9)

  Female 1869 (31.6) 392 (34.1)

Race 0.668 0.018

  Han 5792 (97.8) 1129 (98.1)

  Others 128 (2.2) 22 (1.9)

Treatment status 0.472 0.025

  Initial 5464 (92.3) 1070 (93.0)

  Retreatment 456 (7.7) 81 (7.0)

Diagnosis site 0.042

  Lung 5509 (93.1) 1083 (94.1)

  Other sites 411 (6.9) 68 (5.9)

Education 0.006 0.112

  Illiteracy 2248 (38.0) 488 (42.4)

  Semi-literate 212 (3.6) 37 (3.2)

  Undergraduate 3289 (55.6) 582 (50.6)

  Bachelor 171 (2.9) 44 (3.8)

Profession 0.381 0.072

  Industry 3281 (55.4) 625 (54.3)

  Clothing 1718 (29.0) 329 (28.6)

  Retirees 416 (7.0) 85 (7.4)

  Government 235 (4.0) 57 (5.0)

  Others 139 (2.3) 22 (1.9)

  Student 131 (2.2) 33 (2.9)

Ratio of ULN of serological markersa Median (IQR)

  ALT 0.44 (0.27,0.66) 0.52 (0.30,0.66)  < 0.001 0.104

  ALP 0.68 (0.56,0.82) 0.68 (0.55,0.82) 0.871 0.047

  Tbil 0.52 (0.38,0.71) 0.54 (0.40,0.74) 0.005 0.072

Serological markers status

  Abnormal ALT 273 (4.6) 91 (7.9)  < 0.001 0.136

  Abnormal ALP 400 (6.8) 100 (8.7) 0.023 0.072

  Abnormal Tbil 366 (6.2) 87 (7.6) 0.093 0.054

Comorbidities

  Diabetes 599 (10.1) 102 (8.9) 0.211 0.043

  Hypertension 1108 18.7 216 18.8 1.000 0.001

  Liver-related diseasesb 624 10.5 224 19.5  < 0.001 0.252

  HBV 105 1.8 17 1.5 0.560 0.023

Medication

  TCM 1250 (21.1) 323 (28.1)  < 0.001 0.162

  Hepatoprotective agentsc 1971 (33.3) 486 (42.2)  < 0.001 0.192

  PZA 1105 (18.7) 304 (26.4)  < 0.001 0.186

  RIF 590 (10.0) 121 (10.5) 0.610 0.018

  INH 1000 (16.9) 267 (23.2)  < 0.001 0.158

Abbreviations: ALP Alkaline phosphatase, ALT Alanine aminotransferase, DILI Drug-induced liver injury, Tbil Total serum bilirubin, ULN Upper limit of normal,  
HBV hepatitis B virus, TB tuberculosis, TCM Traditional Chinese medicine, PZA Pyrazinamide, RIF Rifampicin, INH Isoniazid, SMD Standardized mean difference
a Continuous variables
b Liver-related diseases included liver insufficiency, abnormal liver function, hepatitis, fatty liver, alcoholic liver, jaundice
c Hepatoprotective agents included silymarin, glycyrrhetinic acid and others
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(AUROC) and the area under the precision recall curve 
(AUPR) [24]. Calibration was examined through reliabil-
ity diagrams and Brier scores. Furthermore, the model’s 
clinical utility was evaluated using decision curve analy-
sis. The SHAP technique was utilized to delve deeper into 
variable contributions. A comprehensive overview of the 
workflow can be found in Supplemental Fig. 2.

Results
Participant and factor identification
The preliminary linkage of data yielded 12,087 instances. 
Following the application of exclusion criteria, a total of 
7,071 subjects were identified as suitable for inclusion in 
the study.

During a one-year baseline period, we identified the 
500 most prevalent codes across each data dimension 
(outpatient, inpatient, medication, and laboratory test) 
using the International Classification of Diseases-Tenth 
Revision (ICD-10), Current Procedural Terminology 
(CPT), and generic drug names. These items were then 
categorized into three binary variables: "ever occurring", 
"sporadically occurring", and "frequently occurring", indi-
cating their recurrence. This process resulted in a total of 
6,000 variables, from which the top 400 binary empirical 
variables were chosen based on their highest risk ratios 
associated with DILI status. Additionally, the final model 
incorporated 24 predefined baseline variables, such as 
gender, age, education level, medication, and maximum 
ratio of ULN for ALT, ALP, and Tbil, etc. Out of an ini-
tial pool of 424 features, 37 were selected for logistic 
model development using LASSO. The factors included 
in the LASSO logistic model are detailed in Supplemental 
Table 3.

Epidemiology of DILI
The incidence of DILI was observed to be 16.3% over-
all, with a slightly higher observed in female patients 
(17.3% vs. 15.8%, p = 0.134). Detailed demographics and 
clinical information are outlined in Table  1. Compared 
to non-DILI individuals, those with DILI demonstrated 
lower educational attainment and a higher incidence of 
abnormal baseline levels in ALT and ALP [ALT: 91 (7.9%) 
vs. 273 (4.6%), p < 0.001; ALP: 100 (8.7%) vs. 400 (6.8%), 
p = 0.023]. Individuals of middle age, females, and those 
with pre-existing chronic liver conditions were found to 
have a higher susceptibility to DILI. Significant associa-
tions with DILI were identified for certain drugs, includ-
ing pyrazinamide (PZA), isoniazid (INH), traditional 
Chinese medicines (TCM), and hepatoprotective agents 
such as silymarin and glycyrrhetinic acid.

Model development and validation
The XGBoost and RF models were constructed using 
optimal parameters obtained through the previously 
mentioned GridSearchCV method. The LASSO logistic 
model was constructed with the aforementioned vari-
ables. Internal validation was conducted by partition-
ing validation sets, resulting in a comparison of model 
performance among the three models showcased in 
Table  2. The XGBoost model exhibited slightly supe-
rior discriminatory ability when compared with the 
RF and LASSO logistic model, with AUROC values of 
0.89 versus 0.88/0.85 and AUPR values of 0.75 versus 
0.73/0.67, respectively, as shown in Figs.  2 and 3. The 
RF model demonstrated increased recall with a score 
of 0.78, while the XGBoost model achieved the highest  
F1-score of 0.57. Calibration was evaluated through ten 

Table 2  Comparison of performance ability of the three models in the validation set

Abbreviations AUROC Area under receiver operative curve, AUPR Area under the precision-recall curve

Performance ability Indicators Logistic Random Forest XGBoost

Discrimination Optimal cutoff (Youden) 0.144 0.182 0.167

True negative 1332 1424 1461

False positive 444 352 315

False negative 79 75 83

True positive 266 270 262

Specificity 0.750 0.802 0.823

Sensitivity 0.771 0.782 0.760

Precision 0.375 0.434 0.454

Recall 0.771 0.782 0.760

F1 score 0.505 0.558 0.568

Accuracy 0.753 0.799 0.812

AUROC 0.848 0.877 0.887

AUPR 0.670 0.727 0.750

Calibration Brier score 0.085 0.093 0.072
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predictive probability-based bins and verified by the 
reliability diagram presented in Fig.  4, supported by 
a Brier score of 0.08, indicating the impressive align-
ment in calibration between the XGBoost and LASSO 
logistic models. Extensive analysis of the decision curve 
revealed positive net benefits for all models. Nota-
bly, XGBoost models outperformed both the RF and 
LASSO logistic models within the threshold range of 
approximately 0.2 to 0.5, as demonstrated in Fig. 5.

Model interpretation
Revealing the factors that influenced the outperformed 
model’s predictions, Fig. 6 laid out the most paramount 
features of XGBoost (with feature importance > 0.01). 
Of note, historical occurrences of DILI, DIH, and fatty 
liver disease (FLD) during the baseline phase were 
consistently highlighted. Moreover, the ULN for ALT, 
ALP and Tbil were also identified as critical factors. 
The SHAP values calculated for the XGBoost model, as 
shown in Supplemental Fig.  3, indicate that individu-
als who had chronic liver disease during baseline were 
more likely to be in DILI status. Interestingly, we found 
that those with a lower educational level were more sus-
ceptible to DILI status. To gain a deeper understanding 
of the underlying mechanism and the effects of features 
in the XGBoost model, we randomly selected two typi-
cal patients from the dataset. Furthermore, we created 
force plots to visualize their decision process, as illus-
trated in Supplemental Fig. 4 and Supplemental Fig. 5. 
The average SHAP value was 0.168, where yellow indi-
cates a positive impact and purple represents a negative 
impact. In Supplemental Fig.  4, the identified patient 
with a SHAP value of 1.06, surpassing the average, is 
likely to develop DILI. The significant influencing fac-
tor is being diagnosed with DILI or DIH at least once 
during the baseline period. The same rationale applies 
to the identified patient as depicted in Supplemen-
tal Fig.  5. Additionally, Supplemental Fig.  6 presents  
a force plot that captures the aggregate effect in the  
validation set.

Fig. 3  Comparison of the AUPR of the XGBoost, logistic and random 
forest in the validation set

Fig. 4  Comparison of the calibration curve of the XGBoost, logistic 
and random forest in the validation set

Fig. 2  Comparison of the AUROC of the XGBoost, logistic 
and random forest in the validation set
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Discussion
To our knowledge, this study represents the initial 
attempt to evaluate the prediction for DILI in an Asian 
population, predominantly of Han ethnicity, with TB 
using regional electronic health records. We observed 
slightly enhanced discrimination abilities in ML models 
compared to the logistic model. While logistic regres-
sion offers better clinical generalizability, it struggles 
with overfitting and handling missing variables, result-
ing in overall weaker performance than anticipated. In 

contrast, both XGBoost and RF employ more advanced 
techniques. XGBoost utilizes gradient boosting, progres-
sively building weak learners and effectively capturing 
non-linear relationships with built-in regularization. On 
the other hand, RF, a bagging ensemble method, con-
structs independent decision trees on random subsets of 
data, resulting in robust averaging but with less explicit 
regularization. XGBoost excels in capturing intricate 
non-linear patterns, making it suitable for tasks involv-
ing complex and dynamic interactions like predicting 

Fig. 5  The decision curve of the XGBoost, logistic and random forest in the validation set

Fig. 6  Top important features selected by XGBoost (> 0.01). Abbreviations: ODILIO, outpatient drug-induced liver injury, once occurring; ODIHO, 
outpatient drug induced hepatitis, once occurring; ODIHS, outpatient drug induced hepatitis, sporadically occurring; IDIHO, inpatient drug induced 
hepatitis, once occurring; ODILIS, outpatient drug induced liver injury, sporadically occurring; IDIHF, inpatient drug induced hepatitis, frequently 
occurring; IDILIO, inpatient drug induced liver injury, once occurring; ODILIF, outpatient drug induced liver injury, frequently occurring; TBIL, total 
bilirubin; ALP, alkaline phosphatase; IDILIS, inpatient drug induced liver injury, sporadically occurring; ALT, alanine aminotransferase; FLD, fatty liver 
disease



Page 8 of 10Xiao et al. BMC Medical Research Methodology           (2024) 24:92 

DILI during TB treatment. Its training efficiency is also 
evident when handling large datasets. RF, with its robust 
averaging, is well-suited for further application in diverse 
datasets but may encounter challenges in effectively 
capturing subtle non-linear patterns among multiple 
explanatory variables.

Several prior studies have identified risk factors asso-
ciated with DILI during TB treatment, involving chronic 
liver disease, specific drug combinations, age, and vari-
ous demographic characteristics [25–27]. Lammert et al. 
[28] suggested an increased risk of DILI in patients with 
chronic liver disease indicative of NAFLD. Chang et  al. 
[29] indicated a significant rise in hepatotoxicity risk 
associated with adding PZA to INH and RIF. Hosford 
et al. [30] established a notable elevation in hepatotoxic-
ity risk among individuals over 60 years of age through a 
systematic literature review. Abbara et  al. [2] found low 
patient weight, HIV-1 co-infection, higher baseline ALP 
levels, and alcohol intake were risk factors. Thus, in our 
model, we predefined enzyme levels, utilization of anti-
TB drugs such as PZA, INH, and RIF, hepatoprotective 
agents such as silymarin and glycyrrhetinic acid, alcohol 
intake, and demographic variables such as age, gender, 
education level, ethnicity, profession as predictors. In 
the ultimate XGBoost model, the contribution weights 
for chronic liver disease, ULN of ALT, ALP, Tbil, and age 
surpass 0.01, consistent with earlier research discoveries.

Currently, a range of predictive models for DILI pri-
marily operates at the molecular level in preclinical set-
tings [31], utilizing diverse artificial intelligence assisted 
algorithms [32]. Minerali et al. [33] employed the Bayes-
ian ML method, resulting in an AUROC of 0.81, 74% sen-
sitivity, 76% specificity, and 75% accuracy. Xu et al. [34] 
proposed a deep learning model, achieving 87% accu-
racy, 83% sensitivity, 93% specificity, and an AUROC 
of 0.96. Dominic et  al.’s Bayesian prediction model [35] 
demonstrated balanced performance with 86% accuracy, 
87% sensitivity, 85% specificity, 92% positive predictive 
value, and 78% negative predictive value. In the clinical 
stage, only Zhong et al. introduced a single tree XGBoost 
model with 90% precision, 74% recall, and 76% classifica-
tion accuracy for DILI prediction, using a clinical sample 
of 743 TB cases [36]. In our study, we leveraged regional 
healthcare data and employed the XGBoost algorithm. 
The model exhibited 76% recall, 82% specificity, and 81% 
accuracy in predicting DILI status. Our approach was 
proven robust, as evidenced by a mean AUROC of 0.89 
and AUPR of 0.75 upon tenfold cross validation. During 
the clinical treatment stage, our model exhibited high 
levels of accuracy and interpretability.

The choice of a cutoff in a DILI prediction model is 
crucial and depends on specific study goals and require-
ments. Various studies have investigated optimal cutoff 

values in DILI prediction models to enhance understand-
ing and prediction accuracy. For instance, in a study 
focused on drug-induced liver tumors, the maximum 
Youden index was utilized to determine the ideal cut-
off point [37]. Another study, aimed at predicting DILI 
and cardiotoxicity, determined 0.4 as the optimal cutoff 
value using chemical structure and in  vitro assay data 
[38]. Similarly, a system named DILIps, designed to pre-
dict DILI in drug safety, utilized the ROC curve to select 
the best cutoff value [39]. Given the imbalanced dataset 
in our study, we found the precision recall curve method 
seemed to be more appropriate. Additionally, considering 
the severe consequences of DILI, prioritizing the detec-
tion of DILI suggests choosing a lower cutoff to maximize 
sensitivity. Thus, in our study, we opted for the maximum 
Youden index as the best cutoff.

However, the acceptability of ML in the medical com-
munity faces a significant hurdle regarding interpretability, 
particularly in settings where clinical decisions are para-
mount. Our research employed SHAP strategies to illumi-
nate the complex mechanisms of the XGBoost model.

Strengths and limitations
The study utilized a large dataset of over 7,000  TB 
patients to develop a robust model and comprehensively 
included clinical, demographic, and biochemical vari-
ables to improve predictive accuracy. Furthermore, the 
model incorporates SHAP analysis to improve inter-
pretability. However, as we embark on the integration of 
ML into clinical settings, a vital concern persists regard-
ing the generalizability of models [40]. While our model 
demonstrates enhanced predictive accuracy, it’s impor-
tant to recognize the inherent limitations stemming from 
the lack of external validation. Patient characteristics 
[41] and drug interactions [42] may differ widely across 
populations. This underscores the importance of validat-
ing models on diverse patient cohorts and geographical 
regions. Moreover, the study’s reliance on a data-driven 
approach and the inherent complexity of integrating ML 
models into clinical practice present additional limita-
tions [43]. Additionally, the dependence on clinical diag-
nosis for DILI and the potential influence of unmeasured 
variables on model accuracy are acknowledged. While the 
study’s findings offer valuable insights, careful considera-
tion is warranted when interpreting them.

Conclusions
XGBoost shows improved predictive performance com-
pared to RF and LASSO logistics in this study. More-
over, introducing the SHAP method enhances the clinical 
understanding and potential application of the model. 
For further research, external validation and more detailed 
feature integration are necessary.
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Code availability statement
To enhance reproducibility and facilitate peer review, 
we uploaded the code used for model fitting. The source 
code associated with this research is available on the 
GitHub repository (https://​github.​com/​cpu-​pharm​acoepi/​ 
TB-​DILI). For inquiries or assistance related to the code, 
please contact 1,020,202,613@cpu.edu.cn.
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